
Computational Game Theory Spring Semester, 2005/6

Lecture 10: May 30, 2006

Lecturer: Yishay Mansour Scribe: Anat Halpern, Galina Ryvchin, Guy Tannenbaum †

10.1 External Regret - Reminder

Let us recall external regret. We have a single player, playing against an adversarial envi-
ronment.

The model (single player):

• Actions A = {a1 . . . am}

• Time dependent loss function, (can also be defined as a gain function):
lti - loss of action ai at time t

The game:

a. For each step t, the player chooses a distribution pt ∈ ∆(A)

b. The adversary decides on the losses lt = (lt1 . . . ltm), where lti ∈ [0, 1]

c. The player’s loss at time t is
∑m

i=1 ltip
t
i , and

the loss up to time T is

LT
ON =

T
∑

t=1

m
∑

i=1

ltip
t
i

The goal: Minimize the total loss, LT
ON .

We define: LT
i =

∑T
t=1 lti as the loss of playing always the action ai.

External regret was defined as a measure of optimality (comparing our performance to
the performance of the single best action):

ER = LT
ON −min LT

i

We showed that,

ONLINE ≤ min
i
{Li + 2

√

Qi ln m},

†based in part on the scribe notes of Eitan Yaffe, and Noa Bar-Yosef from 2003/4.

1

2 Lecture 10: May 30, 2006

where Qi =
m

∑

t=1

(lti)
2 ≤ Li.

In this lecture we show algorithms that have ”stronger” guarantees.

10.2 Correlated Equilibrium

The model:

• N players - {1 . . . n}

• Actions of player i - Ai

• Joint action - A = Ai × . . .×An

• Utility function of player i - ui : A→ R
We will later look at ui : A→ [0, 1]

10.2.1 Internal Regret

In this section we define pure and correlated equilibria in a different manner than previously.
We use a new measure, called Internal Regret:

IRi(a, x, y) =

{

ui(a
−i, y)− ui(a), ai = x

0, ai 6= x

The meaning is measuring the loss of player i caused by playing action x instead of action
y.
Definition a ∈ A is a pure equilibrium if:

∀i, ∀x, y ∈ Ai : IRi(a, x, y) ≤ 0

Definition Let Q ∈ ∆(A) be a distribution over the joint actions. We adapt the regret

definition in the following manner:

IRi(Q, x, y) = Ea∼Q[IRi(a, x, y)]

Using this definition, Q is a correlated equilibrium if:

∀i, ∀x, y ∈ Ai : IRi(Q, x, y) ≤ 0

The existence of a correlated equilibrium is guaranteed - we gave a direct proof using zero

sum games.

10.3. ǫ-CORRELATED EQUILIBRIUM 3

We can formalize this also in a different manner:
Let us define the set of functions Fi = {f : Ai → Ai}. These are static (time independent)
mappings - we are still talking about the one-shot game. Each function maps Ai, the actions
of player i, in some way to Ai. Note that when all actions are mapped to the same action,
we get the same setting in which external regret is defined.
Then Q is a Correlated Equilibrium if:

∀i ∈ N, ∀f ∈ Fi : Ea∼Q[ui(a)] ≥ Ea∼Q[ui(a
−i, f(ai))]

10.3 ǫ-Correlated Equilibrium

The definition of a correlated equilibrium can be relaxed, by requiring only that a player
cannot gain more than ǫ, as a result of the action change.

Definition Q is ǫ-Correlated Equilibrium if:

∀i ∈ N, ∀f ∈ Fi : Ea∼Q[ui(a)] ≥ Ea∼Q[ui(a
−i, f(ai))]− ǫ

10.3.1 Swap Regret

We define the Swap Regret as follows:

SR(Q, i, f) =
∑

ai∈Ai

Pr[ai ∼ Q] · IRi(Q, ai, f(ai)) ≤ ǫ

and in general:
SR(Q) = max

i∈N
max
f∈Fi

SR(Q, i, f)

Thus, Q is an ǫ-correlated equilibrium if:

SR(Q) ≤ ǫ

We can extend this definition for a series of games: For a series of joint actions ~a = a1 · · ·aT ,
we define in a similar manner:

SR(~a) = max
i∈N

max
f∈Fi

∑

t

IRi(a
t, at

i, f(at
i))

4 Lecture 10: May 30, 2006

Claim 10.1 If SR(~a) ≤ ǫ · T , then the distribution Q is an ǫ-correlated equilibrium, where:

Q(z) =

{

1
T
, z = at

0, otherwise

We would now like to see how players can be driven to create such a series of actions. That
is, we’d like to learn more about the dynamics of reaching an equilibrium.

10.3.2 Reduction of External Regret to Swap Regret

In order to achieve equilibrium, we need an algorithm which minimizes swap regret. In this
section, we will use our knowledge of algorithms that use the external regret measure, as a
way to create an algorithm for swap regret. For that, we will construct a reduction: external
regret 7→ swap regret.
Let’s look at a single player who is only aware of his own losses (note that we switched to
loss terminology instead of utility). Assume the number of actions of the single player is
|Ai| = m. We will use m external regret algorithms B1 . . . Bm as shown in Figure 10.1.

Figure 10.1: Reduction of External Regret to Swap Regret algorithm

Recall the ER assumption:
For any series of t losses {ltj},

LT
ON =

T
∑

t=1

ltON ≤
T

∑

t=1

ltaj
+ ER = LT

j + ER

ǫ-Correlated Equilibrium 5

This implies that

∀j ∈ Ai, LON ≤ Lj + ER

We will construct our algorithm using m external regret algorithms, each guaranteeing an
external regret of at most ERi. Intuitively, each external regret algorithm will be responsible
of a single action (there are m algorithms - one for each possible action of the player). Each
algorithm outputs a vector qt

i of what it would like to play, and we need to return to each
separate external regret algorithm its loss, et

i. We need to wrap these algorithms in some
sort of interface which will calculate the distribution pt and receive the loss. Thus we have
two important actions to do:

a. Calculate pt from ~qt
1, · · · , ~qt

m

b. ”Distribute” ~lt - return to Bi its loss vector ~lti.

Let’s start with distributing the loss: we simply return to Bi its loss vector ~lti = pt
i · ~lt.

We need to define now how we combine the separate ”recommendations” qt
i to get the

distribution p. We construct a matrix

Q =

q11 · · · q1m

...
...

qm1 · · · qmm

← ~qt
1

← ~qt
m

We choose p such that pQ = p.

Intuition: p is the output of our algorithm - its meaning is the distribution over actions.We
can choose an action in 2 ways:

• choose an action directly from among all possible actions.
This is the output of the algorithm.

• choose an algorithm Bi first, according to p, and then select an action according to ~qt
i .

In defining p as above, we ensure that both ways are indeed equivalent. It’s possible to prove
in several different ways that a solution exists.

Analysis:
The loss that Bi “sees” is:

(pt
i · ~lt)~qt

i = pt
i(

~qt
i · ~lt)

6 Lecture 10: May 30, 2006

Bi is an external regret algorithm with ER. For each Bi and for each action j we have a
bound on the external regret (assuming all algorithms guarantee the same regret - ER):

T
∑

t=1

pt
i(

~qt
i · ~lt) ≤

T
∑

t=1

pt
i · ltf(j) + ER.

When we sum up the losses over the different Bi, we get that for any point in time:

m
∑

i=1

(pt
i · ~qt

i) · ~lt =
m

∑

i=1

pt
i(

~qt
i · ~lt) = ~pt ·Q · ~lt = ~pt · ~lt = ltON

Therefore, if we want to find the loss of ONLINE, we need to sum all the Bi’s losses over
time. We get in total:

LT
ON =

m
∑

i=1

LT
Bi
≤

m
∑

i=1

LT
Bi,f(i) + ER = LON,f + ER

Where

LT
ON,f =

m
∑

i=1

T
∑

t=1

pt
i · ltf(i)

LBi,f(i) =
T

∑

t=1

pt
i · ltf(i)

Recall that we previously proved that: ER ∼
√

T log m so by summing over all ERi we have
that:

SR ≤ m
√

T log N

This bound can be easily improved to SR ≤ √mT log N by noticing that the sum of the
losses of all the Bi’s is bounded by T.

10.4 Dynamics of Reaching Equilibrium

In this section, we will study dynamics of play in multi-player game that guarantee con-
vergence to Nash Equilibrium. We will consider dynamic processes that are subject to the
natural restriction of uncoupleness: we require that the dynamics of play be ”uncoupled”
among the players, that is, the strategy of every player does not depend on the utility func-
tions of the other player.
Hart and Mas-Collel (2003) showed that there are games for which no deterministic uncou-
pled dynamics lead to Nash equilibrium.
We will allow random actions and will work in discrete time framework. Thus, we consider
repeated play of a given game, under assumption that each player observes the actions of all
players; as for payoffs, he knows only his own utility function.

10.5. ALGORITHM FOR PURE EQUILIBRIUM 7

10.4.1 Model

• N = {1, ..., n} - players

• Ai - actions of player i

• A - joint actions of players A = A1 × ...× An

• ui - the utility function of player i: ui : A→ [0, 1]

• at
i ∈ Ai - action of player i at time t

10.5 Algorithm for Pure Equilibrium

We will see an algorithm that guarantees convergence of play to a pure Nash equilibrium in
every game where a pure equilibrium exists.
The idea behind this algorithm is to use randomization until Nash equilibrium is hit by pure
chance and then stop there. In order to recognize a Nash equilibrium, players need to keep
history of the past actions. If a player does not benefit from changing his action and he sees
that no other player changed his action since last step, he assumes that a Nash equilibrium
is reached. Otherwise, he tries to move to another state by choosing an action uniformly
at random. If only players who are not playing one of their best response actions would
change it at each step, the algorithm could perform infinitely many steps without reaching
an equilibrium state. To solve this problem players randomize their actions not only when
they can benefit themselves from the change but also when they suppose that other players
are not in Nash equilibrium, i.e., when others keep changing their actions. Thus, a pure
equilibrium needs to be hit twice in a row until all players recognize it.

10.5.1 Algorithm

• At the first step, each player i plays a random a1
i ∈ Ai

• at the step t + 1, player i sees at = at
1, ..., a

t
n

if at
i ∈ BRi(a

t
−i) and at = at−1, then he does not change his action, at+1

i = at
i

else he plays a random at+1
i ∈ Ai

It is easy to see that if a pure Nash equilibrium is reached and holds for two steps, it is
never changed. This is the absorbing state of the process.

Claim 10.2 If a is a pure Nash equilibrium and a = at = at−1 then at′ = a for every t′ > t.

8 Lecture 10: May 30, 2006

10.5.2 Convergence of the Algorithm

• if at time t, at is not pure Nash Equilibrium since at
i /∈ BRi(a

t
−i) then at+1 6= at with

probability |Ai|−1
|Ai|

≥ 1
2

This means that if some player wants to change his action, with high probability the
others will see this at the next step. Then, they also will try to change their actions.

• if at+1 6= at then at time t + 2 the players will choose pure Nash equilibrium a with
probability 1

|A|

• if at time t + 3, a is picked again, the process reaches the absorbing state.

Thus, from any state there is a positive probability to reach the absorbing state in at most
three steps, and therefore this state will be reached with probability 1.

From the claim 10.2 and the convergence properties of the algorithm immediately follows:

Theorem 10.3 The algorithm converges to a Nash equilibrium and the expected convergence
time is O(|A|2).

Note that if each player has m actions, |A| = mn. Thus, the time complexity of the algorithm
is exponential in number of players.

10.6 ǫ−Nash

We now switch to mixed strategies, and present an algorithm that converges to an ǫ−Nash
equilibrium.

10.6.1 Model

• Assume each player sees the expected value of the strategy E[ui(P1...Pn)], where Pi is
a mixed strategy of player i.

10.6.2 Algorithm

• At the first step, player i chooses a random Pi ∈ ∆(Ai)

• player i does the following at time t:
if P t

i /∈ BRi,ǫ(P
−i) then pick P t+1

i at random.
(Note that the player only checks whether his action was in BRi,ǫ. This is because the

ǫ−Nash 9

probablity of exactly hitting a Nash equilibrium is 0, and the goal of this algorithm is
to find an ǫ−Nash equilibrium.)
else:
if P t ≈ P t−1 then choose P t+1

i = P t
i

else pick P t+1
i at random.

• We define P ≈ Q ⇐⇒ ∑ |Pi −Qi| ≤ ǫ
(The idea behind this check is that if the previous action was an ǫ−Nash equilibrium,
and this action is close enough to it, it will also be one.)

10.6.3 Convergence

The proof of convergence to ǫ − Nash equilibrium is similar to the pure equilibrium case.
The difference is that in this case one needs to show what is the probablity that if all players
pick P t

i at random the resulting P t is an ǫ−Nash equilibrium.

Claim 10.4 For two probability functions D1, D2 ∈ ∆(X)
∑

x∈X |D1(x)−D2(x)| ≤ ǫ =⇒ ∀f : X → [0, 1] |ED1
(f)− ED2

(f)| ≤ ǫ

Proof:
|ED1

[f]−ED2
[f]| = |∑x∈X D1(x)f(x)−D2(x)f(x)| = |∑x∈X f(x)(D1(x)−D2(x))| ≤

∑

x∈X |f(x)| |D1(x)−D2(x)| ≤ ∑

x∈X |D1(x)−D2(x)| ≤ ǫ 2

Claim 10.5 For two product probabilities p = (p1 · p2 · ... · pm) q = (q1 · q2 · ... · qm)
‖p− q‖1 =

∑

a∈A |p(a)− q(a)| = ∑m
i=1 |pi − qi|

Proof:
Consider switching from p = (p1...pn) to p′ = (q1, p2, ...pn)
‖p− p′‖ =

∑

a1∈A1,a−i∈A−i |p(a1)p
−i(a−i)− p′(a1)p

−i(a−i)| = ∑

a1∈A1
|p1(a1)− q1(a1)|·

∑

p−i(a−i) =
‖p1 − q1‖1 2

Claim 10.6 Let ǫ− EQ be the collection of all ǫ−Nash Equilibria.
µ(ǫ− EQ) ≥ (ǫ

n
)n (with respect to uniform probablity)

Proof: Let p be a Nash equilibrium

Define Qi =

{

[pi, pi + ǫ
n
] If pi < 1

2

[pi − ǫ
n
, pi] If pi ≥ 1

2

×N
i=1Qi ⊆ ǫ−Nash ⇒ µ(ǫ− EQ) ≥ µ(×Qi) = (ǫ

n
)n

2

• And this concludes the proof for the convergence of the algorithm for the case where
the profit is exactly the utility.

