
⁄
0022-0000/02 $35.00

© 2002 Elsevier Science
All rights reserved.

Journal of Computer and System Sciences
doi:10.1006/jcss.2001.1796, available online at http://www.idealibrary.com on

Boosting using Branching Programs

Yishay Mansour

Department of Computer Science, Tel-Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
E-mail: mansour@cs.tau.ac.il

and

David McAllester

AT&T Research
E-mail: dmac@research.att.com

Received October 28, 2000; revised March 22, 2001

It is known that decision tree learning can be viewed as a form of boosting.
Given a weak learning hypothesis one can show that the training error of a
decision tree declines as |T|−b where |T| is the size of the decision tree and b is
a constant determined by the weak learning hypothesis. Here we consider the
case of decision DAGs—decision trees in which a given node can be shared
by different branches of the tree, also called branching programs (BP). Node
sharing allows a branching program to be exponentially more compact than
the corresponding decision tree. We show that under the same weak learning
assumption used for decision tree learning there exists a greedy BP-growth

algorithm whose training error is guaranteed to decline as 2−b`|T|, where |T| is
the size of the branching program and b is a constant determined by the
weak learning hypothesis. Therefore, from the perspective of boosting theory,
branching programs are exponentially more efficient than decision trees.
© 2002 Elsevier Science

1. INTRODUCTION

Boosting algorithms have proven to be very powerful in computational learning
theory. They are based on the assumption that natural sets of ‘‘base predicates’’
have the property that for any sample there exists a base predicate performing
better than random guessing on that sample. This apparently modest assumption is
quite powerful. It implies the ability to construct highly accurate decision rules built
from the base predicates, e.g., decision trees or weighted threshold functions. In
practice, the boosting algorithms, such as AdaBoost [FS95], have proven to be
very successful, and are widely used by practitioners in the Machine Learning

File: AP/571-jcss/1796 1796 - Page : 1/10 - Op: CV - Time: 10:14 - Date: 13:12:2001



community. One can also show that the popular decision tree algorithms, such as
CART and C4.5, can be viewed as boosting algorithms [KM96].

For the case of decision tree learning, tree learning requires a tree size that grows
exponentially in 1/d, where d is the bias of the weak learning hypothesis. This
exponential growth can be shown to be inherent to using a decision tree represen-
tation (for example, in the case of majority functions). In this work we attempt to
overcome this obstacle by using a different representation, branching programs
rather than decision trees.

A branching program is a directed acyclic graph, where each non-terminal node
has a predicate and each terminal node has a label. Similar to decision trees, given
an input we traverse a path in the graph; in each non-terminal node we select an
outgoing edge using its predicate, and when we reach a terminal node its label
classifies the input.

Branching programs are very powerful. Even if one restricts them to constant
width, still one can represent any polynomial size formula (over the basis of AND,
OR, and NOT) by a width 5 polynomial depth branching program [Bar86]. Very
few and limited positive results are known for learning branching programs
[RW93, EKR95, BTW96, BBTV97]. This should be of no surprise since branching
programs are a generalization of decision trees and with the same number of nodes
can represent significantly more powerful functions.

Here we develop boosting algorithms based on branching programs. The basic
technique of building the branching program is very similar to the one used in
decision trees—a greedy algorithm based on an index function. Similar to decision
trees, we use the index function to select how to split a node. Unlike in decision
trees, we need to also merge nodes together. We perform the merging based on the
fraction of examples labeled one in each node. Namely, nodes with similar fraction
of ones are likely to be merged. (At first this may look unnatural, but one can view
this as an attempt to purify the nodes and drive the index function down to zero.)

We show that our simple greedy algorithm has very interesting theoretical
properties. The training error of our branching program T is bounded by
exp(−W(c`|T|)), where |T| is the number of nodes in the branching program and c
is a parameter that depends quadratically on the bias d of the weak learning
hypothesis. This is a great improvement over the decision tree results, and the
bound is only quadratic in the lower bounds.

One should take the theoretical results with a grain of salt when applying them to
real problems. Although the theoretical results for decision trees are exponentially
weaker than for AdaBoost, in practice they exhibit very similar performance
[DKM96]. One explanation, studied in [DKM96], is that while in the decision tree
the bias d remains relatively stable as we grow the tree, the bias in AdaBoost is
driven down very rapidly. Although we did not do any experiments, we believe it
would be interesting to compare the branching program techniques presented in
this work to existing decision tree and boosting algorithms.

The paper is organized as follows. In Section 2 we define the learning model,
branching programs, the weak learning hypothesis, and the weak index reduction
hypothesis. We describe the algorithm and analyze it in Section 3. Section 4
concludes with a summary and open problems.

2 MANSOUR AND MCALLESTER

File: AP/571-jcss/1796 1796 - Page : 2/10 - Op: CV - Time: 10:14 - Date: 13:12:2001



2. PRELIMINARIES

2.1. Learning Model

We assume a set X of instances. A ‘‘training set’’ is a finite set S of pairs Ox, yP
with x ¥X and y ¥ {0, 1}. Given a training set S and a function f from X to {0, 1}
we define the training error of f, denoted ê(f), to be the fraction of pairs
Ox, yP ¥ S such that f(x) ] y.

In this paper we will not attempt to analyze the generalization error of the rules
learned by our algorithm. Rather, we address the question of how rapidly the
training error can be driven down as a function of the size of the branching
program. Overfitting can be avoided in various ways, e.g., by bounding the allowed
size of the branching program or by using holdout data to measure the generaliza-
tion error of branching programs of various sizes. For a given size limit, smaller
training error seems preferable. Hence we are interested in minimizing training
error as a function of program size.

2.2. Branching Programs

We let H be a set of predicates on X. An H-BP is a directed acyclic graph whose
nodes are divided into leaf nodes and internal nodes. Leaf nodes have no outgoing
edges and each internal node is labeled with a predicate in H and has exactly two
outgoing edges corresponding to the two possible truth values of the predicate. A
given instance x ¥X determines a unique directed path through an H-BP T starting
at the root of T and following the outgoing arc from internal nodes indicated by the
value of the predicate at that node on x. (Note that a decision tree is a special case
of a branching program where all the nodes, except the root, have only one incom-
ing edge.) For any H-BP T we let N(T) denote the set of all nodes of T (both
internal and leaf) and we let L(T) denote the set of leaf nodes of T.

We say x reaches n ¥N(T) if n is on the path through T defined by x. For a
given H-BP T, node n ¥N(T), and sample S, we write Sn to denote the set of pairs
Ox, f(x)P in S such that x reaches n. For n ¥N(T) we define p̂n to be the fraction
of the sample reaching node n, i.e., |Sn |/|S|. For any sample W, where typically W is
a subset of S, we define q̂(W) to be the fraction of the pairs Ox, f(x)P in W for
which f(x)=1. For n ¥N(T) we define q̂(n) to be q̂(Sn). The training error of T,
denoted ê(T), is defined as

ê(T) — C
a ¥ L(T)

p̂a min(q̂a, 1− q̂a).

We define |T| to be the number of nodes of T, i.e., |T|=|N(T)|.

2.3. The Weak Learning Hypothesis and Boosting

Here, as in [KM96], we view top-down decision tree learning as a form of
Boosting [Sch90, Fre95]. Boosting describes a general class of iterative algorithms
based on a weak learning hypothesis [Kea88, Sch90, Fre95]. The weak learning

BOOSTING USING BRANCHING PROGRAMS 3

File: AP/571-jcss/1796 1796 - Page : 3/10 - Op: CV - Time: 10:14 - Date: 13:12:2001



hypothesis applies to classes of Boolean functions. For d > 0 the d-weak learning
hypothesis for a hypothesis class H states that for any distribution on X there
exists an h ¥H with PrD(h(x) ] f(x)) [ 1/2−d, where f is the target function.
Algorithms designed to exploit this particular hypothesis for classes of Boolean
functions have proved to be quite useful in practice [FS95].

Kearns and Mansour [KM96] show that the key to using the weak learning
hypothesis for decision tree learning is the use of a continuous index function
I: [0, 1]Q [0, 1] such that I(0)=I(1)=0, I(q) \ min(q, (1−q)), I(q) is mono-
tonically increasing on the interval [0, 1

2] and monotonically decreasing on the
interval [12 , 1]. For any branching program T, we define I(T) to be

I(T)= C
a ¥ L(T)

p̂aI(q̂(a)).

Note that these conditions imply that ê(T) [ I(T). For any h ¥H let Th be the
decision tree consisting of a single internal node labeled with h and two leaves cor-
responding to the possible values of h. Let IW(Th) denote the value of I(Th) as
measured with respect to the sample W. Let D(W, h) denote I(q̂(W))−IW(Th)
(recall that q̂(W) is the fraction of pairs Ox, f(x)P ¥W such that f(x)=1). The
quantity D(W, h) is the reduction in the index for sample W achieved by introduc-
ing a single branch into a decision tree. Also note that p̂aD(Sa, h) is the reduction in
I(T) when the leaf a of a decision tree is replaced by the branch h. Kearns and
Mansour [KM96] prove the following lemma.

Lemma 2.1 (Kearns and Mansour). Assuming the d-weak learning hypothesis for

H, and taking I(q)=2`q(1−q), we have that for any sample W there exists an
h ¥H such that D(W, h) \ (d2/16) I(q̂(W)).

This lemma motivates the following definition.

Definition 1. We say that H and I satisfy the c-weak index reduction hypo-
thesis if for any sample W from X there exists an h ¥H such that D(W, h) \
cI(q̂(W)).

Note that in the above definition the parameter c is proportional to d2, of the
d-weak learning hypothesis. The c-weak index reduction hypothesis was used in
[MM99] to study the effects of different split sizes for decision trees.

3. A BOOSTING ALGORITHM USING BRANCHING PROGRAMS

The nodes of the constructed branching program form a two dimensional grid of
depth d and of varying width—for each depth j we have a width wj. Each node has
the form ni, j where i and j are integers such that 0 [ j [ d and 1 [ i [ wj. The
graph is leveled; i.e., all arcs are from a node of the form ni, j to a node of the form
niŒ, j+1. The first level has only a single node n1, 0 which we take to be the root node
of the branching program. Nodes at depth less than d are internal nodes and all
nodes at depth d are leaf nodes. Given a branching program of depth d, and
1 [ j [ d, we define Tj to be the branching program that results from deleting all

4 MANSOUR AND MCALLESTER

File: AP/571-jcss/1796 1796 - Page : 4/10 - Op: CV - Time: 10:14 - Date: 13:12:2001



nodes ni, k with k > j so that the nodes ni, j become leaves. Our algorithm constructs
Tj+1 from Tj. Some nodes may be unreachable from the root and unreachable nodes
can be discarded. We write Si, j, p̂i, j and q̂(i, j) for Sni, j , p̂ni, j , and q̂(ni, j), respectively.

For each j > 1 we assume a sequence of values u0, j, ..., uwj, j with u0, j=0, uw, j=1
and ui, j < ui+1, j. For any q̂ ¥ [0, 1] we define i(q̂, j) to be 1 if q̂=0 and otherwise
the least i such that ui, j \ q̂. This gives 1 [ i(q̂, j) [ wj and q̂ ¥ [ui(q̂, j)−1, j, ui(q̂, j), j].
The algorithm maintains the following ‘‘bucket invariant’’ for all values of j:

Bucket Invariant: q̂(i, j) ¥ [ui−1, j, ui, j].

The algorithm is defined as follows.

Algorithm.

1. Define T0 to consist of the single node n1, 0.

2. For j from 0 to d−1 define Tj+1 as follows.

(a) Set wj+1=(9/c)(ln 1/I(Tj))+c, where the constant c will be specified
latter.

(b) Select values u0, j+1, ..., uwj+1, j+1 as a function of wj+1 in a manner
specified below.

(c) For each node ni, j reachable from the root

i. select a predicate h such that D(Si, j, h) \ cI(q̂(i, j));

ii. let S1
i, j and S0

i, j be the subsets of Si, j on which h is true and false
respectively;

iii. and install edges from ni, j to ni(q̂(S1
i, j), j+1), j+1 and ni(q̂(S0

i, j), j+1)), j+1

for the true and false cases of h respectively.

We first note some basic invariants. Since we select a predicate with a strict
reduction in the index function (for non-pure nodes), the sets S1

i, j and S0
i, j must

both be non-empty. This implies that if node ni, j is reachable from the root then
Si, j ]”, and vice versa.

We will write nk, j Q
b ni, j+1 to indicate that there is a branch from node nk, j to

node ni, j+1 corresponding to the truth value b. We now have

Si, j+1= 0
nk, j

b
Q ni, j+1

Sb
k, j.

By construction, for nk, j Q
b ni, j+1 we have q̂(Sb

k, j) ¥ [ui−1, j+1, ui, j+1]. So we get
q̂(i, j+1) ¥ [ui−1, j+1, ui, j+1] and the bucket invariant holds.

To ensure that I(Tj) decreases on each iteration of the algorithm, it is important
to select sufficiently finely spaced values u0, j+1, ..., uwj+1, j+1. For a given value w and
set of values u0, ..., uw, and q̂ ¥ [0, 1], we define i(q̂) as before and define I+(q̂) as

I+(q̂) — max
x ¥ [ui(q̂)−1, ui(q̂)]

I(x).

BOOSTING USING BRANCHING PROGRAMS 5

File: AP/571-jcss/1796 1796 - Page : 5/10 - Op: CV - Time: 10:14 - Date: 13:12:2001



The basic idea is that I+(q̂) ‘‘forgets’’ where q̂ is in the interval [ui(q̂)−1, ui(q̂)] and
then assumes the worst case. Note that I+(q̂) \ I(q̂). To ensure a sufficiently fine
spacing of the values u0, ..., uw we use the following definition.

Definition 2. An (e, l)-net is a sequence of values u0, ..., uw with u0=0,
uw=1, and such that for all q̂ ¥ [0, 1] we have I+(q̂) [ max(e, (1+l) I(q̂)).

Lemma 3.1. For any index function I, and any e > 0 and l ¥ (0, 1
2], there exists an

(e, l)-net with w [ 4+3 ln(1/e)/l.

Proof. We use the fact that an index function is a continuous function on the
interval [0, 1] such that I(0)=I(1)=0, I(1/2)=1, I(q) [ 1, and I(q) is mono-
tonically increasing on [0, 1

2] and monotonically decreasing on [12 , 1]. Define w to
be the integer 2+2 K ln(1/e)ln(1+l)L. Note that w is even so that w/2 bisects the possible
values of i with 0 [ i [ w. We define uw/2 to be 1

2 . Now for I [ I(12) we define I−1
L (I)

to be the unique value of q̂ ¥ [0, 1/2] such that I(q̂)=I. For 1 [ k [

Kln(1/e)/ln(1+l)L we define uw/2−k as

uw
2 −k — I−1

L
1 I(1/2)
(1+l)k
2 .

This gives I(uw/2−k)/I(uw/2−k−1)=1+l, for 1 [ k < Kln(1/e)/ln(1+l)L, which
implies that for q̂ [ 1/2 we have I+(q̂) [ (1+l) I(q̂). Furthermore, we have

I(u1) [ (1+l)−a=e−a ln(1+l); a \
ln 1
e

ln(1+l)
.

This gives I(u1) [ e. Values of uw/2+k are defined analogously and analogous
properties hold for q̂ \ 1/2 and uw−1. So we have an (e, c)-net with with w=2+
2 K ln(1/e)ln(1+l)L.

Finally we show that w [ 4+3 ln(1/e)
l . By the concavity of the ln function we have

ln(1+l) \ l
z ln(1+z) provided l [ z. For l [ 1

2 this gives

w=2+2 ! ln 1
e

ln(1+l)
" [ 4+2

ln 1
e

ln(1+l)

[ 4+
ln 1
e

l ln(32)

[ 4+
3 ln 1

e

l
.

L

Lemma 3.2. If u0, j+1, ..., uwj+1, j+1 forms an (e, l)-net then I(Tj+1) [
(1+l)(1− c) I(Tj)+e.

Proof. Let i(q̂) abbreviate i(q̂, j+1) and let ui abbreviate ui, j+1. Let I+(q̂) be
defined in terms of the values u0, ..., uwj+1

. The bucket invariant implies that

6 MANSOUR AND MCALLESTER

File: AP/571-jcss/1796 1796 - Page : 6/10 - Op: CV - Time: 10:14 - Date: 13:12:2001



I+(q̂i, j)=I+(ui). This implies I(q̂i, j) [ I+(ui) and we get the following where
p̂b

k, j=|Sb
k, j |/|Sk, j |,

I(Tj+1) [ C
wj+1

i=1
p̂i, j+1I+(ui)

=C
wj

k=1
p̂k, j C

b ¥ {0, 1}
p̂b

k, jI
+(ui(q̂(Sb

k, j))
)

[ C
wj

k=1
p̂k, j C

b ¥ {0, 1}
p̂b

k, j max(e, (1+l) I(q̂(Sb
k, j))

[ C
wj

k=1
p̂k, j C

b ¥ {0, 1}
p̂b

k, j(e+(1+l) I(q̂(Sb
k, j))

[ e+(1+l) C
wj

k=1
p̂k, j C

b ¥ {0, 1}
p̂b

k, jI(q̂(S
b
k, j))

[ e+(1+l) C
wj

k=1
p̂k, j(1− c) I(q̂(k, j))

[ e+(1+l)(1− c) I(Tj).

L

Finally, Lemmas 3.1 and 3.2 imply the following.

Lemma 3.3. Assuming the c-weak index reduction hypothesis, the width wj+1 and
values u0, j+1, ..., uwj+1, j+1 can be selected in such a way that we have

wj+1 [
9
c

ln 1 1
I(Tj)
2+c

I(Tj+1) [ 11−
c

2
2 I(Tj),

where c is independent of j and is O((1/c) ln(1/c)).

Proof. Select e to be 1
6 cI(Tj) and select l to be c3 . Then let u0, j+1, ..., uwj+1, j+1 be

an (e, l)-net, as guaranteed to exist by Lemma 3.1, with wj+1 [ 4+3 ln(1/e)
l . This gives

the specified value for wj+1 and by Lemma 3.2 we have

I(Tj+1) [ 11+
c

3
2 (1− c) I(Tj)+

c

6
I(Tj) [ 11−

c

2
2 I(Tj).

L

This implies the following.

Lemma 3.4. Assuming the c-weak index reduction hypothesis, the algorithm can
be run in such a way that

|Tj | [
9
c2

L2
j+bLj+1,

BOOSTING USING BRANCHING PROGRAMS 7

File: AP/571-jcss/1796 1796 - Page : 7/10 - Op: CV - Time: 10:14 - Date: 13:12:2001



where

Lj — ln(1/I(Tj))

and b is independent of j and is O((1/c2) ln(1/c)).

Proof. We first note the since I(Tj+1) [ (1− c/2) I(Tj) we have

Lj+1=ln
1

I(Tj+1)

\ ln
1

(1− c
2) I(Tj)

=Lj − ln 11− c
2
2

\ Lj+
1
2
c.

We also have wj+1 [
9
c Lj+c which gives

|Tj+1 | [ |Tj |+aLj+c,

where a is the constant 9/c. We now consider any sequences x0, x1, x2, x3, ... and
y0, y1, y2, y3, ... satisfying the following for constants d, a, and c:

x0 \ 0

xi+1 \ xi+d

y0 [ 1

yi+1 [ yi+axi+c.

We will show that for any such pair of sequences we have

yi [
a
2d

x2
i+

c
d
xi+1.

The proof is by induction on i. The base case follows from x0 \ 0 and y0 [ 1. For
the induction case we have

yi+1 [ yi+axi+c

[
a
2d

x2
i+

c
d
xi+1+axi+c

[
a
2d

(xi+1 −d)2+
c
d
(xi+1 −d)+1+a(xi+1 −d)+c

8 MANSOUR AND MCALLESTER

File: AP/571-jcss/1796 1796 - Page : 8/10 - Op: CV - Time: 10:14 - Date: 13:12:2001



=
a
2d

x2
i+1 −axi+1+

ad
2
+

c
d
xi+1 −c+1+axi+1 −ad+c

[
a
2d

x2
i+1+

c
d
xi+1+1.

The result follows by interpreting xi as Li and yi as |Ti |. L

We now have that |Ti | is O(L2
i /c

2) which implies that Li is W(c`|Ti |). So we
have the following.

Theorem 3.5. Assuming the c-weak index reduction hypothesis, the algorithm can
be run in a way that satisfies

I(Tj) [ e−W(c`|Tj|).

4. SUMMARY AND OPEN PROBLEMS

This work developed boosting algorithms using branching programs. The algo-
rithms themselves are fairly natural greedy algorithms based on an index function.
Using a weak index reduction hypothesis we are able to bound the error of the
branching program as a function of its size. The training error drops exponentially
in the square root of the size of the branching program. This is in contrast to deci-
sion trees, where the error drops only polynomially in the size of the decision tree.
Hence there is an exponential gap in boosting between decision trees and branching
program.

The algorithm that we proposed is not adaptive in the sense that it assumes a
fixed c. However, one can easily modify the algorithm to be adaptive by choosing
for each ni, j the hypothesis h with the largest drop in the index function. We
can define Ij+1 to be the index function applied to the sets Sb

i, j, i.e., Ij+1=
; k p̂k, j ; b p̂

b
k, j q̂(S

b
k, j). Now we can define the average reduction as cj=

(I(Tj)−Ij+1)/I(Tj) and set the width as wj+1=O(1/cj ln 1/I(Tj)). Using an iden-
tical proof to Lemma 3.2, we have that I(Tj+1) [ (1+l)(1− cj) I(Tj)+e. This
implies that the index function at level k is bounded by

I(Tk) [ D
k

j=1

11− cj
2
2 I(T0),

and the size of the branching program Tk is bounded by |Tk | [;k
j=1 wj.

There are many challenging open problems for future research. First, in this work
we concentrate on binary branching, namely, an internal node has at most two
children. The understanding of how to perform splits of various size is left as a
challenge for the future. For decision trees the understanding of how to compare
splits of different sizes was done using a weak index reduction hypothesis [MM99].
One can hope that the techniques developed in [MM99] can be extended to
branching programs and can address the issue of different split size in a branching
program.

BOOSTING USING BRANCHING PROGRAMS 9

File: AP/571-jcss/1796 1796 - Page : 9/10 - Op: CV - Time: 10:14 - Date: 13:12:2001



Second, it is not clear if the upper bound we derive for boosting using branching
programs is the best possible. It would be interesting either to derive an improved
upper bound or to exhibit a lower bound for boosting using branching programs.

Finally, there is the experimental aspect. It would be interesting to derive exper-
imental results for our algorithms and compare them with existing decision tree and
boosting algorithms.

REFERENCES

[Bar86] D. A. Mix Barrington, Bounded-width polynomial-size branching programs recognize
exactly those languages in nc1, in ‘‘Proceedings of the 18th Annual ACM Symposium on
Theory of Computing, Berkeley, California, 1986,’’ pp. 1–5.

[BBTV97] F. Bergadano, N. H. Bshouty, C. Tamon, and S. Varricchio, On learning branching
programs and small depth circuits, in ‘‘Computational Learning Theory: Eurocolt ’97,’’
pp. 150–161, Springer-Verlag, New York/Berlin, 1997.

[BTW96] N. H. Bshouty, C. Tamon, and D. K. Wilson, On learning width two branching programs,
in ‘‘Proc. 9th Annu. Conf. on Comput. Learning Theory,’’ pp. 224–227, Assoc. Comput.
Mach., New York, 1996.

[DKM96] T. Dietterich, M. Kearns, and Y. Mansour, Applying the weak learning framework to
understand and improve c4.5, in ICML, 1996.

[EKR95] F. Ergün, R. S. Kumar, and R. Rubinfeld, On learning bounded-width branching programs,
in ‘‘Proc. 8th Annu. Conf. on Comput. Learning Theory,’’ pp. 361–368, Assoc. Comput.
Mach., New York, 1995.

[Fre95] Y. Freund, Boosting a weak learning algorithm by majority, Inform. Comput. 121 (1995),
256–285.

[FS95] Y. Freund and R. E. Schapire, A decision-theoretic generalization of on-line learning and an
application to boosting, in ‘‘Proceedings of the Second European Conference on Computa-
tional Learning Theory, 1995,’’ pp. 23–37.

[Kea88] M. Kearns, Thoughts on hypothesis boosting, unpublished, December 1988.

[KM96] M. Kearns and Y. Mansour, On the boosting ability of top-down decision tree learning
algorithms, in STOC, 1996; J. Comput. System Sci. 58 (1999), 109–128.

[MM99] Y. Mansour and D. McAllester, Boosting with multi-way branching in decision trees, in
NIPS, 1999.

[RW93] V. Raghavan and D. Wilkins, Learning m-branching programs with queries, in ‘‘Proc. 6th
Annu. Workshop on Comput. Learning Theory,’’ pp. 27–36, Assoc. Comput. Mach., New
York, 1993.

[Sch90] R. E. Schapire, The strength of weak learnability, Mach. Learning 5 (1990), 197–227.

10 MANSOUR AND MCALLESTER

File: AP/571-jcss/1796 1796 - Page : 10/10 - Op: CV - Time: 10:14 - Date: 13:12:2001


	1. INTRODUCTION
	2. PRELIMINARIES
	3. A BOOSTING ALGORITHM USING BRANCHING PROGRAMS
	4. SUMMARY AND OPEN PROBLEMS
	REFERENCES

