
Computational Learning Theory Spring Semester, 2005/6

Lecture 2: March 21 2006
Lecturer: Yishay Mansour Scribe: Adi Adiv, Michal Rosen and Ricky Rosen1

2.1 Price of Anarchy

In this lecture we examine “players - machine” games, where each player chooses a machine
to place her job at. We look at a global optimum function. We basically deal with two
models: pure, where the players choose a deterministic strategy, and mixed, where the players
choose a stochastic strategy (i.e., each chooses a probability distribution over machines).
We farther examine different types of games such as identical machines (equal speed to all
the machines), non-identical machine (different speed). We introduce the measure price of
anarchy to capture the “quality” of equilibria and specify the price of anarchy in each model.

The main goal is to compare the “quality” of Nash equilibrium (NE) to the “quality” of
a global optimum (OPT). The following examples will help us understand the notion of the
Price of Anarchy :

2.1.1 Routing on parallel lines

S T

Figure 2.1.1: Routing on parallel lines

• Assume there is a network of parallel lines from an origin S to a destination T as shown
in figure 2.1.1. Several agents want to send a particular amount of traffic along a path
from the source S to the destination T. The more traffic on a specific line, the longer
the traffic delay.

• Allocation jobs to machines as shown in figure 2.1. Each player (job) has to choose a
resource (machine). The machines may be of a different speed. The performance of

1This scribe is based in port on the scribe notes of Noa Bar-Yosef and Eitan Yaffe 2004

1

2 Lecture 2: March 21 2006

M1 M3M2

job1

job2

job5

job6

job3

job4

Figure 2.1: Scheduling jobs on machines

each machine reduces as more jobs are allocated to it. The players aim is to run on
the least loaded machine. We are interested in specifying the Nash equilibria in such
games. This is a situation where no player can gain by switching to different machine.
The global optimum function, in this case, is either the minimum over the load on the
most loaded machine or the sum of costs over all machines.

In these scribe we will use only the terminology of the job scheduling problem.

2.2 The Model

• A set of n users (or players), denoted N = {1, 2, ..., n}

• A set of m machines: M1,M2, ..., Mm

• A vector of ~s speeds: s1, s2, ..., sm where si is the speed of machine Mi

• A vector of weights, w1, ..., wn, where each user i has a weight: wi > 0

• Let Ai be the actions of player i, i.e, Ai = M. Mapping of user i to machines. Let
A = ×n

i=1Ai be the joint action. By ai = Mi we mean that the ith player runs on
machine Mj.

• The cost for a given joint action a ∈ A for a given player i will be defined as follows:

Ci(a) =

∑
j:ai=aj

wj

sai

2.3. POINTS OF EQUILIBRIA 3

• The load on machine Mi in joint action a ∈ A is,

Li(a) =

∑
j:A(j)=i wj

si

It is easy to verify that Ci(a) = Lai
(a).

We can define different measures for the global optimum function:

1. MakeSpan MS(a) = maxi Li(a) (this is the ÃL∞ norm of a).

2. SC(a) =
∑

j Cj(a) (this is the ÃL1 norm of a, since Cj(a)’s are non-negative).

Note that SC(a) =
∑

j Cj(a) =
∑

i(Li(a))2. for the social optimum we have,

OPTSC = min
a∈A

SC(a)

,
OPTMS = min

a∈A
MS(a)

2.3 Points of equilibria

Defenitions :
∆(Ai) - is a collection of random variables above Ai.
∆(A) = ×∆(Ai).
The expected cost is:

Ea∼p[cj(a)] = Ea∼p[Lk(a)|aj = k] = Ea∼p,k∼pj
[wj

Sk
+ Lk(a

−j)].

P = {p1, ...pn} ∈ ∆(A).

In our discussion we will consider two types of equilibria, in both the interpretation is
that no player can choose another machine and decrease her cost:

• Pure Nash equilibria: a ∈ A is a pure Nash equilibria if for every player j ∈ N and for
every machine Mi ∈ M : cj(a−j, aj) ≤ cj(a−j, aj = Mi)

• Mixed Nash equilibria : for every j ∈ N and for every Mi ∈ M , E[cj(a)] ≤ E[cj(a
−j, aj =

Mi)].

Claim 2.1 For each “job-machine” game there is a pure Nash equilibria.

Note that not every optimal solution is an equilibria.
Proof:[of Claim 2.1] We define the order a ≤ b iff L(a) ≤L L(b), where≤L is lexicographic

order on the sorted vector (lexicographic order: w ≤L v if wi = vi for i = 0, ..., k, and
wk+1 ≤ vk+1) . Let a∗ ∈ A such that for all b ∈ A, a∗ ≤ b.

4 Lecture 2: March 21 2006

• a∗ exists, (since it is a complete order).

• a∗ is an optimal solution for MS (makeSpan), since the first coordinate in the sorted
order is the most loaded machine.

We show that a∗ is an equilibria. Assume for contradiction that player j gains by moving
from Mk to Ml resulting in a joint action b. The load on Ml after the change is smaller
than Mk before the change. In addition, Mk after the change is smaller than Mk before the
change. Therefor L(a∗) ≥ L(b) and we have reached a contradiction to the minimality of a∗.
2

2.4 Price of Anarchy

We would like to bound the relation between the worst equilibria and the optimal solution
(measured according to MS).

We define the Price of Anarchy on pure strategy as

PoA = max
a∈PNE

MS(a)

OPTMS

, where PNE is the set of pure Nash equilibria. And for mixed strategy

PoA = max
a∈MNE

Ea∼p[MS(a)]

OPTMS

.

When MNE is the set of mixed Nash equilibria.

Theorem 2.2 For m machines, PoA ≤ m.

Proof: Let s∗ = maxj sj. In the worst case any Nash equilibrium is bounded by:

MS(a) ≤
∑n

i=1 wi

s∗
= W

(Otherwise, a player that observes a higher load than W can move to a machine with speed
s∗ for which its load after the migration is always less than W).
We also have that

MS(a) ≥
∑n

j=1 wj∑m
i=1 si

.

(Which is the case if we can distribute each player’s weight in an equal manner over all the
machines).
Using the above bounds, we get:

PoA ≤
∑n

i=1 wi/s
∗

∑n
i=1 wi/

∑m
j=1 sj

=

∑m
j=1 sj

s∗
≤ m

Since Sj ≤ S∗, for every machine Mj. 2

2.5. TWO IDENTICAL MACHINES, DETERMINISTIC MODEL 5

Claim 2.3 For every pure Nash equilibria a,

MS(a) ≤ m ·OPTMS

2.5 Two Identical Machines, Deterministic Model

As can be seen in Figure 2.2, at a pure Nash Equilibrium, the maximal load is 4. However,
the maximal load of the optimal solution is only 3. Therefore PoA = 4

3
, in this example we

show that this is the worst case.

OPT

2

1

2

1

NE

2

1

2

1

Figure 2.2: Example of PoA = 4
3

Claim 2.4 For 2 identical machines and pure Nash equilibria, PoA ≤ 4
3
.

Proof: Without loss of generality, let us assume that L1 > L2. We define v = L2 − L1.
We have two cases:

a. If L2 ≥ v:
By definitionL1 = L2+v. Therefore MS = L2+v, and OPT is at least L1+L2

2
= L2+ v

2
.

Hence,

PoA ≤ L2 + v

L2 + v
2

= 1 +
v
2

L2 + v
2

≤ 1 +
v
2

v + v
2

=
4

3
.

b. If L2 < v:
As before L1 = L2 + v. Therefore 2L2 < L1 < 2v. If L1 consists of the weight of
more than one player, we will define w to be the weight of the user with the smallest

6 Lecture 2: March 21 2006

weight in M1. Since this is a pure Nash Equilibrium, w > v. (Otherwise the player
would rather move). However, L1 < 2v, hence it is not possible to have two or more
players on M1. Because of this, there is at most one player on M1 which is the optimal
solution, and PoA = 1 accordingly.

2

2.6 Identical machines, deterministic users

First we define some variables:
wmax = max

i
wi (2.1)

Lmax = max
j

Lj (2.2)

Lmin = min
j

Lj (2.3)

Claim 2.5 In a Nash equilibrium, Lmax − Lmin ≤ wmax

Proof: Otherwise there would be some user j s.t. wj ≤ wmax, which could switch to the
machine with load Lmin. 2

Theorem 2.6 In identical machines and deterministic users (pure strategies), PoA ≤ 2

Proof: We shall distinguish between to cases:

• Lmin ≤ wmax In this case Lmax ≤ Lmin + wmax ≤ 2wmax and since OPTMS ≥ wmax we
conclude that PoA ≤ Lmax

OPTMS
≤ 2wmax

wmax
= 2

• Lmin > wmax Then Lmax ≤ Lmin + wmax ≤ 2Lmin, Since the average is greater than
its smallest term, i.e., OPTMS ≥ 1

m

∑
i Li ≥ Lmin, we conclude that OPTMS ≥ Lmin

Therefore: PoA ≤ Lmax

OPT
≤ 2Lmin

Lmin
= 2

2

The upper bound bound is tight

We will give an example in which PoA is (1− o(1))2 and therefore one should not expect a
better bound than 2. Consider the following game: m machines and m−1

ε
users with a weight

of ε and two users with jobs of weight 1 as shown in figure 2.3. One can easily verify that this
is a Nash equilibrium with a cost of 2. The optimal configuration is obtained by scheduling
the two ”heavy” users (with w = 1) on two separate machines and dividing the other users
among the rest of the machines. In this configuration we get: C = OPT = 1 + 1

m
= 1 + o(1)

2.7. TWO IDENTICAL MACHINES, STOCHASTIC MODEL 7

ε

ε

ε

ε

ε

ε

ε

ε

1

1

M1 MmMm-1

{1/ε

Figure 2.3: PoA comes near to 2

2.7 Two Identical Machines, Stochastic Model

we first consider two identical users, for which w1 = w2 = 1, as shown in figure 2.4. Each
of the players chooses a machine at random. With a probability of 1/2, the players will

User1 User2

1/2 1/21/21/2

M1 M2

Figure 2.4: Stochastic model example

choose the same machine and with a probability of 1/2,the players choose different machines.
Therefore MS = 1/2·2+1/2·1 = 3/2. The cost of OPT is 1 and so it follows that PoA = 3/2.

8 Lecture 2: March 21 2006

2.8 Identical machines, stochastic users

Consider the following example: m machines, n = m users, wi = 1, pi(j) = 1
m

. What is
the maximal expected load? This problem is identical to the following problem: m balls are
thrown randomly into m bins; What is the expected maximum number of balls in a single
bin? Let us first see what is the probability that k balls will fall into a certain bin:

Pr =

(
m

k

)
·
(

1

m

)k (
1− 1

m

)m−k

≈
(

c ·m
k

)k (
1

m

)k

=
(

c

k

)k

The probability that there exists a bin with at least k balls is 1− (1− (c
k
)k)m. For (c

k
)k ≥ 1√

m

the probability that there exist a bin with k balls is (1− 1√
m

)m = e−
√

m. For (c
k
)k ≤ 1

m2 this

probability is m ·
(

c
k

)k
< m · 1

m2 = 1
m

. Therefore for k ∼ ln m
ln ln m

this probability is a constant

and the maximal load is roughly ln m
ln ln m

.

2.8.1 Upper bound

Similar to the pure Nash equilibrium case, we can bound the expected load in a mixed Nash
equilibrium (MNE).

Theorem 2.7 Let p ∈ ∆ be MNE then

Lj = E[Lj] ≤ 2OPT

We first state Azuma-Hoeffding Lemma that will be used later in the proof of the theorem.

Lemma 2.8 (Azuma-Hoeffding) For some random variable X =
∑

xi, where xi are ran-
dom variables with values in the interval [0, z], is:

P [X ≥ λ] ≤
(

e · E[X]

λ

)λ
z

Proof:[of Theorem 2.7] Let us define λ = 2αOPT , z = wmax and xi =

{
wi if pi(j) > 0
0 otherwise

Using theorem 2.6 from the deterministic part we know that:

L̄j = E[Lj] ≤ 2OPT

We wish to prove that the probability of having a machine Mj for which Lj À L̄j is negligible.
By applying the inequality we get:

P [Lj ≥ 2αOPT] ≤
(

e · E[Lj]

2αOPT

) 2αOPT
wmax

≤
(

e

α

)2α

2.9. NON-IDENTICAL MACHINES, DETERMINISTIC USERS 9

which results in

P [∃j Lj ≥ 2αOPT] ≤ m
(

e

α

)2α

Note that for α = Ω(ln m
ln ln m

) the probability is smaller than 1
2m

. Since for any a ∈ A,MS(a) ≤
m ·OPT , we obtain that E[MS(a)] ≤ α ·OPT +

(
1
m

)
m ·OPT = (α + 1) ·OPT. 2

2.9 Non-identical machines, deterministic users

We shall first examine a situation with a ’bad’ Price of Anarchy of ln m
ln ln m

, and then establish
an upper bound.

2.9.1 Example

Let us have k + 1 groups of machines, with Nj machines in group j. The total number of
machines m = N =

∑k
j=0 Nj. We define the size of the groups by induction:

• Nk =
√

N

• Nj = (j + 1) ·Nj+1

• N0 = k! ·Nk

From the above it results that:

k ∼ ln N

ln ln N

the speed of the machines in group Nj is defined sj = 2j.
First we set up an equilibrium with a high cost. Each machine in group Nj receives j

users, each with a weight of 2j. It is easy to see that the load in group Nj is j and therefore
the make span is k. Note that group N0 received no users.

Claim 2.9 This is a Nash equilibrium.

Proof: Let us take a user in group Nj. If we attempt to move him to group Nj−k he will
see a load of

(j − k) +
2j

2j−k
> j

On the other hand, on any group Nj+k the load is j + k > j even without this job and
therefore he has no reason to move there. 2

To bound the optimum we simply need to move all the users of group Nj to group Nj−1

(for j = 1...k). Now there is a separate machine for each user and the load on all machines

is 2j

2j−1 = 2. Therefore OPT ≤ 2.

Corollary 2.10 The coordination ratio is ∼ ln m
ln ln m

10 Lecture 2: March 21 2006

2.9.2 Upper Bound

The machines have different speeds; Without loss of generality let us assume that s1 ≥
s2 · · · ≥ sm. The make span is defined C = max Lj.

For k ≥ 1, define Jk to be the smallest index in {0, 1, . . . , m} such that LJk+1 < k ·OPT
or, if no such index exists, Jk = m. We can observe the following:

• All machines up to Jk have a load of at least k ·OPT

• The load of the machine with an index of Jk + 1 is strictly less than k ·OPT

Let C∗ be defined:

C∗ = bC −OPT

OPT
c

Our goal is to show that C∗! < J1 which will result in

C = O

(
log m

log log m

)
·OPT

We will show this using induction.

Claim 2.11 (The induction base) JC∗ ≥ 1

Proof: By the way of contradiction, assume JC∗ = 0. This implies (from the definition
of Jk) that L1 < C∗ · OPT ≤ C − OPT . Let Mq denote the machine with the maximum
expected load. Then L1 + OPT < C = Lq.

We observe that any user that uses j on Mq must have a weight wj larger than s1 ·OPT ,
otherwise j could switch to the fastest machine,M1, reaching a cost of L1+ wj

s1
≤ L1+OPT <

Lq. However, OPT ≥ wj

s1
in contradiction to the stability of the Nash equilibrium. 2

We shall divide the proof of the induction step into two claims. Let S be the group of
users of the machines M1, . . . ,MJk+1

.

Claim 2.12 An optimal strategy will not assign a user from group S to a machine Mr such
that r > Jk.

Proof: From the definition of Jk, the users in S have a load of at least (k + 1) · OPT .
Machine Jk + 1 has a load of at most k ·OPT . No user from S will want to switch to Jk + 1.
Therefore, the minimal weight in S is larger than sJk+1 ·OPT ,which implies that if any job
in S is run on MJk+1, then LJk+1 > OPT . Switching to machine r > Jk + 1 will result in an
even larger load because sr < sJk+1. 2

Claim 2.13 If an optimal strategy assigns users from group S to machines 1, 2, . . . , Jk then
Jk ≥ (k + 1)Jk+1

Non-identical machines, deterministic users 11

Proof: Let W =
∑

i∈S wi.

W =
∑

j≤Jk+1

sj · E[Lj] ≥ (k + 1)OPT
∑

j≤Jk+1

sj

Since an optimal strategy uses only machines 1, 2, . . . , Jk we get:

OPT
∑

j≤Jk

sj ≥ W

∑

j≤Jk

sj ≥ (k + 1) · ∑

j≤Jk+1

sj

Since the sequence of the speeds is non-increasing, this implies that Jk ≥ (k + 1)Jk+1, the
induction step. 2

Now we can combine the two claims above using induction to obtain:

Corollary 2.14 C∗! < J1

By definition J1 ≤ m. Consequently C∗! ≤ m, which implies the following:

Corollary 2.15 (Upper bound) C = O(log m
log log m

)

