
Advanced Topics in Machine Learning and Algorithmic Game Theory

Lecture 9: Sponsored Search Optimization
Lecturer: Yishay Mansour Scribe: Eyal Gofer

9.1 Lecture Overview

This lecture discusses the problem of allocating ad slots given search queries, where the
advertisers have constrained budgets, and the search queries arrive online. An online algo-
rithm is tasked with allocating each term to an advertiser, with the aim of maximizing the
overall revenue, subject to the budget constraints. The main result described is an online
algorithm that, for a random permutation of the ads, achieves a profit of (1− ε)OPT with
high probability, where OPT is the profit of the optimal offline algorithm. The value of ε is
an input to the algorithm and depends on problem parameters.

9.2 Online Adword Allocation

Suppose a user types the query term “flowers” in a search engine. In addition to search
result, the search engine returns related ads that are placed at the top and on the side of the
results page. In the background, various advertisers bid for the right to show their ads in
response to specific search terms, and these advertisers are ranked according to their bids.
A bid is the amount of money an advertiser is willing to pay whenever a user clicks on an
ad. Note that an advertiser may sell several different products. In addition, each advertiser
has a budget constraint, for example, up to $100 to be spent in total on a given day.

The advertiser that wins such an auction pays the second highest price (a second price
auction). This type of auction has the desirable property of being strategy proof, namely,
that advertisers have no incentive to state a price other than their true valuation. Real-life
auctions on the internet are more complex, but the general principal is the same.

Formally, there are n advertisers, m queries, and Bi is the budget of advertiser i, for
1 ≤ i ≤ n. The queries arrive in an online fashion, and for each query j, 1 ≤ j ≤ m,
we get as input the advertisers’ bids for the query, denoted b1,j, . . . , bn,j. It is assumed for
simplicity that bi,j ∈ [0, 1] for every i and j. The online algorithm is required to assign
each query to an advertiser. For query j, this choice is represented by a vector x1,j, . . . , xn,j,
s.t. xi,j = 1 if i is the chosen advertiser and 0 otherwise. The profit of the algorithm is
then ALG =

∑n
i=1 min{Bi,

∑m
j=1 bi,jxi,j}. We will assume that bmax = maxi,j{bi,j} satisfies

bmax � Bi for every 1 ≤ i ≤ n. In other words, we assume that the importance of any single
ad allocation is negligible.

1

2 Lecture 9: Sponsored Search Optimization

The source of the queries may be modeled in various ways. We will consider allocation
algorithms for three different source models.

9.3 A Fully Adversarial Model

We begin with the case where the frequency and order of the terms is arbitrary.

We will make the simplifying assumption that bi,j ∈ {0, 1}. Denote spent(i, j) =∑j−1
t=1 xi,tbi,t for the amount spent by advertiser i up until round j. Consider the algorithm

GREEDY that, given the bid vector b∗,j for the j-th query, chooses the highest possible bid,
that is the advertiser in arg maxi{bi,j : spent(i, j) < Bi}.

We will bound the competitive ratio of GREEDY. Let yi,j be the allocations by an optimal
offline algorithm OPT. The revenue of any algorithm is the sum of the revenues from each
of the advertisers. In order for OPT to do better than GREEDY, it has to do better on
some of the advertisers. There are some advertisers whose budget is completely exhausted
under GREEDY’s allocations. For those advertisers, OPT clearly cannot do better than
GREEDY. We then consider an advertiser i whose budget is not all used under GREEDY’s
allocations. Any excess revenue OPT gets from i must come from times j s.t. yi,j = 1 and
xi,j = 0. Since i did not use up its budget, GREEDY could have chosen i, but instead
allocated query j to some advertiser k 6= i. By definition of GREEDY, bi,j ≤ bk,j. Therefore,
any advantage gained by OPT over GREEDY may be mapped to some greater or equal
revenue obtained by GREEDY. Thus, OPT −GREEDY ≤ GREEDY , which means that
GREEDY is 2-competitive.

Note that with minor changes, the same greedy algorithm and analysis also work if
bi,j ∈ [0, 1], and the algorithm is 2-competitive.

9.4 The Other Extreme: A Stochastic Model

We assume that there is a finite set L of possible bid vectors b∗,l, each with its own known
probability ql. On each round j, a bid vector is chosen independently at random from the
set, according to the above probability. We solve the following linear program:

maximize
∑

i,l bi,lxi,lqlm

subject to ∀i
∑

l bi,lxi,lqlm ≤ Bi

∀l
∑

i xi,l ≤ 1
∀i, l xi,l ≥ 0.

Each of the variables xi,l has the interpretation of being the probability of allocating the ad
to advertiser i, given that we get the bid vector b∗,l. The program maximizes the expected

9.5. AN INTERMEDIARY MODEL: RANDOM PERMUTATIONS 3

revenue. This leaves the possibility that for some samples, advertisers will outspend their
budgets. We show how this may be avoided with high probability.

If we use the above solution, what is the probability that an advertiser i overspends its
budget?

Let q̂l be the observed frequency of query l ∈ L. For each query l we select the advertiser
using the probability distribution x∗,l. Let x̂i,l be the frequency of times we selected advertiser
i for query l. By Hoeffding’s inequality,

Pr (∃l : |ql − q̂l| > ε) ≤ |L|e−2ε2m, and Pr (∃l, i : |xi,l − x̂i,l| > ε) ≤ n|L|e−2ε2m

This implies that the probability we exceed the budget is small, i.e.,

Pr

(
∃i :

∑
i,l

q̂lx̂i,lbi,lm ≥ (1 + ε)Bi

)
≤ 2n|L|e−2(ε/3)2m,

since (1 + ε/3)2 < 1 + ε. Equivalently, if m = Ω(1
ε2

ln n|L|
δ

), that probability is upper bounded
by δ. This gives a regret of at most

∑n
i=1 εBi ≤ ε ·OPT .

9.5 An Intermediary Model: Random Permutations

We now introduce a model in which an adversary is allowed to choose the bid vectors, but
their order is chosen uniformly at random. This model seems more realistic than the previous
stochastic setting. The main idea will be to “sacrifice” the first εm bids, learn an optimal
rule, and then use it on the remaining (1− ε)m bids. For this purpose, we will assume that
m is known in advance.

It is important to note that knowing m in advance is necessary for achieving a competitive
ratio that tends to 1. To see why this is true, consider a scenario with two bidders and two
query types, a and b. Each bidder has a budget of 150, and the bids are (1, 0) for a and (2, 1)
for b. We receive a stream of 50 a’s, then 50 b’s, and then again 50 a’s and 50 b’s. If the stream
stops after the first 100 queries, OPT allocates all queries to bidder 1, obtaining a revenue
of OPT1 = 150. If we process all the queries, OPT allocates 25 b’s and all a’s to bidder 1,
and 75 b’s to bidder 2, a total revenue of OPT2 = 225. Let ALG be some online algorithm.
Denote a1 for the number of a’s allocated to bidder 1 out of the first 100 queries, b1 for the
number of b’s allocated to bidder 1 out of the first 100 queries, and similarly, a2 and b2 for
the allocations to bidder 1 out of the last 100 queries. R1 = b1+a1+50 is the revenue of ALG
from the first 100 queries. Therefore, R2 = b1 + a1 + b2 + a2 + 100 is the revenue from all the
queries. The revenue from bidder 1 on all queries is 2b1+2b2+a1+a2, and this is ≤ 150, by its
budget constraints. Thus, R1+R2 = (2b1+2b2+a1+a2)+(150+a1−b2) ≤ 300+a1−b2 ≤ 350.
Observe that

min{R1/OPT1, R2/OPT2} ≤
R1 +R2

OPT1 +OPT2

≤ 350/375 ∼ 0.93,

4 Lecture 9: Sponsored Search Optimization

so ALG is suboptimal either on the first 100 queries or on all of them.
We now proceed to explain the idea behind the algorithm. We consider the following

linear program:

maximize
∑

i,j bi,jxi,j
subject to ∀i

∑
j bi,jxi,j ≤ Bi

∀j
∑

i xi,j ≤ 1
∀i, j xi,j ≥ 0.

Its dual is the program

minimize
∑

i αiBi +
∑

j pj
subject to ∀j αj ≥ 0

∀j pj ≥ 0
∀i, j pj ≥ bi,j(1− αi).

Consider the optimal dual solution. At the optimum, αi ≤ 1 for every i, because given the
constraints of the form pj ≥ 0, there is no advantage in taking αi > 1. Thus, for every
j, pj = maxi{bi,j(1 − αi)}. The dual objective therefore has the form D(α) =

∑
i αiBi +∑

j maxi{bi,j(1 − αi)} at the optimum. By complementary slackness, if xi,j > 0, then pj =
bi,j(1−αi), and by all the other constraints on pj, we get pj = maxi{bi,j(1−αi)}. Given the
optimal α, we should therefore allocate j to the bidder arg maxi{bi,j(1−αi)}. In fact, every
α ∈ [0, 1]n defines a rule that assigns j to arg maxi{bi,j(1− αi)}.

The algorithm will “learn” the optimal α on the first εm queries, and then apply the
allocation rule described above to the rest of the queries. We use the notation D(α, S) =∑n

i=1 αiεBi +
∑

j∈S maxi{bi,j(1− αi)}, where S ⊆ {1, . . . , n}, |S| = εm.

Algorithm 1 Learn-Weights(ε)

for j = 1→ εm do
Observe the bids bi,j
Allocate arbitrarily (e.g. GREEDY)

end for
α∗ ← arg minα{D(α, S)}
for j = εm+ 1→ m do

Observe the bids bi,j
Allocate to arg maxi{bi,j(1− α∗i)}

end for

Note that the algorithm makes the implicit assumption that the expression bi,j(1 − α∗i)
has a unique maximum. We continue under this assumption and comment that the problem
of ties may be resolved by the introduction of small random perturbations that bring the
probability of ties to 0.

9.5. AN INTERMEDIARY MODEL: RANDOM PERMUTATIONS 5

Theorem 9.1 The algorithm Learn-Weights(ε) has a 1−O(ε) competitive ratio if for every

1 ≤ i ≤ n, n ln(mn)
ε3

≤ Bi.

To prove Theorem 9.1, we use ideas based on the PAC learning model. The PAC model
setting consists of a sample space X, a concept class C, a target function f : X → {0, 1},
and a distribution D over X.

Definition A class C is PAC-learnable with a sample of size k if for every f ∈ C, we can
find a hypothesis h ∈ C s.t. PrD{error(h) < ε} > 1− δ, where error(h) = D(f 6= h).

Theorem 9.2 A finite class C is PAC-learnable with a sample of size k = O(1
ε

ln |C|
δ

), using
a consistent hypothesis.

Proof: Assume error(h) > ε. The probability that h is consistent is < (1− ε)k. By the
union bound,

Pr(∃h : h is consistent, error(h) > ε) ≤ |C|(1− ε)k ≤ δ.

�
For our problem, C = [0, 1]n, h is our α, and f = α∗. Every α is an allocation of the queries

to the advertisers {1, . . . , n}, and error(α) = 1− ALG(α)
OPT

. We will show that if error(α) > ε,
then Pr(α is optimal on S) ≤ δ/|Π| = δ′, where S is the query learning set and Π is the set
of possible allocations by some α′ ∈ C.

Let xi,j(α) be the allocations using α. For every 1 ≤ i ≤ n, denote Ri(α) =
∑

j bi,jxi,j(α)
and

di(α) =

{
|Ri(α)−Bi| αi > 0

max{0, Ri(α)−Bi} αi = 0.

Denote also Di(α) = αiBi + (1 − αi)Ri(α). We need some auxiliary claims before we can
prove the main result.

Claim 9.3 It holds that D(α)− ALG(α) ≤
∑

i di(α).

Proof: We have that

D(α) =
∑
i

αiBi +
∑
j

max
i
{bi,j(1− αi)}

=
∑
i

αiBi +
∑
j

∑
i

(1− αi)bi,jxi,j(α)

=
∑
i

αiBi +
∑
i

(1− αi)
∑
j

bi,jxi,j(α)

=
∑
i

αiBi +
∑
i

(1− αi)Ri(α).

6 Lecture 9: Sponsored Search Optimization

In addition, ALG(α) =
∑

i min{Bi, Ri(α)}, and together we have that

D(α)− ALG(α) =
∑
i

(αiBi + (1− αi)Ri(α)−min{Bi, Ri(α)}) .

Consider the expression αiBi + (1 − αi)Ri(α) − min{Bi, Ri(α)}. If αi > 0, then in case
Bi ≤ Ri(α), we get (1− αi)(Ri − Bi), and if Bi > Ri(α), we get αi(Bi − Ri). In both cases
the result is ≤ di(α). If αi = 0, then we get Ri(α)−min{Bi, Ri(α)}. If Bi ≤ Ri(α), then we
get Ri(α)−Bi, and if Bi > Ri(α), we get 0. In any case, the result is ≤ di(α). �

Recall that we want to show that if error(α) > ε, then Pr(α is optimal on S) ≤ δ/|Π| =
δ′. To do that, we show:

1. If error(α) > ε, then ∃i di(α) > εDi(α).

2. If ∃i di(α) > εDi(α), then Pr(α is optimal on S) ≤ δ′.

Suppose that for every i, di(α) < εDi(α). By Claim 9.3, we would have that

D(α)− ALG(α) ≤ ε
∑
i

Di(α).

We have already seen that

D(α) =
∑
i

αiBi +
∑
i

(1− αi)Ri(α) =
∑
i

Di(α),

so D(α)− ALG(α) ≤ εD(α), and therefore, error(α) ≤ ε, proving (1).
We now proceed to show (2). The following claim bounds the size of the concept class

(proof omitted).

Claim 9.4 It holds that |Π| = (mn)O(n).

We will use the following variant of Bernstein’s inequality:

Lemma 9.5 Let b1, . . . , bn ∈ [0, 1], and let S ⊆ {1, . . . , n} be a random subset of size k.
Define X =

∑
j∈S bj and let µ = E[X] = (k/m)

∑
i bi. Then with probability > 1 − δ,

|X − µ| = O(
√
µ ln(1/δ) + ln(1/δ)).

Denote bj = bi,jxi,j(α) (and suppose that αi > 0). By complementary slackness, X = εBi

and µ = εRi(α), and therefore, |X − µ| = εdi(α). Since di(α) > εDi(α), we have that
εdi(α) > ε2Di(α) = ε2z, where z = αiBi + (1− αi)Ri(α), and Bi ' Ri(α) = z. We also have

that ε2z ≥
√
εz ln(1/δ′) + ln(1/δ′) for B ' z ≥ (1/ε3) ln(1/δ′) = ln |Π|+ln(1/δ)

ε2
. We know that

for O(
√
εR/z ln(1/δ′) + ln(1/δ′)) the probability is δ′. Therefore, with probability at most

δ′, the vector α is optimal if εDi(α) < di(α).

