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9.1 Introduction

9.1.1 Background

One of the most striking characteristics of modern computer networks – in particular the
Internet – is that different parts of it are owned and operated by different individuals, firms,
and organizations. The analysis and design of protocols for this environment thus naturally
needs to take into account the different “selfish” economic interests of the different partici-
pants. A significant part of the difficulty stems from underlying asymmetries of information:
one participant may not know everything that is known or done by another.

In this lecture we will deal with the complementary lack of knowledge, that of hidden
actions. In many cases the actual behaviors – actions – of the different participants are
“hidden” from others and only influence the final outcome indirectly. In this lecture we
will study hidden actions in multi-agents computational settings - which means that any
agent chooses it’s behavior, which is unknown to others, and only final result is public. It’s
completely understandable that each agent has it’s influence on the final result, but we have
no way to determinate what actions have been chosen by the agents.

A good example for the problem is Quality of Service routing in a network: every in-
termediate link or router may exert a different amount of “effort” (priority, bandwidth, ...)
when attempting to forward a packet of information. While the final outcome of whether
a packet reached its destination (and there is no problem if the packet have reached there
more than one time) is clearly visible, it is rarely feasible to monitor the exact amount of
effort exerted by each intermediate link – how can we ensure that they really do exert the
appropriate amount of effort?

Our approach to this problem is based on the well studied principal-agent problem in
economic theory: How can a “principal” motivate a rational “agent” to exert costly effort
towards the welfare of the principal? The crux of the model is that the agent’s action (i.e.
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whether he exerts effort or not) is invisible to the principal and only the final outcome, which
is probabilistic and also influenced by other factors, is visible. The solution is based on the
observation that a properly designed contract, in which the payments are contingent upon
the final outcome, can influence a rational agent to exert the required effort.

9.1.2 Our Model

In this model each of n agents has a set of possible actions - in our simple case there will be
two simple actions (in other words the agent will have binary actions) : effort (ai = 1 and
ci(1) = c for some c > 0) or no effort (ai = 0 and ci(0) = 0); the combination of actions
by the players results in some outcome (project succeeds, and principal gets value v, or
project fails,and principal gets value 0), where the outcome is determined probabilistically.
The main part of the specification of a problem in this model is a function t that specifies
this distribution for each n-tuple of agents’ actions: t : {0, 1}n → [0, 1], where t(a1, . . . , an)
denotes the probability of project success, given (a1, . . . , an) vector of agents actions. We
assume a very rational property of this function, which is monotonicity:

∀i ∈ N, ∀a−i ∈ A−i t(1, a−i) > t(0, a−i)

In other words, we want that the distribution function will have the next property: more
effort by an agent leads to a better probability of success. Additionally, the problem specifies
the principal’s utility for each possible outcome, and for each agent, the agent’s cost for each
possible action. The principal motivates the agents by offering to each of them a contract
that specifies a payment for each possible outcome of the whole project. Key here is that the
actions of the players are non-observable and thus the contract cannot make the payments
directly contingent on the actions of the players, but rather only on the outcome of the whole
project. In other words, the general type of the contract is : project succeeds → agent i
receives pi, otherwise he gets 0.

Players’ utilities, under action profile a = (a1, . . . , an) and value v: Given a set of con-
tracts, the agents will each optimize his own utility: i.e. will choose the action that maximizes
his expected payment minus the cost of his action. Since the outcome depends on the actions
of all players together, the agents are put in a game and are assumed to reach a Nash equi-
librium. The principal’s problem is of designing an optimal set of contracts: i.e. contracts
that maximize his expected utility from the outcome, minus his expected total payment.

We then consider a more concrete model which concerns a subclass of problem instances
where this exponential size table is succinctly represented. This subclass will provide many
natural types of problem instances. In this subclass every agent performs a subtask which
succeeds with a low probability γ if the agent does not exert effort and with a higher prob-
ability δ > γ, if the agent does exert effort. The whole project succeeds as a deterministic
Boolean function of the success of the subtasks. This Boolean function can now be repre-
sented in various ways. Two basic examples are the ”AND” function in which the project
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succeeds only if all subtasks succeed, and the “OR” function which succeeds if any of the
subtasks succeeds.

9.2 Model and Preliminaries

9.2.1 The General Setting

A principal employs a set of agents N of size n. Each agent i ∈ N has a possible set of actions
Ai ∈ {0, 1}, and a cost (effort) ci(ai) ≥ 0 for each possible action ai ∈ Ai (ci : Ai → <+).
The actions of all players determine, in a probabilistic way, a “contractible” outcome o ∈ O,
according to a success function t : A1×, . . . × An → ∆(O) (where ∆(O) denotes the set
of probability distributions on O). A technology is a pair, (t, c), of a success function, t,
and cost functions, c = (c1, c2, . . . , cn). The principal has a certain value for each possible
outcome, given by the function v : O → <. Actions of the players are invisible, but the
final outcome o is visible to him and to others (in particular the court), and he may design
enforceable contracts based on the final outcome.

Thus the contract for agent i is a function (payment) pi : O → <; again, we will also
view pi as a function on ∆(O).

In this notation the success function t : {0, 1}n → [0, 1], where t(a1, . . . , an) denotes the
probability of project success where players with ai = 0 do not exert effort and incur no cost,
and players with ai = 1 do exert effort and incur a cost of ci.

Additionally, we assume that t(a) > 0 for any a ∈ A (or equivalently, t(0, 0, . . . , 0) > 0).
The monotonicity property for this function is as follows. Denote by a−i ∈ A−i the

(n − 1)-dimensional vector of the actions of all agents excluding agent i. i.e., a−i =
(a1, . . . , ai−1, ai+1, . . . , an). Then a success function t must satisfy:

∀i ∈ N, ∀a−i ∈ A−i t(1, a−i) > t(0, a−i)

Given this setting, the agents have been put in a game, where the utility of agent i under
the vector of actions a = (a1, . . . , an) is given by ui(a) = pi(t(a)) − ci(ai), where pi is the
payment function of player i.

The agents will be assumed to reach Nash equilibrium, if such equilibrium exists. The
principal’s problem (which is our problem in this paper) is how to design the contracts pi

as to maximize his own expected utility u(a) = v(t(a)) −
∑

i pi(t(a)), where the actions
a1, . . . , an are at Nash-equilibrium.

In the case of multiple Nash equilibria we let the principal choose the equilibrium, thus
focusing on the “best” Nash equilibrium. A variant, which is similar in spirit to “strong
implementation” in mechanism design would be to take the worst Nash equilibrium, or even,
stronger yet, to require that only a single equilibrium exists.

Finally, the social welfare for a ∈ A is u(a) +
∑

i∈N ui(a) = v(t(a))−
∑

i∈N ci(ai).
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9.2.2 Nash equilibrium in our model and POU

Definition 1 The marginal contribution of agent i, denoted by ∆i, is the difference between
the probability of success when i exerts effort and when he shirks.

∆i(a−i) = t(1, a−i)− t(0, a−i)

Note that since t is monotone, ∆i is a strictly positive function. At this point we can
already make some simple observations. The best action, ai ∈ Ai, of agent i can now be
easily determined as a function of what the others do, a−i ∈ A−i, and his contract pi.

Claim 9.1 Given a profile of actions a−i, agent i’s best strategy is ai = 1 if pi ≥ ci

∆i(a−i)
,

and is ai = 0 if pi ≤ ci

∆i(a−i)
.(In the case of equality the agent is indifferent between the two

alternatives.)

Since pi ≥ ci

∆i(a−i)
if and only if ui(1, a−i) = pi · t(1, a−i) − ci ≥ pi · t(0, a−i) = ui(0, a−i),

i’s best strategy is to choose ai = 1 in this case.
This allows us to specify the contracts that are the principal’s optimal, for inducing a

given equilibrium.

Observation 1 The best contracts (for the principal) that induce a ∈ A as an equilibrium
are pi = 0 for agent i who exerts no effort (ai = 0), and pi = ci

∆i(a−i)
for agent i who exerts

effort (ai = 1).

In this case, the expected utility of agent i who exerts effort is ci ·
(

t(1,a−i)
∆i(a−i)

− 1
)
, and 0

for an agent who shirk. The principal’s expected utility is given by u(a, v) = (v − P ) · t(a),
where P is the total payment in case of success, given by P =

∑
i|ai=1

ci

∆i(a−i)
.

We say that the principal contracts with agent i if pi > 0 (and ai = 1 in the equilibrium
a ∈ A). The principal’s goal is to maximize his utility given his value v, i.e. to determine
the profile of actions a∗ ∈ A, which gives the highest value of u(a, v) in equilibrium.

Choosing a ∈ A corresponds to choosing a set S of agents that exert effort (S = {i|ai =
1}). We call the set of agents S∗ that the principal contracts with in a∗ (S∗ = {i|a∗i = 1})
an optimal contract for the principal at value v. We sometimes abuse notation and denote
t(S) instead of t(a), when S is exactly the set of agents that exert effort in a ∈ A.

A natural yardstick by which to measure this decision is the non-strategic case, i.e. when
the agents need not be motivated but are rather controlled directly by the principal (who
also bears their costs). In this case the principal will simply choose the profile a ∈ A that
optimizes the social welfare (global efficiency), t(a) · v−

∑
i|ai=1 ci. The worst ratio between

the social welfare in this non-strategic case and the social welfare for the profile a ∈ A chosen
by the principal in the agency case, may be termed the price of unaccountability.
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Given a technology (t,~c), let S∗(v) denote the optimal contract in the agency case and
let S∗

ns(v) denote an optimal contract in the non-strategic case, when the principal’s value is
v. The social welfare for value v when the set S of agents is contracted is t(S) · v −

∑
i∈S ci

(in both the agency and non-strategic cases).

Definition 2 The price of unaccountability POU(t,~c) of a technology (t,~c) is defined as the
worst ratio (over v) between the total social welfare in the non-strategic case and the agency
case:

POU(t,~c) = Supv>0

t(S∗
ns(v)) · v −

∑
i∈S∗ns(v) ci

t(S∗(v)) · v −
∑

i∈S∗(v) ci

In cases where several sets are optimal in the agency case, we take the worst set (i.e., the
set that yields the lowest social welfare).

When the technology (t,~c) is clear in the context we will use POU to denote the price of
unaccountability for technology (t,~c). Note that the POU is at least 1 for any technology.

9.2.3 Structured Technology Functions

In order to be more concrete, we will especially focus on technology functions whose struc-
ture can be described easily as being derived from independent agent tasks – we call these
structured technology functions. This subclass will first give us some natural examples of
technology function, and will also provide a succinct and natural way to represent the tech-
nology functions.

In a structured technology function, each individual succeeds or fails in his own “task”
independently. The project’s success or failure depends, possibly in a complex way, on the
set of successful sub-tasks. Thus we will assume a monotone Boolean function f : {0, 1}n →
{0, 1} which denotes whether the project succeeds as a function of the success of the n
agents’ tasks (and is not determined by any set of n − 1 agents). Additionally there are
constants 0 < γi < δi < 1, where γi denotes the probability of success for agent i if he does
not exert effort, and δi (> γi) denotes the probability of success if he does exert effort. In
order to reduce the number of parameters, we will restrict our attention to the case where
γ1 = . . . = γn = γ and δ1 = . . . = δn = 1− γ thus leaving ourselves with a single parameter
γ s.t. 0 < γ < 1

2
.

Under this structure, the technology function t is defined by t(a1, . . . , an) being the
probability that f(x1, . . . , xn) = 1 where the bits x1, . . . , xn are chosen according to the
following distribution: if ai = 0 then xi = 1 with probability γ and xi = 0 with probability
1−γ; otherwise, i.e. if ai = 1, then xi = 1 with probability 1−γ and xi = 0 with probability
γ. We denote x = (x1, . . . , xn).

A few simple examples should be in order here:
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Figure 9.1: (a) AND and (b) OR technologies.

1. The ”AND” technology: f(x1, . . . , xn) is the logical conjunction of xi (f(x) =
∧

i∈N xi).
Thus the project succeeds only if all agents succeed in their tasks. This is shown
graphically as a read-once network in Figure 9.1(a). If m agents exert effort (

∑
i ai =

m), then t(a) = tm = γn−m(1 − γ)m. E.g. for two players, the technology function
t(a1a2) = ta1+a2 is given by t0 = t(00) = γ2, t1 = t(01) = t(10) = γ(1 − γ), and
t2 = t(11) = (1− γ)2.

2. The ”OR” technology: f(x1, . . . , xn) is the logical disjunction of xi (f(x) =
∨

i∈N xi).
Thus the project succeeds if at least one of the agents succeed in their tasks. This is
shown graphically as a read-once network in Figure 9.1(b). If m agents exert effort,
then tm = 1− γm(1− γ)n−m. E.g. for two players, the technology function is given by
t(00) = 1− (1− γ)2, t(01) = t(10) = 1− γ(1− γ), and t(11) = 1− γ2.

3. The ”Or-of-Ands” (OOA) technology: f(x) is the logical disjunction of conjunctions.
In the simplest case of equal-length clauses (denote by nc the number of clauses and
by nl their length), f(x) =

∨nc

j=1(
∧nl

k=1 xj
k). Thus the project succeeds if in at least

one clause all agents succeed in their tasks. This is shown graphically as a read-once
network in Figure 9.2(a). If mi agents on path i exert effort, then t(m1, ...,mnc) =
1−

∏
i(1−γnl−mi(1−γ)mi). E.g. for four players, the technology function t(a1

1 a1
2, a

2
1 a2

2)
is given by t(00, 00) = 1 − (1 − γ2)2, t(01, 00) = t(10, 00) = t(00, 01) = t(00, 10) =
1− (1− γ(1− γ))(1− γ2), and so on.

4. The ”And-of-Ors” (AOO) technology: f(x) is the logical conjunction of disjunctions.
In the simplest case of equal-length clauses (denote by nl the number of clauses and by
nc their length), f(x) =

∧nl

j=1(
∨nc

k=1 xj
k). Thus the project succeeds if at least one agent

from each disjunctive-form-clause succeeds in his tasks. This is shown graphically
as a read-once network in Figure 9.2(b). If mi agents on clause i exert effort, then
t(m1, ...,mnc) =

∏
i(1−γmi(1−γ)nc−mi). E.g. for four players, the technology function

t(a1
1 a1

2, a
2
1 a2

2) is given by t(00, 00) = (1− (1− γ)2)2, t(01, 00) = t(10, 00) = t(00, 01) =
t(00, 10) = (1− γ(1− γ))(1− (1− γ)2), and so on.
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Figure 9.2: Graphical representations of (a) OOA and (b) AOO technologies.

9.3 Analysis of Some Anonymous Technologies

A success function t is called anonymous if it is symmetric with respect to the players. I.e.
t(a1, . . . , an) depends only on

∑
i∈N ai (the number of agents that exert effort). A technology

(t, c) is anonymous if t is anonymous and the cost c is identical to all agents. Of the examples
presented above, the AND and OR technologies were anonymous (but not AOO and OOA).
As for an anonymous t only the number of agents that exert effort is important, we can
shorten the notations and denote tm = t(1m, 0n−m), ∆m = tm+1 − tm, pm = c

∆m−1
,meaning

the payment principal has to give to each one of m agents to motivate them, and his utility
in this case is um = tm · (v −m · pm), for the case of identical cost c,

9.3.1 AND and OR Technologies

Let us start with a direct and full analysis of the AND and OR technologies for two players
for the case γ = 1/4 and c = 1.

Example 1 AND technology with two agents, c = 1, γ = 1/4: we have t0 = γ2 = 1/16,
t1 = γ(1− γ) = 3/16, and t2 = (1− γ)2 = 9/16 thus ∆0 = 1/8 and ∆1 = 3/8. The principal
has 3 possibilities: contracting with 0, 1, or 2 agents. Let us write down the expressions for
his utility in these 3 cases:

• 0 Agents: No agent is paid thus and the principal’s utility is u0 = t0 · v = v/16.

• 1 Agent: This agent is paid p1 = c/∆0 = 8 on success and the principal’s utility is
u1 = t1(v − p1) = 3v/16− 3/2.

• 2 Agents: each agent is paid p2 = c/∆1 = 8/3 on success, and the principal’s utility
is u2 = t2(v − 2p2) = 9v/16− 3.

Notice that the option of contracting with one agent is always inferior to either contracting
with both or with none, and will never be taken by the principal. The principal will contract
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Figure 9.3: Number of agents in the optimal contract of the AND (left) and OR (right) technologies
with 3 players, as a function of γ and v. AND technology: either 0 or 3 agents are contracted, and
the transition value is monotonic in γ. OR technology: for any γ we can see all transitions.

with no agent when v < 6, with both agents whenever v > 6, and with either non or both for
v = 6.

This should be contrasted with the non-strategic case in which the principal completely
controls the agents (and bears their costs) and thus simply optimizes globally. In this case the
principal will make both agents exert effort whenever v ≥ 4. Thus for example, for v = 6 the
globally optimal decision (non-strategic case) would give a global utility of 6 ·9/16−2 = 11/8
while the principal’s decision (in the agency case) would give a global utility of 3/8, giving a
ratio of 11/3.

It turns out that this is the worst price of unaccountability in this example, and it is
obtained exactly at the transition point of the agency case, as we show below.

Example 2 OR technology with two agents, c = 1, γ = 1/4: we have t0 = 1−(1−γ)2 =
7/16, t1 = 1− γ(1− γ) = 13/16, and t2 = 1− γ2 = 15/16 thus ∆0 = 3/8 and ∆1 = 1/8. Let
us write down the expressions for the principal’s utility in these three cases:

• 0 Agents: No agent is paid and the principal’s utility is u0 = t0 · v = 7v/16.

• 1 Agent: This agent is paid p1 = c/∆0 = 8/3 on success and the principal’s utility is
u1 = t1(v − p1) = 13v/16− 13/6.
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• 2 Agents: each agent is paid p2 = c/∆1 = 8 on success, and the principal’s utility is
u2 = t2(v − 2p2) = 15v/16− 15/2.

Now contracting with one agent is better than contracting with none whenever v > 52/9 (and
is equivalent for v = 52/9), and contracting with both agents is better than contracting with
one agent whenever v > 128/3 (and is equivalent for v = 128/3), thus the principal will
contract with no agent for 0 ≤ v ≤ 52/9, with one agent for 52/9 ≤ v ≤ 128/3, and with
both agents for v ≥ 128/3.

In the non-strategic case, in comparison, the principal will make a single agent exert
effort for v > 8/3, and the second one exert effort as well when v > 8.

It turns out that the price of unaccountability here is 19/13, and is achieved at v = 52/9,
which is exactly the transition point from 0 to 1 contracted agents in the agency case. This
is not a coincidence that in both the AND and OR technologies the POU is obtained for v
that is a transition point .

Lemma 9.2 For any given technology (t,~c) the price of unaccountability POU(t,~c) is ob-
tained at some value v which is a transition point, of either the agency or the non-strategic
cases.

Proof sketch: We look at all transition points in both cases. For any value lower than the
first transition point, 0 agents are contracted in both cases, and the social welfare ratio is 1.
Similarly, for any value higher than the last transition point, n agents are contracted in both
cases, and the social welfare ratio is 1. Thus, we can focus on the interval between the first
and last transition points. Between any pair of consecutive points, the social welfare ratio
is between two linear functions of v (the optimal contracts are fixed on such a segment).
We then show that for each segment, the suprimum ratio is obtained at an end point of the
segment (a transition point). As there are finitely many such points, the global suprimum
is obtained at the transition point with the maximal social welfare ratio. 2

We already see a qualitative difference between the AND and OR technologies (even
with 2 agents): in the first case either all agents are contracted or none, while in the second
case, for some intermediate range of values v, exactly one agent is contracted. Figure 9.3
shows the same phenomena for AND and OR technologies with 3 players.

Theorem 9.3 For any anonymous AND technology1:

• there exists a value2 v∗ < ∞ such that for any v < v∗ it is optimal to contract with
no agent, for v > v∗ it is optimal to contract with all n agents, and for v = v∗, both
contracts (0, n) are optimal.

1AND technology with any number of agents n and any γ, and any identical cost c.
2v∗ is a function of n, γ, c.
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• the price of unaccountability is obtained at the transition point of the agency case, and
is

POU = max{
(1

γ
− 1

)n−1
, (1− γ

1− γ
)}

Proof sketch: For any fixed number of contracted agents, k, the principal’s utility is a
linear function in v, where the slope equals the success probability under k contracted agents.
Thus, the optimal contract corresponds to the maximum over a set of linear functions. Let
v∗ denote the point at which the principal is indifferent between contracting with 0 or n
agents. At v∗, the principal’s utility from contracting with 0 (or n) agents is higher than
his utility when contracting with any number of agents k ∈ {1, . . . , n − 1}. As the number
of contracted agents is monotonic non-decreasing in the value (due to Lemma 9.5), for any
v < v∗, contracting with 0 agents is optimal, and for any v > v∗, contracting with n agents
is optimal. This is true for both the agency and the non-strategic cases. 2

The property of a single transition occurs in both the agency and the non-strategic cases,
where the transition occurs at a smaller value of v in the non-strategic case. Notice that the
POU is not bounded across the AND family of technologies (for various n, γ) as POU →∞
either if γ → 0 (for any given n ≥ 2) or n →∞ (for any fixed γ ∈ (0, 1

2
)).

Next we consider the OR technology and show that it exhibits all n transitions.

Theorem 9.4 For any anonymous OR technology, there exist finite positive values v1 <
v2 < . . . < vn such that for any v s.t. vk < v < vk+1, contracting with exactly k agents is
optimal (for v < v1, no agent is contracted, and for v > vn, all n agents are contracted). For
v = vk, the principal is indifferent between contracting with k − 1 or k agents.

Proof sketch: To prove the claim we define vk to be the value for which the principal is
indifferent between contracting with k − 1 agents, and contracting with k agents. We then
show that for any k, vk < vk+1. As the number of contracted agents is monotonic non-
decreasing in the value (due to Lemma 9.5), v1 < v2 < . . . < vn is a sufficient condition for
the theorem to hold. 2

Observation 2 While in the AND technology the POU for n = 2 is not bounded from above
(for γ → 0), the highest POU in OR technology with two agents is 2 (for γ → 0).

9.4 Non-Anonymous Technologies

In non-anonymous technologies (even with identical costs), we need to talk about the con-
tracted set of agents and not only about the number of contracted agents. In this section,
we identify the sets of agents that can be obtained as the optimal contract for some v. These
sets construct the orbit of a technology.



9.4. NON-ANONYMOUS TECHNOLOGIES 11

Definition 3 For a technology t, a set of agents S is in the orbit of t if for some value v,
the optimal contract is exactly with the set S of agents (where ties between different S’s are
broken according to a lexicographic order3). The k-orbit of t is the collection of sets of size
exactly k in the orbit.

in the non-strategic case the k-orbit of any technology with identical cost c is of size at
most 1 (as all sets of size k has the same cost, only the one with the maximal probability
can be on the orbit). Thus, the orbit of any such technology in the non-strategic case is of
size at most n + 1. We show that the picture in the agency case is very different.

A basic observation is that the orbit of a technology is actually an ordered list of sets of
agents, where the order is determined by the following lemma.

Lemma 9.5 (Monotonicity lemma) For any technology (t,~c), in both the agency and the
non-strategic cases, the expected utility of the principal at the optimal contracts, the success
probability of the optimal contracts, and the expected payment of the optimal contract, are
all monotonically non-decreasing with the value.

Proof: Suppose the sets of agents S1 and S2 are optimal in v1 and v2 < v1, respectively. Let
Q(S) denote the expected total payment to all agents in S in the case that the principal
contracts with the set S and the project succeeds (for the agency case, Q(S) = t(S) ·∑

i∈S
ci

t(S)−t(S\i) , while for the non-strategic case Q(S) =
∑

i∈S ci). The principal’s utility is

a linear function of the value, u(S, v) = t(S) · v −Q(S). As S1 is optimal at v1, u(S1, v1) ≥
u(S2, v1), and as t(S2) ≥ 0 and v1 > v2, u(S2, v1) ≥ u(S2, v2). We conclude that u(S1, v1) ≥
u(S2, v2), thus the utility is monotonic non-decreasing in the value.

Next we show that the success probability is monotonic non-decreasing in the value. S1

is optimal at v1, thus:
t(S1) · v1 −Q(S1) ≥ t(S2) · v1 −Q(S2)

S2 is optimal at v2, thus:

t(S2) · v2 −Q(S2) ≥ t(S1) · v2 −Q(S1)

Summing these two equations, we get that (t(S1)− t(S2)) · (v1 − v2) ≥ 0, which implies that
if v1 > v2 than t(S1) ≥ t(S2).

Finally we show that the expected payment is monotonic non-decreasing in the value.
As S2 is optimal at v2 and t(S1) ≥ t(S2), we observe that:

t(S2) · v2 −Q(S2) ≥ t(S1) · v2 −Q(S1) ≥ t(S2) · v2 −Q(S1)

or equivalently, Q(S2) ≤ Q(S1), which is what we wanted to show. 2

3This implies that there are no two sets with the same success probability in the orbit.
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9.4.1 AOO and OOA Technologies

We begin our discussion of non-anonymous technologies with two examples; the And-of-Ors
(AOO) and Or-of-Ands (OOA) technologies.

The AOO technology (see figure 9.2) is composed of multiple OR-components that are
“And”ed together.

Theorem 9.6 Let h be an anonymous OR technology, and let f =
∧nc

j=1 h be the AOO
technology that is obtained by a conjunction of nc of these OR-components on disjoint inputs.
Then for any value v, an optimal contract contracts with the same number of agents in each
OR-component. Thus, the orbit of f is of size at most nl + 1, where nl is the number of
agents in h.

Conjecture 1 In an OOA technology which is a disjunction of the same anonymous paths
(with the same number of agents, γ and c, but over disjoint inputs), for any value v the
optimal contract is constructed from some number of fully-contracted paths. Moreover, there
exist v1 < . . . < vnl

such that for any v, vi ≤ v ≤ vi+1, exactly i paths are contracted.

9.4.2 Orbit Characterization

The AOO is an example of a technology whose orbit size is linear in its number of agents.
If conjecture 1 is true, the same holds for the OOA technology. What can be said about the
orbit size of a general non-anonymous technology?

In case of identical costs, it is impossible for all subsets of agents to be on the orbit. This
holds by the observation that the 1-orbit (a single agent that exerts effort) is of size at most
1. Only the agent that gives the highest success probability (when only he exerts effort) can
be on the orbit (as he also needs to be paid the least). Nevertheless, we next show that the
orbit can have exponential size.

A collection of sets of k elements (out of n) is ”admissible”, if every two sets in the
collection differ by at least 2 elements (e.g. for k=3, 123 and 234 can not be together in the
collection, but 123 and 345 can be).

Theorem 9.7 Every admissible collection can be obtained as the k − orbit of some t.

Proof sketch: The proof is constructive. Let S be some admissible collection of k-size
sets. For each set S ∈ S in the collection we pick εS, such that for any two admissible sets
Si 6= Sj, εSi

6= εSj
. We then define the technology function t as follows: for any S ∈ S,

t(S) = 1/2− εS and ∀i ∈ S, t(S \ i) = 1/2− 2εS. Thus, the marginal contribution of every
i ∈ S is εS. Note that since S is admissible, t is well defined, as for any two sets S, S ′ ∈ S
and any two agents i, j, S \ i 6= S ′ \ j. For any other set Z, we define t(Z) in a way that
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ensures that the marginal contribution of each agent in Z is a very small ε (the technical
details appear in the paper). This completes the definition of t.

We show that each admissible set S ∈ S is optimal at the value vS = ck
2ε2S

. We first show

that it is better than any other S ′ ∈ S. At the value vS = ck
2ε2S

, the set S that corresponds to

εS maximizes the utility of the principal. This result is obtained by taking the derivative of
u(S, v). Therefore S yields a higher utility than any other S ′ ∈ S. We also pick the range of
εS to ensure that at vS, S is better than any other set S ′ \ i s.t. S ′ ∈ S. Now we are left to
show that at vS, the set S yields a higher utility than any other set Z 6∈ S. The construction
of t(Z) ensures this since the marginal contribution of each agent in Z is such a small ε, that
the payment is too high for the set to be optimal. 2

Lemma 9.8 For any n ≥ k, there exists an admissible collection of k-size sets of size
Ω( 1

n
·
(

n
k

)
).

Proof sketch: The proof is based on an error correcting code that corrects one bit. Such a
code has a distance ≥ 3, thus admissible. It is known that there are such codes with Ω(2n/n)
code words. To ensure that an appropriate fraction of these code words have weight k, we
construct a new code by XOR-ing each code word with a random word r. The properties
of XOR ensure that the new code remains admissible. Each code word is now uniformly
mapped to the whole cube, and thus its probability of having weight k is

(
n
k

)
/2n. Thus the

expected number of weight k words is Ω(
(

n
k

)
/n), and for some r this expectation is achieved

or exceeded. 2

For k = n/2 we can construct an exponential size admissible collection, which by Theo-
rem 9.7 can be used to build a technology with exponential size orbit.

Corollary 9.9 There exists a technology (t, c) with orbit of size Ω( 2n

n
√

n
).


