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1.1 Introduction

Several fields in computer science and economics are focused on the analysis of Game theory.
Usually they observe Game Theory as a way to solve optimization problems in systems where
the participants act independently and their decisions affect the whole system.
Following is a list of research fields that utilize Game Theory:

• Artificial Intelligence (AI) - There has been a shift from interest in Machine Learning,
where one builds a hypothesis based on data, to Reinforcement Learning, which deals
with a single agent (robot), to Multi Agent learning.

• Communication Networks - The Internet can be used to model environment with mul-
tiple players where each player wishes to maximize his own objectives. The goal has
been to suggest mechanisms, where it will be both in the user’s interest to follow them,
and the outcome will be efficient.

• Computer Science Theory - There are several subfields that use Game Theory:

– Algorithm Mechanism Design.

– Complexity Issues.

– Quality of Nash Equilibrium (compared to optimal solution).

• Industry - Sponsored search advertisment is based on multi-participant biddings, for
which game theory is relevant.

1.2 Course Syllabus

1. Introduction

2. Quality of an Equilibrium

(a) Worst case - Price of Anarchy

(b) Best case - Price of Stability
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(c) Test Cases:

i. Job Scheduling (Price of Anarchy)

ii. Routing (Price of Anarchy)

iii. Network Creation (Price of Anarchy and Price of Stability)

iv. Resource Allocation (Price of Stability)

3. Equilibrium Existence

(a) Two players zero sum game

(b) Congestion and potential games.

(c) Nash Equilibrium (existence)

(d) Correlated Equilibrium

4. Repeated Games

(a) Internal and External Regret

(b) Dynamics of reaching equilibrium

5. Mechanism Design

(a) Social choice

(b) Maximizing social welfare

(c) Auctions (combinatorial)

(d) Auctions (digital goods)

1.3 What is Game Theory

Game Theory analyzes the way rational players behave in a competitive environment. A
rational player is a player with priorities (or utility) that tries to maximize the utility (or min-
imize cost) while considering that other players are also rational. A competitive environment
is an environment with multiple rational players.

1.4 Basic Game Theory Examples

1.4.1 The Prisoner’s Dilemma

There are two prisoners that committed a crime. If they both do not confess, they get a
low punishment. If they both confess, they get a more severe punishment. If one confesses
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and the other does not, then the one that confesses gets a low punishment and the other
gets a very severe punishment. The game can be formalized in the following matrix, each
entry includes a pair, the first is the cost to the first player and the second is the cost to the
second player.

Table 1.1: Prisoner Dilemma Cost Matrix

Confess Silent
Confess (4, 4) (1, 5)
Silent (5, 1) (2, 2)

Game theory predicts the case where both prisoners confess (4,4): player i doesn’t know
what the other player chooses. Should the other player confess, then player i can either
confess (4 years imprisonment) or not confess (5 years). Should the other player choose to
remain silent, then player i can confess (1 year) or keep silent (2 years). Thus, in both cases
it is better to confess. This is an example of a strong dominant strategy (to be formally
defined later).

1.4.2 Internet service provider - ISP

ISP’s often agree to mutually route each other’s traffic for free. Consider the following
example where each ISP is individually motivated to choose the shortest path in its AS
(autonomous system).

Figure 1.1: ISP example



4 Lecture 1: February 22, 2010

From the figure we can easily see that each ISP has an internal shorter path if it uses the
longest route via the other ISP. This is formalized in the following table.

Table 1.2: Route Distances for both ISPs

A B
A (4, 4) (1, 5)
B (5, 1) (2, 2)

The outcomes are identical to the priosner’s dilema game. Because each player strives to
minimize cost arising from internal traffic, the strategy chosen is to route traffic to the nearest
gateway (and from there to the other ISP). Because all players are rational, this strategy
is ubiquitous and thus each player ends up paying more than if they had cooperated. The
current example, demonstrates again how each player chooses a strategy that maximizes his
individual benefit (B,B). This is paradoxical because by choosing (A,A) each player would
get a larger utility (lower cost).

1.5 Strategic Games

A strategic game is a model for decision making where there are N players, each choosing
an action. A player’s action is chosen once and cannot be changed afterwards.

Each player i can choose an action ai from a set of actions Ai. let A be the set of all
possible action vectors ×j∈NAj. Each player has either a utility function ui : A→ R which
is to be maximized or alternatively, a cost function ci : A→ R which should be minimized.

Definition A Strategic Game is a triplet 〈N, (Ai)
N
i=1, (ui)

N
i=1〉 where N = {1...n} is the

set of n players, Ai is the finite set of actions for player i, and ui is the utility function of
player i.

Several player behaviors are assumed in a strategic game:

• The game is played only once.

• Each player “knows” the game (each player knows all the actions and the possible
outcomes of the game).

• The players are rational. A rational player is a player that plays selfishly, wanting to
maximize her own benefit of the game (the utility function).

• All the players choose their actions simultaneously (but do not know the other players
current choices).



1.6. PARETO OPTIMALITY 5

We now define a dominating action. An action is dominating if it is better than any other
action, regardless of the action of the other players.
Definition Action ai is a Weak Dominant Strategy for player i if

∀b−i ∈ A−i.∀bi ∈ Ai : ui(b−i, bi) ≤ ui(b−i, ai)

Action ai is a Strong Dominant Strategy for player i if

∀b−i ∈ A−i.∀bi ∈ Ai : ui(b−i, bi) < ui(b−i, ai)

Where (a−i) = (a1, a2, ..., ai−1, ai+1, ..., an).

In the Prisoner’s Dilemma game the action ’Confess’ is a strong dominant strategy for
both players.

1.6 Pareto Optimality

An outcome ~a ∈ A of a game 〈N, (Ai)
N
i=1, (ui)

N
i=1〉 is Pareto Optimal if there is no other

outcome ~b ∈ A that makes each player at least as well off and at least one player strictly
better off. That is, a Pareto Optimal outcome cannot be improved upon without hurting at
least one player.

Definition An outcome ~a is Pareto Optimal if

∀b ∈ A∃i ∈ N ui(~b) < ui(~a).

1.7 More Game Theory Examples

1.7.1 Picking up after your dog

Let us consider the following game: A group of N players live in a neighborhood where
each player has a dog. Each neighbor can choose whether to pick up after his dog or not.
Cleaning after your dog has a cost (c = 3) and thus is not personally desirable, where as
simply ignoring the sights and smells only costs 1. Walking in a polluted street is also costly
in proportion to the number of droppings. Thus the total cost for each player is the number
of players that did not clean after their dogs and the outcome of his personal actions (c = 1
or 3).
Analyzing a player’s actions: If k players choose ”Leave” and n − k − 1 choose ”Pick” our
player can either choose to ”Leave” and pay a total cost of k + 1 or ”Pick” and pay k + 3.
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Thus the dominant action is ”Leave”. This is paradoxical because if all players chose ”Pick”
then the individual costs would be only 3.

If the cost function were to be changed such that ”Leave” would be additionally penalized
(fines etc.), the players would be motivated to ”pick” instead.

1.7.2 Tragedy of the commons

Consider a shared resource (e.g. network bandwidth or centralized servers) and N players.
Each player can choose a value xi ∈ [0, 1] (ratio of resource utilized). The outcome is as
follows:
if

∑
xi > 1 then ∀j : uj = 0.

if
∑
xi < 1 then ∀j : uj = xj · (1−

∑
xi)

Analyzing player i’s actions: Let us assume that
∑

j 6=i xj = t. Player i will try to maximize
his utility by maximizing the following function: f = xi · (1−

∑
xj) = xi · (1− t− xi)

Let us derive: df
dxi

= 1 − t − 2xi =⇒ xi = 1−t
2

. This action is the best response (BR) for
player i given x−i.
Definition BRi(x−i) = argmaxxi

(ui(xi, x−i))

In order to maximize f , we need that df
dxi

= 0 and d2f
dx2

i
< 0. Setting df

dxi
= 0 we have

2xi = 1−∑
j 6=i xj, which implies xi = 1−∑

xj

Now, summing over all players: (
∑
xi) = N −N · (∑xj)

Denote S =
∑
xi then S · (N + 1) = N , hence, S = N

N+1
. The action of player i is

xi = 1 − S = 1
N+1

. This is an equilibrium. That means that no player can gain from
changing his own action.
The utility of each player is: ui = 1

N+1
· (1− N

N+1
) = 1

(N+1)2
. Although this is an equilibrium,

it is not pareto-optimal as can be shown by the fact that if all players would have chosen
xi = 1

2N
instead, then the individual utilities would be much higher; namely,

ui = 1
2N
·∑xi = 1

4N
.

1.8 Equilibrium

1.8.1 Definition of Equilibrium

An equilibrium is a joint action x ∈ A such that:
∀i ∈ N,∀yi ∈ Ai : ui(xi, x−i) ≥ ui(yi, x−i) or alternatively,
∀i ∈ N : xi ∈ BR(x−i).
Namely, no player can unilateraly improve his payoff.



Equilibrium 7

1.8.2 Example: Battle of the Sexes

In this game, two players (of different gender) need to coordinate on an event (sports or
opera). They both prefer to go to the same event together(gaining a value of 2 each if they
go to the same event, or 0 if not), but they have a different preference between the events
(value 2 for preferred event and 1 for the other).

Table 1.3: Different Outcomes for the Battle of the Sexes
Sports Opera

Sports (4, 3) (2, 2)
Opera (1, 1) (3, 4)

There are two Equilibrium points: (Sports, Sports) and (Opera, Opera). Both are also
Pareto Optimal.

1.8.3 Example: Routing Game

In this game two players need to send information in the shortest path from a point of origin.
They can choose to either use a short or long path (cost 1 or 2, respectively). Unlike the
battle of the sexes, they prefer to select different routes (actions). Should both of them
choose the same path it would congest, thus resulting in a cost of 2.

Figure 1.2: Routing Example

There are two Equilibrium points: (A, B) and (B, A).
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Table 1.4: Routing Costs

A B
A (3, 3) (1, 2)
B (2, 1) (4, 4)

1.9 Mixed Strategy

1.9.1 Matching Pennies

In this game each player select Head or Tails. The row player wins if they match, and the
column player wins if they mismatch (Matching Pennies).

Head Tail
Head (1,−1) (−1, 1)
Tail (−1, 1) (1,−1)

In this game there is no Deterministic Equilibrium point. Also, this is a zero sum game
(the sum of the profits of the player for each possible outcome is 0).
If we allow each player to randomly choose an outcome with a pre-defined probability the
game will be an example of a mixed strategy game: Let us assume that player 1 chooses
”Head” with probability p and ”Tail” with probability 1 − p and that player 2 chooses
”Head” with probability q and ”Tail” with probability 1− q. In this case each player wants
to maximize its expected utility: maxE[ui, (x)].
Let us analyze the best response of player 1: If player 1 plays ”Head” the outcome will be
−1 with probability q and 1 with probability 1 − q thus the expected utility is 2q − 1. If
player 1 plays ”Tail” the outcome will be −1 with probability 1− q and 1 with probability
q thus the expected utility is 1− 2q. It follows that player 1 should:
Play ”Head” if 2q − 1 > 1− 2q =⇒ q > 1

2

Play ”Tail” if 2q − 1 < 1− 2q =⇒ q < 1
2

Thus, for q = 1
2

player 1 is indifferent to the different outcomes. The same holds for player
2. We can see that there is an equilibrium if both players play with strategy (1

2
: 1

2
).

1.9.2 Definit ion of Mixed Nash Equilibrium

Each player i has a distribution pi ∈ ∆(Ai), where ∆ is the set of possible distributions

defined over A. A vector of such distributions ~P = 〈p1, ....pN〉 is a Mixed Nash Equilibrium
if for every player i ∈ N , ∀qi ∈ ∆, qi 6= pi: Exi∼pi,xj∼pj

[ui(x1..xn)] ≥ Exi∼qi,xj∼pj
[ui(x1..xn)]
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holds.
An alternative definition: ∀i ∈ N,∀ai ∈ Ai: Exj∼pj

[ui(x1..xn)] ≥ Ex−i∼p−i
[ui(ai, x−i)]. This

definition is equivalent, because if the inequality holds for any single action it also holds for
any distribution.
Definition support(Pi) = {a|Pi(a) > 0}. Thus if an action is contained within a certain

distribution with positive probability it belongs to the support of the distribution.

Definition BRi(p−i) = maxargai
{u(ai, p−i)} Thus given a distribution of the other

players, the best response for player i are the actions that maximize its expected utility.

A distribution p is a mixed nash equilibrium if: ∀i : support(pi) ⊆ BRi(p−i). That is, given
that p−i is the distribution played by the other players, whatever action player i chooses
according to pi, will lead to a best result, and this holds for all players.

1.9.3 Example: Rock Paper Scissors

Based on the familiar children’s game. This is a zero sum game where there is no pure
equilibrium only a mixed nash equilibrium where all players have uniform distributions
(1

3
: 1

3
: 1

3
).

Table 1.5: Rock Paper Scissors utility table
R P S

R (0, 0) (−1, 1) (1,−1)
P (1,−1) (0, 0) (−1, 1)
S (−1, 1) (1,−1) (0, 0)

1.9.4 Example: Location Game

• Assume a set of N ice cream vendors at a beach. The beach is shaped as a line spanning
[0, 1].

• Each vendor must choose a location along this line. The location chosen by the player
and the other players affects the sales volume (i.e. utility). Assuming players are
spatially sorted in ascending order, the utility function is defined as: ui(xi) = xi+1−xi−1

2
.

Where x0 = 0 and xn+1 = 1.

When N = 2, there is an equilibrium when one of the players is in the middle, and the
other player is as close as possible to him (from one of his sides).
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When N = 3 there is no pure equilibrium. No player wants to be in the middle, since
the other players will be as close as possible to the middle player, either from the left or the
right.

For a circle there is always an equilibrium, where the players are placed at equal distances.

1.9.5 Example: Cournot Competition

Given N competing companies producing and selling a similar product. Every company
i selects a certain production volume xi ≥ 0. The market price is determined by total
production volume: S =

∑
xi. The utility for company i includes the production cost and

the price paid for the produced products: ui(x) = price(S) · xi − cost(xi). Where price and
cost vary depending on the model defined.

• Case I: Linear price, no production cost:
price(S) = 1− S
cost(xi) = 0
The utility ui(x) = price(S) · xi − cost(xi) = xi · (1−

∑
xj)

In equilibrium xi = 1
N+1

, ui = 1
(N+1)2

(As in the computation in the Tragedy of the

Commons) and a pure equilibrium is reached.

• Case II: Harmonic price, no production cost:
price(S) = 1

S

cost(xi) = 0
Let us denote t =

∑
j 6=i xj

The utility ui(x) = price(S) · xi − cost(xi) = xi · 1∑
xj

= xi

t+xi

It follows that each player has the incentive to create an unbounded amount of products
and there is no equilibrium (pure or mixed) in this game.

1.9.6 Example: Auction

There are N players, each one wants to buy an object which is for sale.

• Player i ’s valuation of the object is vi, and, without loss of generality, v1 ≥ v2 ≥ ... ≥
vn ≥ 0.

• In a first price auction the players simultaneously submit bids - bi ∈ [0,∞). The player
who submit the highest bid - bi wins and the payment of the winner is the price of his

bid. That is, the payoff of player i is ui =

{
vi − bi, if player i won
0, otherwise

.

One equilibrium point is b1 = v2 + ε, b2 = v2, ..., bn = vn. In fact one can see that
b3, . . . , bn have no influence. Unfortunately, the first player needs to ”know” the second
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highest bid, which in practice is not available to him.
Another equilibrium is b1 = v1, b2 = v1 − ε, b3 = v3, ... . in fact, the winner will always
be player 1 but the price in any equilibrium can be any value in [v1, v2]

• In a second price auction the payment of the winner is the highest bid among those
submitted by the players who do not win. Player i’s payoff when he bids vi is at least
as high as his payoff when he submits any other bid, regardless of the other players’
actions.
Therefore, for each player i, the bid bi = vi is a weakly dominant strategy. This
suggests that it is in best interest of all players to bid their own value. Also, when all
players bid their own value, it is an equilibrium. This strategy causes the player to bid
truthfully.

For example, consider the two players case. We show that ∀b1, b2 : u1(v1, b2) ≥
u1(b1, b2).

If v1 > b2, then u1(v1, b2) = v1 − b2 ≥ u1(b1, b2) =

{
v1 − b2, b1 > b2
0, b1 < b2

If v1 < b2, then u1(v1, b2) = 0 ≥ u1(b1, b2) =

{
v1 − b2(< 0), b1 > b2
0, b1 < b2


