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ABSTRACT
We study the stability properties of the dynamics of the
standard continuous limit-order mechanism that is used in
modern equity markets. We ask whether such mechanisms
are susceptible to “butterfly effects” — the infliction of large
changes on common measures of market activity by only
small perturbations of the order sequence. We show that the
answer depends strongly on whether the market consists of
“absolute” traders (who determine their prices independent
of the current order book state) or “relative” traders (who
determine their prices relative to the current bid and ask).
We prove that while the absolute trader model enjoys prov-
ably strong stability properties, the relative trader model
is vulnerable to great instability. Our theoretical results
are supported by large-scale experiments using limit order
data from INET, a large electronic exchange for NASDAQ
stocks.
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1. INTRODUCTION
In recent years there has been an explosive increase in

the automation of modern equity markets. This increase
has taken place both in the exchanges, which are increas-
ingly computerized and offer sophisticated interfaces for or-
der placement and management, and in the trading activ-
ity itself, which is ever more frequently undertaken by soft-
ware. The so-called Electronic Communication Networks (or
ECNs) that dominate trading in NASDAQ stocks are a com-
mon example of the automation of the exchanges. On the
trading side, computer programs now are entrusted not only
with the careful execution of large block trades for clients
(sometimes referred to on Wall Street as program trading),
but with the autonomous selection of stocks, direction (long
or short) and volumes to trade for profit (commonly referred
to as statistical arbitrage).

The vast majority of equity trading is done via the stan-
dard limit order market mechanism. In this mechanism,
continuous trading takes place via the arrival of limit or-
ders specifying whether the party wishes to buy or sell, the
volume desired, and the price offered. Arriving limit orders
that are entirely or partially executable with the best offers
on the other side are executed immediately, with any vol-
ume not immediately executable being placed in an queue
(or book) ordered by price on the appropriate side (buy or
sell). (A detailed description of the limit order mechanism is
given in Section 3.) While traders have always been able to
view the prices at the top of the buy and sell books (known
as the bid and ask), a relatively recent development in cer-
tain exchanges is the real-time revelation of the entire order
book — the complete distribution of orders, prices and vol-
umes on both sides of the exchange. With this revelation
has come the opportunity — and increasingly, the need —
for modeling and exploiting limit order data and dynam-
ics. It is fair to say that market microstructure, as this area
is generally known, is a topic commanding great interest
both in the real markets and in the academic finance lit-
erature. The opportunities and needs span the range from
the optimized execution of large trades to the creation of
stand-alone “proprietary” strategies that attempt to profit
from high-frequency microstructure signals.

In this paper we investigate a previously unexplored but
fundamental aspect of limit order microstructure: the sta-
bility properties of the dynamics. Specifically, we are in-
terested in the following natural question: To what extent
are simple models of limit order markets either susceptible
or immune to “butterfly effects” — that is, the infliction of
large changes in important activity statistics (such as the



number of shares traded or the average price per share) by
only minor perturbations of the order sequence?

To examine this question, we consider two stylized but
natural models of the limit order arrival process. In the ab-
solute price model, buyers and sellers arrive with limit order
prices that are determined independently of the current state
of the market (as represented by the order books), though
they may depend on all manner of exogenous information
or shocks, such as time, news events, announcements from
the company whose shares are being traded, private signals
or state of the individual traders, etc. This process models
traditional “fundamentals”-based trading, in which market
participants each have some inherent but possibly varying
valuation for the good that in turn determines their limit
price.

In contrast, in the relative price model, traders express
their limit order prices relative to the best price offered in
their respective book (buy or sell). Thus, a buyer would
encode their limit order price as an offset ∆ (which may be
positive, negative, or zero) from the current bid pb, which is
then translated to the limit price pb +∆. Again, in addition
to now depending on the state of the order books, prices
may also depend on all manner of exogenous information.
The relative price model can be viewed as modeling traders
who, in addition to perhaps incorporating fundamental ex-
ternal information on the stock, may also position their or-
ders strategically relative to the other orders on their side
of the book. A common example of such strategic behav-
ior is known as “penny-jumping” on Wall Street, in which
a trader who has in interest in buying shares quickly, but
still at a discount to placing a market order, will deliber-
ately position their order just above the current bid. More
generally, the entire area of modern execution optimization
[9, 10, 8] has come to rely heavily on the careful positioning
of limit orders relative to the current order book state. Note
that such positioning may depend on more complex features
of the order books than just the current bid and ask, but
the relative model is a natural and simplified starting point.
We remark that an alternate view of the two models is that
all traders behave in a relative manner, but with “absolute”
traders able to act only on a considerably slower time scale
than the faster “relative” traders.

How do these two models differ? Clearly, given any fixed
sequence of arriving limit order prices, we can choose to ex-
press these prices either as their original (absolute) values,
or we can run the order book dynamical process and trans-
form each order into a relative difference with the top of
its book, and obtain identical results. The differences arise
when we consider the stability question introduced above.
Intuitively, in the absolute model a small perturbation in
the arriving limit price sequence should have limited (but
still some) effects on the subsequent evolution of the order
books, since prices are determined independently. For the
relative model this intuition is less clear. It seems possible
that a small perturbation could (for example) slightly mod-
ify the current bid, which in turn could slightly modify the
price of the next arriving order, which could then slightly
modify the price of the subsequent order, and so on, leading
to an amplifying sequence of events.

Our main results demonstrate that these two models do
indeed have dramatically different stability properties. We
first show that for any fixed sequence of prices in the abso-
lute model, the modification of a single order has a bounded

and extremely limited impact on the subsequent evolution
of the books. In particular, we define a natural notion of
distance between order books and show that small modifi-
cations can result in only constant distance to the original
books for all subsequent time steps. We then show that this
implies that for almost any standard statistic of market ac-
tivity — the executed volume, the average price execution
price, and many others — the statistic can be influenced
only infinitesimally by small perturbations.

In contrast, we show that the relative model enjoys no
such stability properties. After giving specific (worst-case)
relative price sequences in which small perturbations gener-
ate large changes in basic statistics (for example, altering the
number of shares traded by a factor of two), we proceed to
demonstrate that the difference in stability properties of the
two models is more than merely theoretical. Using exten-
sive INET (a major ECN for NASDAQ stocks) limit order
data and order book reconstruction code, we investigate the
empirical stability properties when the data is interpreted
as containing either absolute prices, relative prices, or mix-
tures of the two. The theoretical predictions of stability and
instability are strongly borne out by the subsequent experi-
ments.

In addition to stability being of fundamental interest in
any important dynamical system, we believe that the re-
sults described here provide food for thought on the top-
ics of market impact and the “backtesting” of quantitative
trading strategies (the attempt to determine hypothetical
past performance using historical data). They suggest that
one’s confidence that trading “quietly” and in small vol-
umes will have minimal market impact is linked to an im-
plicit belief in an absolute price model. Our results and the
fact that in the real markets there is a large and increasing
amount of relative behavior such as penny-jumping would
seem to cast doubts on such beliefs. Similarly, in a purely or
largely relative-price world, backtesting even low-frequency,
low-volume strategies could result in historical estimates of
performance that are not only unrelated to future perfor-
mance (the usual concern), but are not even accurate mea-
sures of a hypothetical past.

The outline of the paper follows. In Section 2 we briefly
review the large literature on market microstructure. In
Section 3 we describe the limit order mechanism and our
formal models. Section 4 presents our most important theo-
retical results, the 1-Modification Theorem for the absolute
price model. This theorem is applied in Section 5 to derive a
number of strong stability properties in the absolute model.
Section 6 presents specific examples establishing the worst-
case instability of the relative model. Section 7 contains
the simulation studies that largely confirm our theoretical
findings on INET market data.

2. RELATED WORK
As was mentioned in the Introduction, market microstruc-

ture is an important and timely topic both in academic fi-
nance and on Wall Street, and consequently has a large and
varied recent literature. Here we have space only to sum-
marize the main themes of this literature and to provide
pointers to further readings. To our knowledge the stability
properties of detailed limit order microstructure dynamics
have not been previously considered. (However, see Farmer
and Joshi [6] for an example and survey of other price dy-
namic stability studies.)



On the more theoretical side, there is a rich line of work ex-
amining what might be considered the game-theoretic prop-
erties of limit order markets. These works model traders
and market-makers (who provide liquidity by offering both
buy and sell quotes, and profit on the difference) by utility
functions incorporating tolerance for risks of price move-
ment, large positions and other factors, and examine the
resulting equilibrium prices and behaviors. Common find-
ings predict negative price impacts for large trades, and price
effects for large inventory holdings by market-makers. An
excellent and comprehensive survey of results in this area
can be found in [2].

There is a similarly large body of empirical work on mi-
crostructure. Major themes include the measurement of
price impacts, statistical properties of limit order books, and
attempts to establish the informational value of order books
[4]. A good overview of the empirical work can be found in
[7]. Of particular note for our interests is [3], which empiri-
cally studies the distribution of arriving limit order prices in
several prominent markets. This work takes a view of arriv-
ing prices analogous to our relative model, and establishes
a power-law form for the resulting distributions.

There is also a small but growing number of works ex-
amining market microstructure topics from a computer sci-
ence perspective, including some focused on the use of mi-
crostructure in algorithms for optimized trade execution.
Kakade et al. [9] introduced limit order dynamics in com-
petitive analysis for one-way and volume-weighted average
price (VWAP) trading. Some recent papers have applied re-
inforcement learning methods to trade execution using order
book properties as state variables [1, 5, 10].

3. MICROSTRUCTURE PRELIMINARIES
The following expository background material is adapted

from [9]. The market mechanism we examine in this paper
is driven by the simple and standard concept of a limit or-
der . Suppose we wish to purchase 1000 shares of Microsoft
(MSFT) stock. In a limit order, we specify not only the
desired volume (1000 shares), but also the desired price.
Suppose that MSFT is currently trading at roughly $24.07
a share (see Figure 1, which shows an actual snapshot of an
MSFT order book on INET), but we are only willing to buy
the 1000 shares at $24.04 a share or lower. We can choose to
submit a limit order with this specification, and our order
will be placed in a queue called the buy order book , which
is ordered by price, with the highest offered unexecuted buy
price at the top (often referred to as the bid). If there are
multiple limit orders at the same price, they are ordered
by time of arrival (with older orders higher in the book).
In the example provided by Figure 1, our order would be
placed immediately after the extant order for 5,503 shares
at $24.04; though we offer the same price, this order has
arrived before ours. Similarly, a sell order book for sell limit
orders is maintained, this time with the lowest sell price
offered (often referred to as the ask) at its top.

Thus, the order books are sorted from the most compet-
itive limit orders at the top (high buy prices and low sell
prices) down to less competitive limit orders. The bid and
ask prices together are sometimes referred to as the inside
market , and the difference between them as the spread . By
definition, the order books always consist exclusively of un-
executed orders — they are queues of orders hopefully wait-
ing for the price to move in their direction.

Figure 1: Sample INET order books for MSFT.

How then do orders get (partially) executed? If a buy
(sell, respectively) limit order comes in above the ask (be-
low the bid, respectively) price, then the order is matched
with orders on the opposing books until either the incoming
order’s volume is filled, or no further matching is possible,
in which case the remaining incoming volume is placed in
the books.

For instance, suppose in the example of Figure 1 a buy
order for 2000 shares arrived with a limit price of $24.08.
This order would be partially filled by the two 500-share
sell orders at $24.069 in the sell books, the 500-share sell
order at $24.07, and the 200-share sell order at $24.08, for
a total of 1700 shares executed. The remaining 300 shares
of the incoming buy order would become the new bid of
the buy book at $24.08. It is important to note that the
prices of executions are the prices specified in the limit orders
already in the books, not the prices of the incoming order
that is immediately executed. Thus in this example, the
1700 executed shares would be at different prices. Note that
this also means that in a pure limit order exchange such as
INET, market orders can be “simulated” by limit orders
with extreme price values. In exchanges such as INET, any
order can be withdrawn or canceled by the party that placed
it any time prior to execution.

Every limit order arrives atomically and instantaneously
— there is a strict temporal sequence in which orders arrive,
and two orders can never arrive simultaneously. This gives
rise to the definition of the last price of the exchange, which
is simply the last price at which the exchange executed an
order. It is this quantity that is usually meant when people
casually refer to the (ticker) price of a stock.

3.1 Formal Definitions
We now provide a formal model for the limit order pro-



cess described above. In this model, limit orders arrive in a
temporal sequence, with each order specifying its limit price
and an indication of its type (buy or sell). Like the actual
exchanges, we also allow cancellation of a standing (unex-
ecuted) order in the books any time prior to its execution.
Without loss of generality we limit attention to a model in
which every order is for a single share; large order volumes
can be represented by 1-share sequences.

Definition 3.1. Let Σ = 〈σ1, ...σn〉 be a sequence of limit
orders, where each σi has the form 〈ni, ti, vi〉. Here ni is an
order identifier, ti is the order type (buy, sell, or cancel), and
vi is the limit order value. In the case that ti is a cancel, ni

matches a previously placed order and vi is ignored.

We have deliberately called vi in the definition above the
limit order value rather than price, since our two models
will differ in their interpretation of vi (as being absolute or
relative). In the absolute model, we do indeed interpret vi

as simply being the price of the limit order. In the rela-
tive model, if the current order book configuration is (A,B)
(where A is the sell and B the buy book), the price of the
order is ask(A) + vi if ti is sell, and bid(B) + vi if ti is buy,
where by ask (X) and bid(X) we denote the price of the
order at the top of the book X. (Note vi can be negative.)

Our main interest in this paper is the effects that the mod-
ification of a small number of limit orders can have on the
resulting dynamics. For simplicity we consider only modifi-
cations to the limit order values, but our results generalize
to any modification.

Definition 3.2. A k-modification of Σ is a sequence Σ′

such that for exactly k indices i1, ..., ik vij
6= v′

ij
, tij

= t′ij
,

and nij
= n′

ij
. For every ` 6= ij , j ∈ {1, . . . , k} σ` = σ′

`.

We now define the various quantities whose stability prop-
erties we examine in the absolute and relative models. All of
these are standard quantities of common interest in financial
markets.

• volume(Σ): Number of shares executed (traded) in the
sequence Σ.

• average(Σ): Average execution price.
• close(Σ): Price of the last (closing) execution.
• lastbid(Σ): Bid at the end of the sequence.
• lastask (Σ): Ask at end of the sequence.

4. THE 1-MODIFICATION THEOREM
In this section we provide our most important technical

result. It shows that in the absolute model, the effects that
the modification of a single order has on the resulting evolu-
tion of the order books is extremely limited. We then apply
this result to derive strong stability results for all of the
aforementioned quantities in the absolute model.

Throughout this section, we consider an arbitrary order
sequence Σ in the absolute model, and any 1-modification
Σ′ of Σ. At any point (index) i in the two sequences we shall
use (A1, B1) to denote the sell and buy books (respectively)
in Σ, and (A2, B2) to denote the sell and buy books in Σ′;
for notational convenience we omit explicitly superscripting
by the current index i. We will shortly establish that at all
times i, (A1, B1) and (A2, B2) are very “close”.

Although the order books are sorted by price, we will use
(for example) A1 ∪ {a2} = A2 to indicate that A2 contains

an order at some price a2 that is not present in A1, but that
otherwise A1 and A2 are identical; thus deleting the order
at a2 in A2 would render the books the same. Similarly,
B1 ∪ {b2} = B2 ∪ {b1} means B1 contains an order at price
b1 not present in B2, B2 contains an order at price b2 not
present in B1, and that otherwise B1 and B2 are identical.
Using this notation, we now define a set of stable system
states, where each state is composed from the order books
of the original and the modified sequences. Shortly we show
that if we change only one order’s value (price), we remain
in this set for any sequence of limit orders.

Definition 4.1. Let ab be the set of all states (A1, B1)
and (A2, B2) such that A1 = A2 and B1 = B2. Let āb be
the set of states such that A1 ∪ {a2} = A2 ∪ {a1}, where
a1 6= a2, and B1 = B2. Let ab̄ be the set of states such that
B1∪{b2} = B2∪{b1}, where b1 6= b2, and A1 = A2. Let āb̄ be
the set of states in which A1 = A2∪{a1} and B1 = B2∪{b1},
or in which A2 = A1 ∪ {a2} and B2 = B1 ∪ {b2}. Finally
we define S = ab ∪ āb ∪ b̄a ∪ āb̄ as the set of stable states.

Theorem 4.1. (1-Modification Theorem) Consider any
sequence of orders Σ and any 1-modification Σ′ of Σ. Then
the order books (A1, B1) and (A2, B2) determined by Σ and
Σ′ lie in the set S of stable states at all times.

ab

āb̄

ab̄āb

Figure 2: Diagram representing the set S of stable
states and the possible movements transitions in it
after the change.

The idea of the proof of this theorem is contained in Fig-
ure 2, which shows a state transition diagram labeled by the
categories of stable states. This diagram describes all tran-
sitions that can take place after the arrival of the order on
which Σ and Σ′ differ. The following establishes that imme-
diately after the arrival of this differing order, the state lies
in S.

Lemma 4.2. If at any time the current books (A1, B1) and
(A2, B2) are in the set ab (and thus identical), then modify-
ing the price of the next order keeps the state in S.

Proof. Suppose the arriving order is a sell order and we
change it from a1 to a2; assume without loss of generality
that a1 > a2. If neither order is executed immediately, then
we move to state āb; if both of them are executed then we
stay in state ab; and if only a2 is executed then we move to
state āb̄. The analysis of an arriving buy order is similar.

Following the arrival of their only differing order, Σ and
Σ′ are identical. We now give a sequence of lemmas showing



Executed with two orders
Not executed in both
Arrivng buy order

Arriving buy order

Arriving buy order

Arriving sell order

āb

ab

āb̄

Executed only with a1

(not a1 and a2)

Executed with a1 and a2

Figure 3: The state diagram when starting at state
āb. This diagram provides the intuition of Lemma
4.3

that following the initial difference covered by Lemma 4.2,
the state remains in S forever on the remaining (identical)
sequence. We first show that from state āb we remain in
S regardless the next order. The intuition of this lemma is
demonstrated in Figure 3.

Lemma 4.3. If the current state is in the set āb, then for
any order the state will remain in S.

Proof. We first provide the analysis for the case of an ar-
riving sell order. Note that in āb the buy books are identical
(B1 = B2). Thus either the arriving sell order is executed
with the same buy order in both buy books, or it is not
executed in both buy books. For the first case, the buy
books remain identical (the bid is executed in both) and the
sell books remain unchanged. For the second case, the buy
books remain unchanged and identical, and the sell books
have the new sell order added to both of them (and thus
still differ by one order).

Next we provide an analysis of the more subtle case where
the arriving item is a buy order. For this case we need to
take care of several different scenarios. The first is when the
top of both sell books (the ask) is identical. Then regard-
less of whether the new buy order is executed or not, the
state remains in āb (the analysis is similar to an arriving
sell order).

We are left to deal with case where ask (A1) and ask (A2)
are different. Here we discuss two subcases: (a) ask (A1) =
a1 and ask (A2) = a2, and (b) ask (A1) = a1 and ask (A2) =
a′. Here a1 and a2 are as in the definition of āb in Defini-
tion 4.1, and a′ is some other price. For subcase (a), by our
assumption a1 < a2, then either (1) both asks get executed,
the sell books become identical, and we move to state ab;
(2) neither ask is executed and we remain in state āb; or (3)
only ask (A1) = a1 is executed, in which case we move to
state āb̄ with A2 = A1 ∪ {a2} and B2 = B1 ∪ {b2}, where
b2 is the arriving buy order price. For subcase (b), either
(1) buy order is executed in neither sell book we remain in
state āb; or (2) the buy order is executed in both sell books
and stay in state āb with A1 ∪ {a′} = A2 ∪ {a2}; or (3) only
ask (A1) = a1 is executed and we move to state āb̄.

Lemma 4.4. If the current state is in the set ab̄, then for
any order the state will remain in S.

Lemma 4.5. If the current configuration is in the set āb̄,
then for any order the state will remain in S

The proofs of these two lemmas are omitted, but are simi-
lar in spirit to that of Lemma 4.3. The next and final lemma
deals with cancellations.

Lemma 4.6. If the current order book state lies in S, then
following the arrival of a cancellation it remains in S.

Proof. When a cancellation order arrives, one of the fol-
lowing possibilities holds: (1) the order is still in both sets of
books, (2) it is not in either of them and (3) it is only in one
of them. For the first two cases it is easy to see that the can-
cellation effect is identical on both sets of books, and thus
the state remains unchanged. For the case when the order
appears only in one set of books, without loss of generality
we assume that the cancellation cancels a buy order at b1.
Rather than removing b1 from the book we can change it to
have price 0, meaning this buy order will never be executed
and is effectively canceled. Now regardless the state that we
were in, b1 is still only in one buy book (but with a different
price), and thus we remain in the same state in S.

The proof of Theorem 4.1 follows from the above lemmas.

5. ABSOLUTE MODEL STABILITY
In this section we apply the 1-Modification Theorem to

show strong stability properties for the absolute model. We
begin with an examination of the executed volume.

Lemma 5.1. Let Σ be any sequence and Σ′ be any 1-
modification of Σ. Then the set of the executed orders (ID
numbers) generated by the two sequences differs by at most
2.

Proof. By Theorem 4.1 we know that at each stage the
books differ by at most two orders. Now since the union of
the IDs of the executed orders and the order books is always
identical for both sequences, this implies that the executed
orders can differ by at most two.

Corollary 5.2. Let Σ be any sequence and Σ′ be any k-
modification of Σ. Then the set of the executed orders (ID
numbers) generated by the two sequences differs by at most
2k.

An order sequence Σ′ is a k-extension of Σ if Σ can be
obtained by deleting any k orders in Σ′.

Lemma 5.3. Let Σ be any sequence and let Σ′ be any k-
extension of Σ. Then the set of the executed orders generated
by Σ and Σ′ differ by at most 2k.

This lemma is the key to obtain our main absolute model
volume result below. We use edit(Σ, Σ′) to denote the stan-
dard edit distance between the sequences Σ and Σ′ — the
minimal number of substitutions, insertions and deletions or
orders needed to change Σ to Σ′.

Theorem 5.4. Let Σ and Σ′ be any absolute model order
sequences. Then if edit(Σ, Σ′) ≤ k, the set of the executed
orders generated by Σ and Σ′ differ by at most 4k. In par-
ticular, |volume(Σ) − volume(Σ′)| ≤ 4k.

Proof. We first define the sequence Σ̃ which is the inter-
section of Σ and Σ′. Since Σ and Σ′ are at most k apart,we
have that by k insertions we change Σ̃ to either Σ or Σ′, and
by Lemma 5.3 its set of executed orders is at most 2k from
each. Thus the set of executed orders in Σ and Σ′ is at most
4k apart.



5.1 Spread Bounds
Theorem 5.4 establishes strong stability for executed vol-

ume in the absolute model. We now turn to the quantities
that involve execution prices as opposed to volume alone
— namely, average(Σ), close(Σ), lastbid (Σ) and lastask (Σ).
For these results, unlike executed volume, a condition must
hold on Σ in order for stability to occur. This condition
is expressed in terms of a natural measure of the spread of
the market, or the gap between the buyers and sellers. We
motivate this condition by first showing that without it, by
changing one order, we can change average(Σ) by any posi-
tive value x.

Lemma 5.5. There exists Σ such that for any x ≥ 0,
there is a 1-modification Σ′ of Σ such that average(Σ′) =
average(Σ) + x.

Proof. Let Σ be a sequence of alternating sell and buy
orders in which each seller offers p and each buyer p + x,
and the first order is a sell. Then all executions take place
at the ask, which is always p, and thus average(Σ) = p.
Now suppose we modify only the first sell order to be at
price p+1+x. This initial sell order will never be executed,
and now all executions take place at the bid, which is always
p + x.

Similar instability results can be shown to hold for the
other price-based quantities. This motivates the introduc-
tion of a quantity we call the second spread of the order
books, which is defined as the difference between the prices
of the second order in the sell book and the second order in
the buy book (as opposed to the bid-ask difference, which is
commonly called the spread). We note that in a liquid stock,
such as those we examine experimentally in Section 7, the
second spread will typically be quite small and in fact almost
always equal to the spread.

In this subsection we consider changes in the sequence
only after an initialization period, and sequences such that
the second spread is always defined after the time we make a
change. We define s2(Σ) to be the maximum second spread
in the sequence Σ following the change.

Theorem 5.6. Let Σ be a sequence and let Σ′ be any 1-
modification of Σ. Then

1. |lastbid (Σ) − lastbid(Σ′)| ≤ s2(Σ)

2. |lastask(Σ) − lastask (Σ′)| ≤ s2(Σ)

where s2(Σ) is the maximum over the second spread in Σ
following the 1-modification.

Proof. We provide the proof for the last bid; the proof
for the last ask is similar. The proof relies on Theorem 4.1
and considers states in the stable set S. For states ab and āb,
we have that the bid is identical. Let bid(X), sb(X), ask (X),
be the bid, the second highest buy order, and the ask of a
sequence X. Now recall that in state ab̄ we have that the sell
books are identical, and that the two buy books are identical
except one different order. Thus

bid(Σ)+s2(Σ) ≥ sb(Σ)+s2(Σ) ≥ ask (Σ) = ask (Σ′) ≥ bid(Σ′).

Now it remains to bound bid(Σ). Here we use the fact that
the bid of the modified sequence is at least the second high-
est buy order in the original sequence, due to the fact that
the books are different only in one order. Since

bid(Σ′) ≥ sb(Σ) ≥ ask (Σ) − s2(Σ) ≥ bid(Σ) − s2(Σ)

we have that |bid(Σ) − bid(Σ′)| ≤ s2(Σ) as desired.
In state āb̄ we have that for one sequence the books con-

tain an additional buy order and an additional sell order.
First suppose that the books containing the additional or-
ders are the original sequence Σ. Now if the bid is not the
additional order we are done, otherwise we have the follow-
ing:

bid(Σ) ≤ ask (Σ) ≤ sb(Σ) + s2(Σ) = bid(Σ′) + s2(Σ),

where sb(Σ) ≤ bid(Σ′) since the original buy book has only
one additional order.

Now assume that the books with the additional orders are
for the modified sequence Σ′. We have

bid(Σ) + s2(Σ) ≥ ask (Σ) ≥ ask (Σ′) ≥ bid(Σ′),

where we used the fact that ask (Σ) ≥ ask (Σ′) since the
modified sequence has an additional order. Similarly we
have that bid(Σ) ≤ bid(Σ′) since the modified buy book
contains an additional order.

We note that the proof of Theorem 5.6 actually establishes
that the bid and ask of the original and modified sequences
are within s2(Σ) at all times.

Next we provide a technical lemma which relates the (first)
spread of the modified sequence to the second spread of the
original sequence.

Lemma 5.7. Let Σ be a sequence and let Σ′ be any 1-
modification of Σ. Then the spread of Σ′ is bounded by
s2(Σ).

Proof. By the 1-Modification Theorem, we know that
the books of the modified sequence and the original sequence
can differ by at most one order in each book (buy and sell).
Therefore, the second-highest buy order in the original se-
quence is always at most the bid in the modified sequence,
and the second-lowest sell order in the original sequence is
always at least the ask of the modified sequence.

We are now ready to state a stability result for the average
execution price in the absolute model. It establishes that in
highly liquid markets, where the executed volume is large
and the spread small, the average price is highly stable.

Theorem 5.8. Let Σ be a sequence and let Σ′ be any 1-
modification of Σ. Then

|average(Σ) − average(Σ′)| ≤
2(pmax + s2(Σ))

volume(Σ)
+ s2(Σ)

where pmax is the highest execution price in Σ.

Proof. The proof will show that every execution in Σ
besides the execution of the modified order and the last exe-
cution has a matching execution in Σ′ with a price different
by at most s2(Σ), and will use the fact that pmax + s2(Σ) is
a bound on the price in Σ′.

Referring to the proof of the 1-Modification Theorem, sup-
pose we are in state āb̄, where we have in one sequence
(which can be either Σ or Σ′) an additional buy order b
and an additional sell order a. Without loss of generality
we assume that the sequence with the additional orders is
Σ. If the next execution does not involve a or b then clearly
we have the same execution in both Σ and Σ′. Suppose
that it involves a; there are two possibilities. Either a is the
modified order, in which case we change the average price



difference by (pmax+s2(Σ))/volume(Σ), and this can happen
only once; or a was executed before in Σ′ and the executions
both involve an order whose limit price is a. By Lemma 5.7
the spread of both sequences is bounded by s2(Σ), which
implies that the price of the execution in Σ′ was at most
a+ s2(Σ), while execution is in Σ is at price a, and thus the
prices are different by at most s2(Σ).

In states āb, ab̄ as long as we have concurrent executions
in the two sequences, we know that the prices can differ
by at most s2(Σ). If we have an execution only in one
sequence, we either match it in state āb̄, or charge it by
(pmax + s2(Σ))/volume(Σ) if we end at state āb̄.

If we end in state ab, āb or ab̄, then every execution in
states āb or ab̄ were matched to an execution in state āb̄. If
we end up in state āb̄, we have the one execution that is not
matched and thus we charge it (pmax+s2(Σ))/volume(Σ).

We next give a stability result for the closing price. We
first provide a technical lemma regarding the prices of con-
secutive executions.

Lemma 5.9. Let Σ be any sequence. Then the prices of
two consecutive executions in Σ differ by at most s2(Σ).

Proof. Suppose the first execution is taken at time t;
its price is bounded below by the current bid and above by
the current ask. Now after this execution the bid is at least
the second highest buy order at time t, if the former bid
was executed and no higher buy orders arrived, and higher
otherwise. Similarly, the ask is at most the second lowest
sell order at time t. Therefore, the next execution price is
at least the second bid at time t and at most the second ask
at time t, which is at most s2(Σ) away from the bid/ask at
time t.

Lemma 5.10. Let Σ be any sequence and let Σ′ be a 1-
modification of Σ. If the volume(Σ) ≥ 2, then

|close(Σ) − close(Σ′)| ≤ s2(Σ)

Proof. We first deal with case where the last execution
occurs in both sequences simultaneously. By Theorem 5.6,
both the ask and the bid of Σ and Σ′ are at most s2(Σ)
apart at every time t. Since the price of the last execution
is their asks (bids) at time t we are done.

Next we deal with the case where the last execution among
the two sequences occurs only in Σ. In this case we know
that either the previous execution happened simultaneously
in both sequences at time t, and thus all three executions are
within the second spread of Σ at time t (the first execution
in Σ by definition, the execution at Σ′ from identical argu-
ments as in the former case, and the third by Lemma 5.9).
Otherwise the previous execution happened only in Σ′ at
time t, in which case the two executions are within the the
spread of Σ at time t (the execution of Σ′ from the same
arguments as before, and the execution in Σ must be inside
its spread in time t).

If the last execution happens only in Σ′ we know that
the next execution of Σ will be at most s2(Σ) away from
its previous execution by Lemma 5.9. Together with the
fact that if an execution happens only in one sequence it
implies that the order is in the spread of the second sequence
as long as the sequences are 1-modification, the proof is
completed.

5.2 Spread Bounds for k-Modifications
As in the case of executed volume, we would like to extend

the absolute model stability results for price-based quanti-
ties to the case where multiple orders are modified. Here our
results are weaker and depend on the k-spread , the distance
between the kth highest buy order and the kth lowest sell
order, instead of the second spread. (Looking ahead to Sec-
tion 7, we note that in actual market data for liquid stocks,
this quantity is often very small as well.) We use sk(Σ) to
denote the k-spread. As before, we assume that the k-spread
is always defined after an initialization period.

We first state the following generalization of Lemma 5.7.

Lemma 5.11. Let Σ be a sequence and let Σ′ be any 1-
modification of Σ. For ` ≥ 1, if s`+1(Σ) is always defined
after the change, then s`(Σ

′) ≤ s`+1(Σ).

The proof is similar to the proof of Lemma 5.7 and omit-
ted. A simple application of this lemma is the following: Let
Σ` be any sequence which is an `-modification of Σ. Then
we have s2(Σ`) ≤ s`+2(Σ). Now using the above lemma and
by simple induction we can obtain the following theorem.

Theorem 5.12. Let Σ be a sequence and let Σ′ be any
k-modification of Σ. Then

1. |lastbid (Σ) − lastbid(Σ′)| ≤
Pk

`=1 s`+1(Σ) ≤ ksk+1(Σ)

2. |lastask(Σ)−lastask (Σ′)| ≤
Pk

`=1 s`+1(Σ) ≤ ksk+1(Σ)

3. |close(Σ) − close(Σ′)| ≤
Pk

`=1 s`+1(Σ) ≤ ksk+1(Σ)

4. |average(Σ) − average(Σ′)| ≤
Pk

`=1

“

2(pmax+s`+1(Σ))

volume(Σ)
+ s`+1(Σ)

”

where s`(Σ) is the maximum over the `-spread in Σ following
the first modification.

We note that while these bounds depend on deeper mea-
sures of spread for more modifications, we are working in
a 1-share order model. Thus in an actual market, where
single orders contain hundreds or thousands of shares, the
k-spread even for large k might be quite small and close to
the standard 1-spread in liquid stocks.

6. RELATIVE MODEL INSTABILITY
In the relative model the underlying assumption is that

traders try to exploit their knowledge of the books to strate-
gically place their orders. Thus if a trader wants her buy
order to be executed quickly, she may position it above the
current bid and be the first in the queue; if the trader is pa-
tient and believes that the price trend is going to be down-
ward she will place orders deeper in the buy book, and so
on.

While in the previous sections we showed stability results
for the absolute model, here we provide simple examples
which show instability in the relative model for the exe-
cuted volume, last bid, last ask, average execution price and
the last execution price. In Section 7 we provide many sim-
ulations on actual market data that demonstrate that this
instability is inherent to the relative model, and not due
to artificial constructions. In the relative model we assume
that for every sequence the ask and bid are always defined,
so the books have a non-empty initial configuration.



We begin by showing that in the relative model, even a
single modification can double the number of shares exe-
cuted.

Theorem 6.1. There is a sequence Σ and a 1-modification
Σ′ of Σ such that volume(Σ′) ≥ 2volume(Σ).

Proof. For concreteness we assume that at the begin-
ning the ask is 10 and the bid is 8. The sequence Σ is
composed from n buy orders with ∆ = 0, followed by n sell
orders with ∆ = 0, and finally an alternating sequence of
buy orders with ∆ = +1 and sell orders with ∆ = −1 of
length 2n. Since the books before the alternating sequence
contain n +1 sell orders at 10 and n+ 1 buy orders at 8, we
have that each pair of buy sell order in the alternating part
is matched and executed, but none of the initial 2n orders
is executed, and thus volume(Σ) = n. Now we change the
first buy order to have ∆ = +1. After the first 2n orders
there are still no executions; however, the books are differ-
ent. Now there are n+1 sell orders at 10, n buy orders at 9
and one buy order at 8. Now each order in the alternating
sequence is executed with one of the former orders and we
have volume(Σ′) = 2n.

The next theorem shows that the spread-based stability
results of Section 5.1 do not also hold in the relative model.
Before providing the proof, we give its intuition. At the be-
ginning the sell book contains only two prices which are far
apart and both contain only two orders, now several buy
orders arrive, at the original sequence they are not being
executed, while in the modified sequence they will be exe-
cuted and leave the sell book with only the orders at the high
price. Now many sell orders followed by many buy orders
will arrive, such that in the original sequence they will be
executed only at the low price and in the modified sequence
they will executed at the high price.

Theorem 6.2. For any positive numbers s and x, there
is sequence Σ such that s2(Σ) = s and a 1-modification Σ′

of Σ such that

• |close(Σ) − close(Σ′)| ≥ x

• |average(Σ) − average(Σ′)| ≥ x

• |lastbid (Σ) − lastbid(Σ′)| ≥ x

• |lastask (Σ) − lastask (Σ′)| ≥ x

Proof. Without loss of generality let us consider sequences
in which all prices are integer-valued, in which case the
smallest possible value for the second spread is 1; we provide
the proof for the case s2(Σ) = 2, but the s2(Σ) = 1 case is
similar.

We consider a sequence Σ such that after an initialization
period there have been no executions, the buy book has
2 orders at price 10, and the sell book has two orders at
price 12 and 2 orders with value 12+y, where y is a positive
integer that will be determined by the analysis. The original
sequence Σ is a buy order with ∆ = 0, followed by two
buy orders with ∆ = +1, then 2y sell orders with ∆ = 0,
and then 2y buy orders with ∆ = +1. We first note that
s2(Σ) = 2, there are 2y executions, all at price 12, the last
bid is 11 and the last ask is 12. Next we analyze a modified
sequence. We change the first buy order from ∆ = 0 to
∆ = +1. Therefore, the next two buy orders with ∆ = +1

are executed, and afterwards we have that the bid is 11 and
the ask is 12+ y. Now the 2y sell orders are accumulated at
12+y, and after the next y buy orders the bid is at 12+y−1.
Therefore, at the end we have that lastbid (Σ′) = 12 + y− 1,
lastask (Σ′) = 12 + y, close(Σ′) = 12 + y, and average(Σ′) =

y

y+2
(12 + y) + 2

y+2
(12). Setting y = x + 2, we obtain the

lemma for every property.

We note that while this proof was based on the fact that
there are two consecutive orders in the books which are far
(y) apart, we can provide a slightly more complicated exam-
ple in which all orders are close (at most 2 apart), yet still
one change results in large differences.

7. SIMULATION STUDIES
The results presented so far paint a striking contrast be-

tween the absolute and relative price models: while the ab-
solute model enjoys provably strong stability over any fixed
event sequence, there exist at least specific sequences demon-
strating great instability in the relative model. The worst-
case nature of these results raises the question of the extent
to which such differences could actually occur in real mar-
kets. In this section we provide indirect evidence on this
question by presenting simulation results exploiting a rich
source of real-market historical limit order sequence data.
By interpreting arriving limit order prices as either abso-
lute values, or by transforming them into differences with
the current bid and ask (relative model), we can perform
small modifications on the sequences and examine how dif-
ferent various outcomes (volume traded, average price, etc.)
would be from what actually occurred in the market. These
simulations provide an empirical counterpart to the theory
we have developed. We emphasize that all such simulations
interpret the actual historical data as falling into either the
absolute or relative model , and are meaningful only within
the confines of such an interpretation. Nevertheless, we feel
they provide valuable empirical insight into the potential
(in)stability properties of modern equity limit order mar-
kets, and demonstrate that one’s belief or hope in stability
largely relies on an absolute model interpretation. We also
investigate the empirical behavior of mixtures of absolute
and relative prices.

7.1 Data
The historical data used in our simulations is commer-

cially available limit order data from INET, the previously
mentioned electronic exchange for NASDAQ stocks. Broadly
speaking, this data consists of practically every single event
on INET regarding the trading of an individual stock —
every arriving limit order (price, volume, and sequence ID
number), every execution, and every cancellation of a stand-
ing order — all timestamped in milliseconds. It is data suf-
ficient to recreate the precise INET order book in a given
stock on a given day and time.

We will report stability properties for three stocks: Ama-
zon, Nvidia, and Qualcomm (identified in the sequel by their
tickers, AMZN, NVDA and QCOM). These three provide
some range of liquidities (with QCOM having the greatest
and NVDA the least liquidity on INET) and other trading
properties. We note that the qualitative results of our sim-
ulations were similar for several other stocks we examined.



7.2 Methodology
For our simulations we employed order-book reconstruc-

tion code operating on the underlying raw data. The basic
format of each experiment was the following:

1. Run the order book reconstruction code on the orig-
inal INET data and compute the quantity of interest
(volume traded, average price, etc.)

2. Make a small modification to a single order, and re-
compute the resulting value of the quantity of interest.

In the absolute model case, Step 2 is as simple as modify-
ing the order in the original data and re-running the order
book reconstruction. For the relative model, we must first
pre-process the raw data and convert its prices to relative
values, then make the modification and re-run the order
book reconstruction on the relative values.

The type of modification we examined was extremely small
compared to the volume of orders placed in these stocks:
namely, the deletion of a single randomly chosen order from
the sequence. Although a deletion is not 1-modification,
its edit distance is 1 and we can apply Theorem 5.4. For
each trading day examined,this single deleted order was se-
lected among those arriving between 10 AM and 3 PM, and
the quantities of interest were measured and compared at 3
PM. These times were chosen to include the busiest part of
the trading day but avoid the half hour around the opening
and closing of the official NASDAQ market (9:30 AM and
3:30 PM respectively), which are known to have different
dynamics than the central portion of the day.

We run the absolute and relative model simulations on
both the raw INET data and on a “cleaned” version of
this data. In the “cleaned” we remove all limit orders that
were canceled in the actual market prior to their execution
(along with the cancellations themselves). The reason is
that such cancellations may often be the first step in the
“repositioning” of orders — that is, cancellations of the or-
der that are followed by the submission of a replacement
order at a different price. Not removing canceled orders
allows the possibility of modified simulations in which the
“same” order 1 is executed twice, which may magnify in-
stability effects. Again, it is clear that neither the raw nor
the “cleaned” data can perfectly reflect “what would have
happened” under the deleted orders in the actual market.
However, the results both from the raw data and the clean
data are qualitatively similar. The results mainly differ, as
expected, in the executed volume, where the instability re-
sults for the relative model are much more dramatic in the
raw data.

7.3 Results
We begin with summary statistics capturing our overall

stability findings. Each row of the tables below contains a
ticker (e.g. AMZN) followed by either -R (for the uncleaned
or raw data) or -C (for the data with canceled orders re-
moved). For each of the approximately 250 trading days
in 2003, 1000 trials were run in which a randomly selected
order was deleted from the INET event sequence. For each
quantity of interest (volume executed, average price, closing
price and last bid), we show for the both the absolute and

1Here “same” is in quotes since the two orders will actually
have different sequence ID numbers, which is what makes
such repositioning activity impossible to reliably detect in
the data.

relative model the average percentage change in the quantity
induced by the deletion.

The results confirm rather strikingly the qualitative con-
clusions of the theory we have developed. In virtually every
case (stock, raw or cleaned data, and quantity) the per-
centage change induced by a single deletion in the relative
model is many orders of magnitude greater than in the ab-
solute model, and shows that indeed “butterfly effects” may
occur in a relative model market. As just one specific rep-
resentative example, notice that for QCOM on the cleaned
data, the relative model effect of just a single deletion on the
closing price is in excess of a full percentage point. This is
a variety of market impact entirely separate from the more
traditional and expected kind generated by trading a large
volume of shares.

Stock Date volume average
Rel Abs Rel Abs

AMZN-R 2003 15.1% 0.04% 0.3% 0.0002%
AMZN-C 2003 0.69% 0.087% 0.36% 0.0007%
NVDA-R 2003 9.09% 0.05 % 0.17% 0.0003%
NVDA-C 2003 0.73% 0.09 % 0.35% 0.001%
QCOM-R 2003 16.94% 0.035% 0.21% 0.0002%
QCOM-C 2003 0.58% 0.06% 0.35% 0.0005%

Stock Date close lastbid
Rel Abs Rel Abs

AMZN-R 2003 0.78% 0.0001% 0.78% 0.0007%
AMZN-C 2003 1.10% 0.077% 1.11% 0.001%
NVDA-R 2003 1.17% 0.002 % 1.18 % 0.08%
NVDA-C 2003 0.45% 0.0003% 0.45% 0.0006%
QCOM-R 2003 0.58% 0.0001% 0.58% 0.0004%
QCOM-C 2003 1.05% 0.0006% 1.05% 0.06%

In Figure 4 we examine how the change to one the quan-
tities, the average execution price, grows with the introduc-
tion of greater perturbations of the event sequence in the two
models. Rather than deleting only a single order between
10 AM and 3 PM, in these experiments a growing number
of randomly chosen deletions was performed, and the per-
centage change to the average price measured. As suggested
by the theory we have developed, for the absolute model the
change to the average price grows linearly with the number
of deletions and remains very small (note the vastly differ-
ent scales of the y-axis in the panels for the absolute and
relative models in the figure). For the relative model, it is
interesting to note that while small numbers of changes have
large effects (often causing average execution price changes
well in excess of 0.1 percent), the effects of large numbers of
changes levels off quite rapidly and consistently.

We conclude with an examination of experiments with a
mixture model. Even if one accepts a world in which traders
behave in either an absolute or relative manner, one would
be likely to claim that the market contains a mixture of both.
We thus ran simulations in which each arriving order in the
INET event streams was treated as an absolute price with
probability α, and as a relative price with probability 1−α.
Representative results for the average execution price in this
mixture model are shown in Figure 5 for AMZN and NVDA.
Perhaps as expected, we see a monotonic decrease in the
percentage change (instability) as the fraction of absolute
traders increases, with most of the reduction already being
realized by the introduction of just a small population of ab-
solute traders. Thus even in a largely relative-price world, a
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Figure 4: Percentage change to the average execu-
tion price (y-axis) as a function of the number of
deletions to the sequence (x-axis). The left panel is
for the absolute model, the right panel for the rela-
tive model, and each curve corresponds to a single
day of QCOM trading in June 2004. Curves repre-
sent averages over 1000 trials.

small minority of absolute traders can have a greatly stabi-
lizing effect. Similar behavior is found for closing price and
last bid.
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Figure 5: Percentage change to the average execu-
tion price (y-axis) vs. probability of treating arriv-
ing INET orders as absolute prices (x-axis). Each
curve corresponds to a single day of trading during
a month of 2004. Curves represent averages over
1000 trials.

For the executed volume in the mixture model, however,
the findings are more curious. In Figure 6, we show how
the percentage change to the executed volume varies with
the absolute trader fraction α, for NVDA data that is both
raw and cleaned of cancellations. We first see that for this
quantity, unlike the others, the difference induced by the
cleaned and uncleaned data is indeed dramatic, as already
suggested by the summary statistics table above. But most
intriguing is the fact that the stability is not monotonically
increasing with α for either the cleaned or uncleaned data —
the market with maximum instability is not a pure relative
price market, but occurs at some nonzero value for α. It was
in fact not obvious to us that sequences with this property
could even be artificially constructed, much less that they
would occur as actual market data. We have yet to find a
satisfying explanation for this phenomenon and leave it to
future research.
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