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4.1 Lecture overview

In this lecture we will concern ourselves with the existence and price of Nash equilibrium in
several game classes. We will:

• Define a class of games called congestion games and we’ll show the existence of a pure
Nash Equilibirum in any congestion game.

• Define a class called potential games and we’ll study the existence of pure equilibrium
in those games. (Actually the two classed are equivalent)

• Study two variants of a Network Creation game (unfair and fair), and study the price
of anarchy (when a Nash equilibrium exists)

• Define the Price of Stability (PoS) and analyze the PoS in a Network Creation game

• Define a Bandwidth Sharing game and discuss the equilibria of this game.

4.2 Congestion Games

4.2.1 Example

Let us start with an illustrative example of a congestion game. Players A,B and C have to
go from point S to T using road segments SX,XY,...etc. (See Figure 4.1) Numbers on edges
denote the cost for a single user for using the corresponding road segment, where the actual
cost is a function of the actual number of players using that road segment(i.e. a discrete
delay function). For example: if segment SX is used by a 1,2, or 3 users, the cost on that
segment would be 2,3, or 5, respectively. The total cost for a player is the sum of the costs
on all segments he uses.

1Partially based on 2004 scribe notes by Nir Yosef and Ami Koren
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Figure 4.1: Example of a congestion game

4.2.2 Congestion game - Definition

A congestion model (N,M,(Ai)i∈N ,(cj)j∈M) is defined as follows:

• N = {1..n} denotes the set of n players.

• M = {1..m} denotes the set of m facilities.

• For i ∈ N , let Ai denotes the set of strategies of player i, where each a ∈ Ai is a non
empty subset of the facilities.

• For j ∈ M , cj ∈ Rn denotes the vector of costs, where cj(k) is the cost related to
facility j, if there are exactly k players using that facility.

Let A = ×i∈NAi be the set of all possible joint actions. For any ~a ∈ A and for any j ∈ M ,
let nj(~a) be the number of players using facility j, assuming ~a is the current joint action, i.e.
nj(~a) =| {i | Mj ∈ ai} |. The cost function for player i is ui(~a) =

∑
j∈ai

cj(nj(~a)).

Remark 4.1 How can Routing with unspllitable flow be modeled as a congestion game?
The facilities are the edges M = E, the possible strategies are the possible routes for player
i: Ai = Pi, and the cost of the edge is the latency, i.e. ce(k) = le(k)
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4.2.3 Deterministic equilibrium

Theorem 4.2 Every finite congestion game has a pure Nash equilibrium.

Proof: Let ~a ∈ A be a joint action.

Let Φ: A → R be a potential function defined as follows: Φ(~a) =
∑m

j=1

∑nj(~a)
k=1 cj(k)

Consider the case where a single player changes its strategy from ai to bi (where ai, bi ∈ Ai).
Let ∆ui be the change in its cost caused by the the change in strategy:
∆ui = ui(bi, ~a−i)− ui(ai, ~a−i) =

∑
j∈bi−ai

cj(nj(~a) + 1)−∑
j∈ai−bi

cj(nj(~a)).
(explanation: change in cost = cost related to the use of new facilities minus cost related to
use of those facilities which are not in use anymore due to strategy change)
Let ∆Φ be the change in the potential caused by the change in strategy:
∆Φ = Φ(bi, ~a−i)− Φ(ai, ~a−i) =

∑
j∈bi−ai

cj(nj(~a) + 1)−∑
j∈ai−bi

cj(nj(~a))
(explanation: immediate from potential function’s definition).
Thus we can conclude that for a single player’s strategy change we get ∆Φ = ∆ui.

That’s an interesting result: We can start from an arbitrary joint action ~a, and at each
step let one player reduce it’s cost. That means, that at each step Φ is reduced (identically).
Since Φ can accept a finite amount of values, it will eventually reach a local minima. At this
point, no player can achieve any improvement, therefore we reach a Nash equilibrium. ¤

Remark 4.3 Φ is actually an exact potential function as we will define shortly.

4.2.4 Weighted Congestion Game

The previous theorem showed that a congestion game always has a pure equilibrium.
What about Weighted Congestion games, where the load on each facility caused by different
players is different?
In this case each player is assigned a non negative weight wi and the cost of a facility j is
cj(

∑
i|Mj∈ai

wi). We’ll see that a pure equilibrium does not necessarily exists. Let’s consider
the following example:

Two Players wish to choose a route s − t, each has a weight w1 = 1, w2 = 2. The
edge’s discrete delay functions are as shown in the figure. A necessary condition for a pure
equilibrium is that each player chooses a route that is in his BestResponse given the other
player’s chosen route. That is, a1 ∈ BR1(a2) and a2 ∈ BR2(a1)
In this example there are only four s − t routes, and by going over all 4 options for ai it is
easy to see that the two necessary conditions can not hold at the same time, and therefore
in this example there is no pure equilibrium.
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Figure 4.2: Weighted Congestion Game - no PNE. Taken from [1]

4.3 Potential games

4.3.1 Potential functions

Let G =< N, (Ai), (ui) > be a game where A = ×i∈NAi is the collection of all deterministic
strategy vectors in G.

Definition A function Φ: A → R is an exact potential for game G if
∀~a∈A∀ai,bi∈Ai

Φ(bi, ~a−i)− Φ(ai, ~a−i) = ui(bi, ~a−i)− ui(ai, ~a−i)

Definition A function Φ: A → R is a weighted potential for game G if
∀~a∈A∀ai,bi∈Ai

Φ(bi, ~a−i)− Φ(ai, ~a−i) = ωi(ui(bi, ~a−i)− ui(ai, ~a−i)) = ωi∆ui

Where (ωi)i∈N is a vector of positive numbers (weight vector).

Definition A function Φ: A → R is an ordinal potential for a minimum game G if
∀~a∈A∀ai,bi∈Ai

(ui(bi, ~a−i)− ui(ai, ~a−i) < 0) ⇒ (Φ(bi, ~a−i)−Φ(ai, ~a−i) < 0) (Intuition: when a
player decreases his cost, the potential function also decreases. ).

Remark 4.4 Considering the above definitions, it can be seen that the first two definitions
are special cases of the third.
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4.3.2 Potential games

Definition A game G is called an ordinal potential game if it has an an ordinal potential
function.

Theorem 4.5 Every finite ordinal potential game has a pure equilibrium.

Proof: Analogous to the proof of Theorem 4.2: Given an initial strategy vector, each
time a player changes strategy and reduces his cost, the potential function also decreases.
since this is a finite game, the potential function can have a finite set of values and therefore
the process of successive improvements by players must reach a local minima of the potential
function. No improvements (by any player) are possible at this point, and therefore this is a
pure equilibrium. ¤

4.3.3 Examples

Exact potential game

Consider an undirected graph G = (V, E) with a weight function ~ω on its edges. In this game
the players are the vertices and the goal is to partition the vertices set V into two distinct
subsets D1, D2 (where D1 ∪D2 = V ):
For every player i, choose si ∈ {−1, 1} where choosing si = 1 means that i ∈ D1 and
si = −1 means that i ∈ D2. The weight on each edge denotes how much the corresponding
vertices ’want’ to be on the same set. Thus, define the value function of player i as ui(~s) =∑

j 6=i ωi,jsisj. (A player ’gains’ ωi,j for players that are in the same set with him, and ’loses’
for player in the other set. Note that ωi,j can be negative.) Each player tries to maximize
its utility function.

On the example given in Figure 4.3 it can be seen that players 1,2 and 4 have no interest
in changing their strategies, However, player 3 is not satisfied, it can increase his profit by
changing his set to D1.
Using Φ(~s) =

∑
j<i ωi,jsisj as our potential function, let us consider the case where a single

player i changes its strategy (shifts from one set to another):
∆ui =

∑
j 6=i ωi,jsisj −

∑
j 6=i ωi,j(−si)sj = 2

∑
j 6=i ωi,jsisj = ∆(Φ)

Which means that Φ is an exact potential function, therefore we conclude that the above
game is an exact potential game.

Remark 4.6 Any congestion game (as defined earlier) is an exact potential game. The proof
of Theorem 4.2 is based on this property of congestion games.
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Figure 4.3: Example for an exact potential game

Weighted potential game

Consider the following load balancing congestion model (N,M, (ωi)i∈N) with M identical
machines, N jobs and (ωi)i∈N weight vector(ωi ∈ R+). The load on a machine is defined
as the sum of weights of the jobs which use it: Lj(~a) =

∑
i: ai=j ωi where ~a ∈ [1..M ]N is a

joint action.
Let ui(~a) = Lai

(~a) denote the cost function of player i. We would like to define a potential
function whose change in response to a single player’s strategy change will be correlated with
the change in the player’s cost function.
The potential function is defined as follows: Φ(~a) =

∑M
j=1

1
2
L2

j , Consider the case where a
single job shifts from its selected machine M1 to another machine M2 (where M1 and M2 are
two arbitrary machines):
Let ∆ui be the change in its cost caused by the strategy change:
∆ui = ui(M2, ~a−i)− ui(M1, ~a−i) = L2(~a) + ωi − L1(~a).
(Explanation: change in job’s load = load on new machine minus load on old machine)
Let ∆Φ be the change in the potential caused by the strategy change:
∆Φ = Φ(M2, ~a−i)− Φ(M1, ~a−i) = 1

2
[(L1(~a)− ωi)

2 + (L2(~a) + ωi)
2 − L2

1(~a)− L2
2(~a)] =

= ωi(L2(~a)− L1(~a)) + ω2
i = ωi(L2(~a) + ωi − L1(~a)) = ωi∆ui

Therefore, we can conclude that load balancing on identical machines is a weighted potential
game.

4.3.4 Finite Improvement path

Let’s consider a finite game G as a directed graph, where the vertices are strategy vectors,
V = A and there is an edge between vertices when it is an improvement step.
An improvement step is a change from ~a ∈ A to ~b ∈ A, where ~a and ~b differ only in the
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strategy of a single player i and ∆ui < 0

Remark 4.7 In such a graph a pure equilibrium is a sink.

Lemma 4.8 For every game G such that for every joint action ~a ∈ A there exists an
improvement path ending in a pure equilibrium, there exists an ordinal potential function Φ.

Proof: Let Φ(~a) be the length of the longest possible improvement path in the game G
starting from ~a. The function Φ is well defined because of the property of G assumed in the
lemma.
Consider an improvement step from ~a1 ∈ A to ~a2 ∈ A. For contradiction assume that
Φ(~a2) ≥ Φ(~a1). Therefore from ~a2 there exists an improvement path of length 1 + Φ(~a2)
which is a contradiction to Φ(~a1) being the longest improvement path starting from ~a1. This
shows that Φ(~a2) < Φ(~a1), and that means Φ is an ordinal potential function. ¤

4.4 Network Creation Game

We have a graph G=(V,E). Each edge e has a price C(e). Each player i has two nodes si and
ti that he wants to connect. Each player i offers pi(e) for the edge e. Let’s denote by p joint
action of the players, and G(p) = (V,Ep) is the graph resulting from the players’ strategies,
where e ∈ Ep iff

∑
i pi(e) ≥ C(e). Player i’s cost function Ci(p) is equal to ∞ if si and ti

are not connected and otherwise it is
∑

e∈Ep
pi(e). The player’s aim is to minimize this cost

(yet to have si connected to ti) We define the social cost to be C(p) =
∑

i ci(p).

Remark 4.9 Notice that in a Nash equilibrium the players will pay exactly the cost of each
edge bought in G(p) and every one of them will have a path from si to ti in G(p).

Theorem 4.10 A pure Nash equilibrium does not always exist for the creation game

Proof: Let’s look at the following game in Figure 4.4.

• In every NE we will buy exactly 3 edges.

• Without loss of generality assume that the edges bought are (s1, s2), (s1, t2), (t1, s2).

• Only player 1 pays for (s2, t1) (he’s the only player who needs it).

• Only player 2 pays for (s1, t2) (he’s the only player who needs it).

• Without loss of generality, suppose player 1 pays (at least ε) for (s1, s2).
Player 1 can change his strategy and
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Figure 4.4: Creation Game with no Nash equilibrium (taken from [2])

– not pay for (s1, t1) and (s1, s2) gaining (1 + ε).

– buy (t1, t2) paying 1.

• Thus there is no pure Nash equilibrium

¤

Remark 4.11 In the above proof, the problem is that player 1 ignores the fact that in the
resulting network player 2 has no motivation to continue paying for (s1, t2). This is a serious
weakness of the Nash equilibrium concept: it ignores the fact that other players can and might
react to a certain player changing his strategy.

We now define a social cost function C(p) =
∑

ci(p) and assume we are given a game in
which there exists a Nash equilibrium.

1. PoA ≤ N : Every player i, given the other players actions, the cost of connecting si

to ti is at most the cost of connecting them regardless of the other players. Which in
turn is at most the total cost of the optimal solution. So every player pays at most
OPT and the total cost in a NE is at most N ·OPT .

2. PoA ≥ N : Consider Figure 4.5. This is a network of a single source single sink
network creation game with N players. Assume that all the players wants to connect
from s to t. In the social optimum solution all the players buy together the edge from s
to t. Each player pays only 1

N
. The social cost in this case is 1. Now look at the worst
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Figure 4.5: POA = N (taken from [2])

case Nash equilibrium. In this case each player buys one edge in the leftmost path ,
each player pays 1. (Pay attention that none of the players can gain by not buying an
edge since then s and t won’t be connected).The social cost in this case is N.
Therefore PoA ≥ N .

Definition [Price of Stability]

PoS = min
p∈PNE

C(p)

OPT (p)

In the previous example the PoS is 1 since the optimum is a Nash equilibrium . Now we

will show a case in which the PoS is high. Consider Figure 4.6.
The social optimal cost is 1 + 3ε, when the players buy the leftmost path and 3 of the

ε edges in the square on the right. However the lowest cost achieved in an equilibrium is
N − 2 + ε, when the players buy the two edges with cost N

2
− 1− ε and three ε edges in the

right square. Note that there is no other Nash equilibrium due to the square on the right
which we have shown that does not admit a Nash equilibrium.

4.5 Network Creation Game with fair cost

We will consider a modification of the previous game. Instead of allowing the players to
directly set the cost, players will choose the edges and the cost will be divided equally
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Figure 4.6: PoS ≈ N − 2 (taken from [2])

between all players participating in an edge. The strategies for player i are ai ∈ Ai where
ai ⊆ E. Define

ne(a) = |{i : e ∈ ai}|
The cost of edge e to the player choosing it is ci(a) =

∑
e∈ai

c(e)
ne(a)

The social cost is C(a) =
∑

i ci(a)

We can define the game as a congestion game with ce(k) = c(e)
k

.

ui(a) =
∑
e∈a

ce(ne(a))

since this is a congestion game there exists a pure Nash equilibrium !

Theorem 4.12

PoS ≤ H(N) =
N∑

l=1

1

l

Proof:

Φ(a) =
∑
e∈E

ne(a)∑

l=1

c(e)

l
=

∑
e

c(e) ·H(ne(a))
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Consider a∗ = argminaΦ(a) which is obviously a Nash equilibrium. Let aopt be the optimal
solution.

H(N) · C(aopt) ≥
∑

e∈Eopt

c(e) ·H(ne(aopt)) ≥ Φ(aopt) ≥ Φ(a∗) ≥ C(a∗)

¤

Theorem 4.13

PoS ≥ H(N) =
N∑

l=1

1

l

Proof:
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Figure 4.7: PoS ≥ H(N) (taken from [3])

Consider at the following game (Figure 4.7): This is a single target game with N players.
In the social optimal solution each player would buy the 0 cost edge from him to the bottom
node and the 1 + ε edge (which its cost be shared equally between all the players).
The social cost in this case is 1 + ε. The only Nash equilibrium that exists in this case is
the one in which each player i buys the 1

i
edge from him to t, which gives us a social cost of

H(N). We will show that this is the only Nash equilibrium: Each player i has only 2 ways
to connect si to t. Let’s assume that a group Γ is connecting using the 1 + ε edge. Let’s i
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be the player with the highest index in the group Γ. Player i would pay in this case 1+ε
|Γ| and

if he chooses to use the 1
i

edge from him to t he would pay 1
i
. Since ‖Γ‖ ≤ i, player i would

rather use the 1
i

edge. Therefore this is not an equilibrium. In this case PoS ≥ H(N)
1+ε

¤

4.6 Bandwidth Sharing

We have a link of limited capacity C and N players who want a share of the bandwidth. Each
user r has a specific utility function Ur(d), which represents his satisfaction when he receives
a bandwidth d. All utility functions Ur(d) are assumed to be strictly monotone increasing,
continuously differentiable non-negative and strictly concave.

)( rr dU

bandwidth

be
ne

fit

Figure 4.8: concave utility function

The optimal solution is

max
∑
r∈N

Ur(dr)

s.t.
∑

r

dr ≤ C, dr ≥ 0

where dr is the bandwidth allocated for the user r. In the social optimal solution we’ll have
exactly

∑
r dr = C because the utilities are strictly increasing, and so the optimal solution

cannot have any leftover bandwidth. Furthermore, in the optimal solution we have

U ′
s(ds) = U ′

r(dr)

for all dr, ds > 0. Otherwise we could transfer bandwidth from one player to the other and
increase the total utility.(For the sake of simplicity we will assume U ′

r(0) = ∞ which ensures
that ∀r dr > 0).
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4.6.1 Description of the Game

Player r pays wr and receives dr = C wr

W
,where W =

∑
wi. The utility function for each

player is
Qr(w

r, w−r) = Ur(dr)− wr

In equilibrium we have
Q′

r = 0

since if Q′
r > 0 the player has an incentive to increase his payment wr. Now we have

Q′
r = (Ur(

wr

W
· C)− wr)

′ = U ′
r(

wr

W
· C) · C W − wr

W 2
− 1 = 0

Since dr = wr

W
· C we have,

U ′
r(dr) · C · ( 1

W
− wr

W 2
) = 1

U ′
r(dr)(1− wr

W
) =

W

C

Now by rearranging we have,

U ′
r(dr)(1− dr

C
) =

W

C

We now define a new utility function

Ûr(dr) = (1− dr

C
)Ur(dr) +

dr

C

[
1

dr

∫ dr

0

Ur(z)dz

]

Its derivative is,

Û ′
r(dr) = (1− dr

C
)U ′

r(dr)− 1

C
Ur(dr) +

1

C
Ur(dr) = (1− dr

C
)U ′

r(dr) =
W

C
.

Notice that an optimal solution to the problem with the utility function Ûr(dr) will be a Nash
equilibrium with the original utility function (in the optimal solution all the derivatives are
equal). Since the utility functions (and their derivatives) are concave, there is a single
optimum. Since the derivative of Ûr(dr) is equal to

U ′
r(dr)(1− dr

C
)

we have that the U ′
s(ds) are equal for all players, which happens exactly when we are in the

Nash equilibrium (remember that we have a unique NE)
Now let’s try to find our the Price of Anarchy. (See Figure 4.9.)
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)( rr dU
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Figure 4.9: Notice the triangular area compared to the integrated area

It is easy to see that
1

dr

∫ dr

0

Ur(z)dz ≥ 1

2
ur(dr)

Then we get

Ûr(dr) ≥ 1− dr

C
Ur(dr) +

dr

C

1

2
Ur(dr) ≥ 1

2
ur(dr)

which means that PoA ≤ 2.
A better analysis shows that PoA = 4

3
.
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