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Lecture 6:Congestion and potential games
Lecturer:Yishay Mansour Scribe:Nir Yosef, Ami Koren

6.1 Lecture overview

So far we’ve seen that not every strategic game has a deterministic Nash equilibrium.
In this lecture we discuss a certain class of games: congestion and potential games, for which
we prove the existence of a deterministic Nash equilibrium.
In the coming sections we define the above classes, show the relation between them and
estimate the complexity of finding a deterministic Nash equilibrium for a potential game.

6.2 Congestion game

6.2.1 Example

Fig.1 Example of a congestion game

Let us start with an illustrative example: In the model described above, Players A,B and C
have to go from point S to T using road segments SX,XY,...etc. Numbers on edges denote
the cost for a single user for using the corresponding road segment, where the actual cost
is a function of the actual number of players using that road segment(i.e. a descrete delay
function). For example: if segment SX is used by a 1,2, or 3 users, the cost on that segment
would be 2,3, or 5, respectively. The total cost of each player is the sum of all segments he
uses. Note that the players are therefore engaged in a game which can be represented in a
strategic form(as a cost matrix).
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6.2.2 Congestion game - Definition

A congestion model (N,M,(Ai)i∈N ,(cj)j∈M) is defined as follows:

• N = {1..n} denotes the set of players

• M = {1..m} denotes the set of facilities

• For i ∈ N , Ai denotes the set of strategies of player i, where each ai ∈ Ai is a non
empty subset of the facilities.

• For j ∈ M , cj ∈ Rn denotes the vector of costs, where cj(k) is the cost related to each
user of facility j, if there are exactly k players using that facility.

The congestion game associated with a congestion model is a game in strategic form with
the set of N players, with sets of strategies (Ai)i∈N and with cost function defined as follows:
Let A = ×i∈NAi be the set of all possible deterministic profiles(players strategy vectors). For
any ~a ∈ A and for any j ∈ M , let nj(~a) be the number of players using facility j, assuming
~a to be the current profile.
Now, define the overall cost function for player i: ui(~a) =

∑
j∈ai

cj(nj(~a))

Remark 6.1 All players are equal in a sense that they have the same ’weight’(it doesn’t
matter which players are using a facility, only how many players are using it).

6.2.3 Deterministic equilibrium

Theorem 6.2 Every finite congestion game has a pure strategy(deterministic) equilibrium.

Proof: Let ~a ∈ A be a deterministic strategy vector as defined above,

let Φ: A → R be a potential function defined as follows: Φ(~a) =
∑m

j=1

∑nj(~a)
k=1 cj(k)

Consider the case where a single player changes its strategy from ai to bi(where ai, bi ∈ Ai).
Let ∆ui be the change in its cost caused by the the change in strategy:
∆ui = ui(bi, ~a−i)− ui(ai, ~a−i) =

∑
j∈bi−ai

cj(nj(~a) + 1)−
∑

j∈ai−bi
cj(nj(~a))

(explanation: change in cost = cost related to the use of new facilities minus cost related to
use of those facilities which are not in use anymore due to strategy change)
Let ∆Φ be the change in the potential caused by the change in strategy:
∆Φ = Φ(bi, ~a−i)− Φ(ai, ~a−i) =

∑
j∈bi−ai

cj((nj(~a) + 1)−
∑

j∈ai−bi
cj(nj(~a))

(explanation: immediate from potential function’s definition)
Thus we can conclude that for a single player’s strategy change we get
∆Φ = ∆ui.

That’s an interesting result: We can start from an arbitrary deterministic strategy vector
~a, and at each step one player reduces it’s cost. That means, that at each step Φ is reduced
identically. Since Φ can accept a finite amount of values, it will eventually reach a local
minima. At this point, no player can achieve any improvement, and we reach a NE. �
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6.3 Potential games

6.3.1 Potential functions

Let G =< N, (Ai), (ui) > be a game in strategic form and let A = ×i∈NAi be the collection
of all deterministic strategy vectors in G.

Definition A function Φ: A → R is an exact potential for game G if
∀~a∈A∀ai,bi∈Ai

Φ(bi, ~a−i)− Φ(ai, ~a−i) = ui(bi, ~a−i)− ui(ai, ~a−i)

Definition A function Φ: A → R is a weighted potential for game G if
∀~a∈A∀ai,bi∈Ai

Φ(bi, ~a−i)− Φ(ai, ~a−i) = ωi(ui(bi, ~a−i)− ui(ai, ~a−i)) = ωi∆ui

Where (ωi)i∈N is a vector of positive numbers (weight vector).

Definition A function Φ: A → R is an ordinal potential for a minimum game G if
∀~a∈A∀ai,bi∈Ai

(Φ(bi, ~a−i)−Φ(ai, ~a−i) < 0) ⇐ (ui(bi, ~a−i)−ui(ai, ~a−i) < 0) (the opposite takes
place for a maximum game).

Remark 6.3 Considering the above definitions, it can be seen that the first two definitions
are private cases of the third.

6.3.2 Potential games

Definition A game G is called an ordinal potential game if it admits an ordinal potential.

Theorem 6.4 Every finite ordinal potential game has a pure strategy(deterministic) equi-
librium.

Proof: Similarly to the previous proof, starting from an arbitrary deterministic strategy
vector,after a finite number of steps of single player improvement, we will reach a local
minima which is, as was explained above, a deterministic equilibrium. �

6.3.3 Examples

Exact potential game

Consider an undirected graph G = (V, E) with a weight function ~ω on its edges. The goal is
to partition the vertices set V into two distinct subsets D1, D2(where D1 ∪D2 = V ):
for every player i, choose si ∈ {−1, 1} where choosing si = 1 means that i ∈ D1 and the
opposite for D2. The weight on each edge denotes how much the corresponding vertices ’want’
to be on the same set. Thus, define the value function of player i as ui(~s) =

∑
j 6=i ωi,jsisj
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Fig.2 Example for an exact potential game

On the example given in figure 2 it can be seen that players 1,2,4 have no interest in changing
their strategies, However, player 3 is not satisfied, it can increase his profit by changing his
chosen set to D1.
Using Φ(~s) =

∑
j<i ωi,jsisj as our potential function, let us consider the case where a single

player i changes its strategy(shifts from one set to another):
∆ui =

∑
j 6=i ωi,jsisj −

∑
j 6=i ωi,j(−si)sj = 2

∑
j 6=i ωi,jsisj =

2
∑

j: j<i ωi,jsisj + 2
∑

j: i<j ωi,jsisj = ∆(Φ)
Which means that Φ is an exact potential function, therefore we conclude that the above
game is an exact potential game.

Weighted potential game

Consider the following load balancing congestion model(N,M,(ωi)i∈N) with M identical ma-
chines, N jobs and (ωi)i∈N weight vector(ωi ∈ R+). The load on a machine is defined as
the sum of weights of the jobs which use it: Lj(~a) =

∑
i: ai=j ωi where ~a ∈ [1..M ]N is a

deterministic strategy vector.
Let ui(~a) = Lai

(~a) denote the cost function of player i. We would like to define a potential
function whose reaction to a single player’s strategy change will be correlated with the reac-
tion on the player’s cost function.
The potential function is defined as follows: Φ(~a) =

∑M
j=1

1
2
L2

j , consider the case where a
single job shifts from its selected machine M1 to another machine M2 (where M1 and M2 are
two arbitrary machines):
Let ∆ui be the change in its cost caused by the strategy change:
∆ui = ui(M2, ~a−i)− ui(M1, ~a−i) = L2(~a) + ωi − L1(~a)
(explanation: change in job’s load = load on new machine minus load on old machine)
Let ∆Φ be the change in the potential caused by the strategy change:
∆Φ = Φ(M2, ~a−i)− Φ(M1, ~a−i) = 1

2
[(L1(~a)− ωi)

2 + (L2(~a) + ωi)
2 − L2

1(~a)− L2
2(~a)] =

= ωi(L2(~a)− L1(~a)) + ω2
i = ωi(L2(~a) + ωi − L1(~a)) = ωi∆ui
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Therefore, we can conclude that the model at hand is a weighted potential game.

General(ordinal) potential game

Consider the following load balancing congestion model(N ,M ,(ωi,j)i∈N,j∈M) with M related
machines, N jobs and ~ω a machine dependent weight vector(where ωi,j ∈ N+ is the weight
of job i having been assigned to machine j).
Here we have similar definitions to those we have presented in the above example:
Load on a machine j: Lj(~a) =

∑
i: ai=j ωi,j

Cost function for player i: ui(~a) = Lai
(~a)

The potential function will now be defined as Φ(~a) =
∑M

j=1 4Lj(~a)

Consider the case where a single job shifts from its selected machine M1 to another ma-
chine M2. Change in players’ cost is calculated in a similar fashion to the above example:
∆ui = L2(~a) + ωi,2 − L1(~a)
Change in the potential caused by the strategy change will now be:
∆Φ = 4L1(~a)−ωi,1 + 4L2(~a)+ωi,2 − 4L1(~a) − 4L2(~a)

If ∆ui < 0 ⇒ L2(~a) + ωi,2 < L1(~a) ⇒ L2(~a) + ωi,2 + 1 ≤ L1(~a).
In addition L1(~a) − ωi,1 + 1 ≤ L1(~a) (both conclusions under the assumption that(ωi,j ∈
N+)). From the two inequalities we conclude:
{4L1(~a)−ωi,1 ≤ 4L1(~a)−1, 4L2(~a)+ωi,2 ≤ 4L1(~a)−1} ⇒ ∆Φ ≤ 2 · 4L1(~a)−1− 4L1(~a) = −2 · 4L1(~a)−1 < 0.
Therefore, we can conclude that the model at hand is a general potential game.

Another example of a general potential game is given by taking the same model we have
described as an example for an exact potential game, along with a slightly different value
function ui(~s) = SIGN(

∑
j 6=i ωi,jsisj) and the same potential function.

Following a similar proof it can be seen that this time we get an ordinal potential.

6.3.4 Finite improvement path

We use the concept of a Finite improvement path in order to define an abstract ordinal po-
tential function for a given strategic game. A finite improvement path is defined as follows:
For G =< N, (Ai), (ui) > minimum game in strategic form, and A = ×i∈NAi collection of
all deterministic strategy vectors let Π = (V, E) be a graph such that

V = A and E = {< ~a,~b >∈ A2: ∃i [(bi, ~a−i) = ~b ] ∧ [ui(~b) < ui(~a)]}

Lemma 6.5 If Π is acyclic then the corresponding game G possesses a deterministic equi-
librium.

Proof: Every acyclic graph has a sink(vertex without outgoing edges). Every sink on Π
is a deterministic equilibrium(follows immediately from the definition of E). �
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Now let us define the potential function Φ(~a) as the length of the longest route on Π starting
from ~a. Note that going from one vertex to another on Π(which is equivalent to a step
where a single user changes its strategy, thus reducing its cost) will reduce the value of Φ
(immediate from the definition of Φ). In addition - the number of such steps is final(because
G is final).
Having said that and from the definition at 8.3.1 we can conclude that Φ is an ordinal
potential function.
Every path on that graph is an improvement path with respect to the above potential func-
tion. The last vertex of every such path corresponds to an equilibrium point, as was explained
in the proof above.

6.4 Computing equilibrium in congestion games

We have seen on proof of theorem 8.2 that every general congestion game has an exact po-
tential function. We can use that potential function in order to find an equilibrium point(by
following the same scheme as described on the proof of theorem 8.2). The problem is that
the number of steps might be exponential in the size of the game.

6.4.1 Symmetric network’s game

(An example for computing equilibrium using reduction)
A symmetric network’s game NG is defined as follows: given a graph G = (V, E) with source
and destination vertices (S, T ), the players have to choose a route on G leading from S to
T. Each edge has a delay value which is a function of number of players using it.
Now, let us look at the full definition of NG as a congestion game (N,E,(Ai)i∈N ,(ce)e∈E):

• N denotes the set of players

• E denotes the set of edges of G

• Ai is the set of strategies of player i, where each ai ∈ Ai is a route on G leading from
S to T

• For e ∈ E, ce ∈ Rn denotes the vector of delays, where ce(k) is the delay related to
edge e, if there are exactly k players using that edge.

• Player’s cost function is ui(~a) =
∑

e∈ai
ce(ne(~a)) (where ne as before denotes the

number of players using edge e)

Remark 6.6 On proof of theorem 8.2 we saw that for this kind of game the potential function
Φ(~a) =

∑m
e=1

∑ne(~a)
k=1 ce(k) is exact.
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reduction to min-cost flow

considering the graph G = (V, E) and the delay functions {ce}e∈E, we replace in G each
edge e with n parallel edges between the same nodes, each with capacity 1, and with costs
ce(1), .., ce(n).

Lemma 6.7 The cost of a full min-cost flow of n units on the new network is equal to Φ(~a)
where ~a is a strategy vector corresponding to that flow.

Proof: Let f be a full flow of n units.f can be divided into n distinct routes(because the
capacity of each edge is exactly 1). Consider every route as the strategy of a single player of
the game NG. We define the corresponding strategy vector ~a as some ordered collection of
all these routes(it is not important in which order we define ~a because all players are equal).
Since f is minimal then it will first use the cheaper edges, therefore the contribution of a
collection of edges e1, .., en on the new network which corresponds to single edge e on G will
be

∑ne(~a)
k=1 ce(k) and the total cost of f is thus

∑
e

∑ne(~a)
k=1 ce(k) = Φ(~a)

�

Remark 6.8

• Any minima on Φ is an equilibrium point(Immediate from the definition of Φ).

• It is easy to see that for any integer min-cost flow in the new network, the strategy
vector corresponding to that flow minimizes Φ.

Corollary 6.9 For every min-cost flow on the network defined above, the corresponding
strategy vector is an equilibrium point.

Corollary 6.10 There is a polynomial algorithm for finding a pure equilibrium in symmetric
network congestion games.

6.4.2 PLS class

We saw that we can always find deterministic equilibrium in general congestion game. We
also saw that in some cases, we have polynomial algorithm for doing that. How hard it
is to find the equilibrium? We will now show, that in some cases, the problem becomes
exponential. In order to do this, we will define a class for local-optima search.

Definition PLS class(Polynomial-time Local Search)
Terminology:

• I - Collection of possible inputs(graphs, for example)
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• Fx - For each instance x ∈ I we have a finite set Fx of the possible solutions, all with
the same polynomially bounded length(For example, all TSP paths at each graph).

• c(x, s) - Cost function of a solution s ∈ Fx given an instance x ∈ I. For example- for
each graph x ∈ I and path s ∈ Fx, c(x, s) marks the cost of the path(For s /∈ Fx c()
returns ”illegal”)

• Nx(s) ⊆ Fx - Neighborhood function. This function defines the environment of each
possible solution.

• both Nx(s) and Fx are recognizable in polynomial time

The problem: finding a local optimum solution. That is, to find x ∈ I and s ∈ Fx, such that
∀s̀ ∈ Nx(s) : c(x, s̀) ≥ c(x, s)

For complete definition of PLS, see [3].

Sample for generic problem

• I = {0, 1}n

• Fx = I -(has no meaning for solution)

• Nx = {y|H(x, y) = 1} - The set of neighbors of each vector, defined as the set of all
vectors which differ from it in exactly one bit(Hamming distance of 1)

• c(x) - Some generic cost function

This problem can be thought of as seeking for a local minimal-cost vector among the set
{0, 1}n where locality is defined by hamming distance.
It can be shown that there are cost functions for which there exists an improvement path
at length 1

4
2n ≤ l ≤ 2n(Snake in a box ). This means that the improvement path has to go

through a significant number of the edges of the box in order to reach a local optima.
The complexity of the problem is cost-function depended. For example, if we define cost

function c(x) : I → {0, 1}, we have an easy 1-step algorithm: Check all your neighbors, if
they’re all 1 - exit, else - go to the 0-neighbor and exit. The problem is getting hard when
there are a lot of different costs, since the improvement at each step can be much smaller
then the range of the costs.

PLS-Complete problems
Definition L ∈ PLS is PLS-complete when every Π ∈ PLS is reducible to L

Here are some of the problem which are known to be PLS-Complete:
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• Local minima in a cube(See above)

• MAX-CUT - Find the edges that give maximal weight cut of graph vertices - In the
local version, we consider two cuts as neighbors, if they differ in exactly one vertex

• W2SAT - Try to satisfy as much clauses as possible(in cases that the expression is not
satisfiable). In the local-version, we consider two solutions as neighbors if they differ
in the value of exactly one variable( i.e. our goal is to reach a solution where a single
switch of variable will not improve the cost)

• TSP2 - Local version of Traveling Sales Person, where 2 routes are considered as
neighbors if they differ in at most 2 edges

Theorem 6.11 A general congestion game, symmetric congestion game, and asymmetric
network game are all PLS-complete

Proof:
We will show that a generic congestion game is PLS-complete. We will do it by a reduction
from a known PLS-complete problem:

Weighted not-all-equal 3SAT is a PLS-complete problem described as follows:

• Input - Monotonic 3-CNF. A clause is considered satisfied if it is not all-1 and not
all-0. There is a weight for each clause

• Output - An assignment that satisfies maximal weight of clauses

• Cost - Sum of weights on all unsatisfied clauses

• Locality - In the local version, we consider two assignments as neighbors if they have
different values for exactly one variable

The Reduction
Given an instance of the 3SAT problem above, we build a corresponding congestion game.
We want to show that the Nash equilibrium at the congestion game is equivalent to local-
minima at the above 3SAT problem. Therefore, had we known to find a Nash equilibrium
at the congestion game, we would have been able to solve our 3SAT problem.

For any given 3-CNF, we build the corresponding congestion game as follows:

• variable −→ player
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• clause Tj −→ 2 resources: m0
j , m

1
j

• action −→ For a player we have 2 actions:

– I = {m1
j | xi ∈ Tj}

– II = {m0
j | xi ∈ Tj}

Explanation: Each player can choose whether to play all on 0, or all on 1

• 3SAT cost function: For a ∈ {0, 1}, Cma
j
(1) = Cma

j
(2) = 0, Cma

j
(3) = wi - This cost

function punishes clauses with all-equal values. Cma
j
(0) = 0, because we already punish

it at Cm1−a
j

(3).

• assignment of xi = 1 (3SAT ) ⇐⇒ Player’s action Ai=I(congestion game) , which
means that for every vector of deterministic strategy on the congestion game there
exists a corresponding assignment on(3SAT) and vice versa.

After defining the game, we show the equivalence between Nash equilibrium at the congestion
game to local minima at the our 3SAT problem.

• Change of player’s action at game: Assuming a player changed it’s action from I to
II :

– D1 - The clauses that became satisfied as result of the change

– D2 - The clauses that became unsatisfied as result of the change

The gain from the change:

4ui =
∑
j∈D2

wj −
∑
j∈D1

wj

• Switching a variable’s value at 3SAT will have the same affect:

4ui =
∑
j∈D2

wj −
∑
j∈D1

wj

Therefore, Nash equilibrium at the congestion game is equivalent to a local-minima at the
3SAT problem

�
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6.4.3 ε-Nash of congestion game

Finding deterministic Nash equilibrium for a general congestion game is hard, but it might
be easier in some cases. For instance, for small number of players, or for finding ε-Nash.

We now present an algorithm for finding an ε-Nash of a congestion game with the following
potential function:

φ(−→a ) =
m∑

j=1

nj∑
k=1

cj(nk)

We start from an arbitrary deterministic strategy vector ~a0. At each step we decrease φ with
at least ε. If we can’t, we reached the ε-Nash. Since for each ~a we have

φ(−→a ) ≤
m∑

j=1

njcj(nj) ≤ n ·m · cmax

Then the number of steps is at most φ(−→a0)
ε

, which is limited by n·m·cmax

ε

6.5 Equivalence of potential and congestion game

At the beginning of this lecture we saw that each congestion game admits a potential function
and therefore it is a potential game. We now show the other direction: For each exact
potential game there exists a matching congestion game.

Definition Equivalence of games
Assuming there are 2 games: < N, (Ai

1)i∈N , (ui
1)i∈N >, < N, (Ai

2)i∈N , (ui
2)i∈N >

If there is a 1-1 mapping between game 1 and game 2: gi : Ai
1 −→ Ai

2 such that:

ui
1(a1, . . . , an) = ui

2(g
i(a1), . . . , g

i(an))

We say that the games are equivalent.

Theorem 6.12 Each game with exact potential function has equivalent congestion game

Proof:
Given a game < N, (Ai)i∈N , (ui

1)i∈N > with an exact potential function φ. For simplic-
ity let us assume that ∀i ∈ N : l = |Ai|.
We’ll start building an equivalent congestion game < N, V, (cj)j∈M >.
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Players: Stay the same

Resources: V = {0, 1}l·n - Each vector represent a single resource, which gives us a total
of 2l·n resources.
We treat each of these vectors as n vectors, each of size l.

Holding resources: Each player i that play action j, holds the resources with the appro-
priate bit set: Bi

j = {v : vij = 1} (therefore, |Bi
j| = 2ln

2
).

We now seek for a cost function on the resources of the new congestion game, such that
the cost ui

2 for each player will satisfy: ui
2(a1, . . . , an) = ui

1(a1, . . . , an) (according to the
definition above).
We define the cost function c for specific resources that will sum to the desired cost for each
player. All other resources will have a cost=0.

Given strategy vector ~a, then for the vector v~a
i′ ,j′

∈ {0, 1}l∗n such that:

v~a
i′ ,j′

=

{
1 j

′
= ai′

0 otherwise

There is a congestion of exactly n(because it is held by all players). For this vector, we
define: cv~a(k) = φ(−→a ) for k = n and 0 otherwise.

If these resources were the only ones with non-zero-cost, then each player would have a
cost of φ(~a). Therefore, we have to fix it for each player i, by ui

1(
−→a )− φ(−→a ).

In order to do this, we find a resource ri ∈ V that only playeri holds. For ~a, we define:

ri
i′ ,j′

=


1 i

′
= i

0 i
′ 6= i, j

′ ∈ ai′

1 Otherwise

Meaning: ri is 1 anywhere, except at the locations corresponding to the actions of the rest
of the players
The cost we define for these resources are:

cri(1) = ui(−→a )− φ(−→a )

We have to show that cri(1) is well defined for player i. That is, that it doesn’t change if
the player changes it’s action. We do it by using the fact that φ is an exact potential, and
therefore, for actions ai, bi of player i:

ui
1(ai, a

−i)− φ(ai, a
−i) = ui

1(bi, a
−i)− φ(bi, a

−i)

⇒ ui
1(ai, a

−i)− ui(bi, a
−i) = φ(ai, a

−i)− φ(bi, a
−i)
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⇒ ∆ui
1(ai → bi) = ∆φ(ai → bi)

⇒ ∆cri = ∆ui
1(ai → bi)−∆φ(ai → bi) = 0

All other resources have cost=0.

The cost of player i:
ui

2(~a) =
∑

j∈ai
cj(nj(~a)) = cv~a(n) + cri(1) = φ(~a) + ui(~a)− φ(~a) = ui(~a)

Therefore, by the definition above, the potential game is equivalent to the congestion game
we’ve built.

Notice, that the number of resources is exponential in this representation. That means
that a general potential game might be much harder then a congestion game.

�
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