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ABSTRACT
In this work we study cost sharing connection games, where
each player has a source and sink he would like to connect,
and the cost of the edges is either shared equally (fair con-
nection games) or in an arbitrary way (general connection
games). We study the graph topologies that guarantee the
existence of a strong equilibrium (where no coalition can
improve the cost of each of its members) regardless of the
specific costs on the edges.

Our main existence results are the following: (1) For a
single source and sink we show that there is always a strong
equilibrium (both for fair and general connection games).
(2) For a single source multiple sinks we show that for a
series parallel graph a strong equilibrium always exists (both
for fair and general connection games). (3) For multi source
and sink we show that an extension parallel graph always
admits a strong equilibrium in fair connection games.

As for the quality of the strong equilibrium we show that
in any fair connection games the cost of a strong equilibrium
is Θ(log n) from the optimal solution, where n is the number
of players. (This should be contrasted with the Ω(n) price
of anarchy for the same setting.) For single source general
connection games and single source single sink fair connec-
tion games, we show that a strong equilibrium is always an
optimal solution.
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1. INTRODUCTION
Computational game theory has introduced the issue of

incentives to many of the classical combinatorial optimiza-
tion problems. The view that the demand side is many times
not under the control of a central authority that optimizes
the global performance, but rather under the control of in-
dividuals with different incentives, has led already to many
important insights.

Consider classical routing and transportation problems
such as multicast or multi-commodity problems, which are
many times viewed as follows. We are given a graph with
edge costs and connectivity demands between nodes, and
our goal is to find a minimal cost solution. The classical cen-
tralized approach assumes that all the individual demands
can both be completely coordinated and have no individual
incentives. The game theory point of view would assume
that each individual demand is controlled by a player that
optimizes its own utility, and the resulting outcome could
be far from the optimal solution.

When considering individual incentives one needs to dis-
cuss the appropriate solution concept. Much of the research
in computational game theory has focused on the classical
Nash equilibrium as the primary solution concept. Indeed
Nash equilibrium has many benefits, and most importantly
it always exists (in mixed strategies). However, the solution
concept of Nash equilibrium is resilient only to unilateral de-
viations, while in reality, players may be able to coordinate
their actions.

A strong equilibrium [4] is a state from which no coalition
(of any size) can deviate and improve the utility of every
member of the coalition (while possibly lowering the utility



of players outside the coalition). This resilience to devia-
tions by coalitions of the players is highly attractive, and
one can hope that once a strong equilibrium is reached it is
highly likely to sustain. From a computational game theory
point of view, an additional benefit of a strong equilibrium
is that it has a potential to reduce the distance between the
optimal solution and the solution obtained as an outcome
of selfish behavior. The strong price of anarchy (SPoA), in-
troduced in [1], is the ratio between the cost of the worst
strong equilibrium and the cost of an optimal solution.

Obviously, SPoA is meaningful only in those cases where
a strong equilibrium exists. A major downside of strong
equilibrium is that most games do not admit any strong
equilibrium. Even simple classical games like the prisoner’s
dilemma do not posses any strong equilibrium (which is also
an example of a congestion game that does not posses a
strong equilibrium1). This unfortunate fact has reduced the
concentration in strong equilibrium, despite its highly at-
tractive properties. Yet, [1] have identified two broad fami-
lies of games, namely job scheduling and network formation,
where a strong equilibrium always exists and the SPoA is
significantly lower than the price of anarchy (which is the
ratio between the worst Nash equilibrium and the optimal
solution [15, 18, 5, 6]).

In this work we concentrate on cost sharing connection
games, introduced by [3, 2]. In such a game, there is an
underlying directed graph with edge costs, and individual
users have connectivity demands (between a source and a
sink). We consider two models. The fair cost connection
model [2] allows each player to select a path from the source
to the sink2. In this game the cost of an edge is shared
equally between all the players that selected the edge, and
the cost of the player is the sum of its costs on the edges it
selected. The general connection game [3] allows each player
to offer prices for edges. In this game an edge is bought if
the sum of the offers at least covers its cost, and the cost of
the player is the sum of its offers on the bought edges (in
both games we assume that the player has to guarantee the
connectivity between its source and sink).

In this work we focus on two important issues. The first
one is identifying under what conditions the existence of a
strong equilibrium is guaranteed, and the second one is the
quality of the strong equilibria. For the existence part, we
identify families of graph topologies that possess some strong
equilibrium for any assignment of edge costs. One can view
this separation between the graph topology and the edge
costs, as a separation between the underlying infrastructure
and the costs the players observe to purchase edges. While
one expects the infrastructure to be stable over long periods
of time, the costs the players observe can be easily modified
over short time periods. Such a topological characterization
of the underlying infrastructure provides a network designer
topological conditions that will ensure stability in his net-
work.

Our results are as follows. For the single commodity case
(all the players have the same source and sink), there is a
strong equilibrium in any graph (both for fair and general
connection games). Moreover, the strong equilibrium is also

1while any congestion game is known to admit at least one
Nash equilibrium in pure strategies [16].
2The fair cost sharing scheme is also attractive from a mech-
anism design point of view, as it is a strategyproof cost-
sharing mechanism [14].

the optimal solution (namely, the players share a shortest
path from the common source to the common sink). For
the case of a single source and multiple sinks (for exam-
ple, in a multicast tree), we show that in a fair connection
game there is a strong equilibrium if the underlying graph
is a series parallel graph, and we show an example of a non-
series parallel graph that does not have a strong equilibrium.
For the case of multi-commodity (multi sources and sinks),
we show that in a fair connection game if the graph is an
extension parallel graph then there is always a strong equi-
librium, and we show an example of a series parallel graph
that does not have a strong equilibrium. As far as we know,
we are the first to provide a topological characterization for
equilibrium existence in multi-commodity and single-source
network games.

For any fair connection game we show that if there exists
a strong equilibrium it is at most a factor of Θ(log n) from
the optimal solution, where n is the number of players. This
should be contrasted with the Θ(n) bound that exists for the
price of anarchy [2].

For single source general connection games, we show that
any series parallel graph possesses a strong equilibrium, and
we show an example of a graph that does not have a strong
equilibrium. In this case we also show that any strong equi-
librium is optimal.

Related work
Topological characterizations for single-commodity network
games have been recently provided for various equilibrium
properties, including equilibrium existence [12, 7, 8], equilib-
rium uniqueness [10] and equilibrium efficiency [17, 11]. The
existence of pure Nash equilibrium in single-commodity net-
work congestion games with player-specific costs or weights
was studied in [12]. The existence of strong equilibrium
was studied in both utility-decreasing (e.g., routing) and
utility-increasing (e.g., fair cost-sharing) congestion games.
[7, 8] have provided a full topological characterization for
a SE existence in single-commodity utility-decreasing con-
gestion games, and showed that a SE always exists if and
only if the underlying graph is extension-parallel. [19] have
shown that in single-commodity utility-increasing conges-
tion games, the topological characterization is essentially
equivalent to parallel links. In addition, they have shown
that these results hold for correlated strong equilibria as
well (in contrast to the decreasing setting, where correlated
strong equilibria might not exist at all). While the fair cost
sharing games we study are utility increasing network con-
gestion games, we derive a different characterization than
[19] due to the different assumptions regarding the players’
actions.3

2. MODEL

2.1 Game Theory definitions
A game Λ =< N, (Σi), (ci) > has a finite set N = {1, . . . , n}

of players. Player i ∈ N has a set Σi of actions, the joint ac-
tion set is Σ = Σ1 × · · · × Σn and a joint action S ∈ Σ
is also called a profile. The cost function of player i is

3In [19] they allow to restrict some players from using certain
links, even though the links exist in the graph, while we do
not allow this, and assume that the available strategies for
players are fully represented by the underlying graph.



ci : Σ → R+, which maps the joint action S ∈ Σ to a
non-negative real number. Let S = (S1, . . . , Sn) denote
the profile of actions taken by the players, and let S−i =
(S1, . . . , Si−1, Si+1, . . . , Sn) denote the profile of actions taken
by all players other than player i. Note that S = (Si, S−i).
The social cost of a game Λ is the sum of the costs of
the players, and we denote by OPT (Λ) the minimal social
cost of a game Λ. i.e., OPT (Λ) = minS∈Σ costΛ(S), where
costΛ(S) =

P
i∈N ci(S).

A joint action S ∈ Σ is a pure Nash equilibrium if no player
i ∈ N can benefit from unilaterally deviating from his action
to another action, i.e., ∀i ∈ N ∀S′i ∈ Σi : ci(S−i, S

′
i) ≥

ci(S). We denote by NE(Λ) the set of pure Nash equilibria
in the game Λ.
Resilience to coalitions: A pure deviation of a set of play-
ers Γ ⊂ N (also called coalition) specifies an action for each
player in the coalition, i.e., γ ∈ ×i∈ΓΣi. A joint action S ∈
Σ is not resilient to a pure deviation of a coalition Γ if there
is a pure joint action γ of Γ such that ci(S−Γ, γ) < ci(S) for
every i ∈ Γ (i.e., the players in the coalition can deviate in
such a way that each player in the coalition reduces its cost).
A pure Nash equilibrium S ∈ Σ is a k-strong equilibrium, if
there is no coalition Γ of size at most k, such that S is not
resilient to a pure deviation by Γ. We denote by k-SE(Λ)
the set of k-strong equilibria in the game Λ. We denote by
SE(Λ) the set of n-strong equilibria, and call S ∈ SE(Λ) a
strong equilibrium (SE).

Next we define the price of anarchy (PoA) [9] and the
k-strong price of anarchy (k-SPoA) for the game Λ. The
Price of Anarchy (PoA) is the ratio between the maximal
cost of a pure Nash equilibrium (assuming one exists) and
the social optimum, i.e., maxS∈NE(Λ) costΛ(S) /OPT (Λ).
Similarly, the Price of Stability (PoS) is the ratio between
the minimal cost of a pure Nash equilibrium and the so-
cial optimum, i.e., minS∈NE(Λ) costΛ(S)/OPT (Λ). The k-
Strong Price of Anarchy (k-SPoA) is the ratio between the
maximal cost of a k-strong equilibrium (assuming one ex-
ists) and the social optimum, i.e., maxS∈k-SE(Λ) costΛ(S)
/OPT (Λ). The SPoA is the n-SPoA. Similarly, the Strong
Price of Stability (SPoS) is the ratio between the minimal
cost of a pure strong equilibrium and the social optimum,
i.e., minS∈SE(Λ) costΛ(S)/OPT (Λ). Note that both k-SPoA
and SPoS are defined only if some strong equilibrium exists.

2.2 Cost Sharing Connection Games
A cost sharing connection game has an underlying di-

rected graph G = (V, E) where each edge e ∈ E has an
associated cost ce ≥ 04. In a connection game each player
i ∈ N has an associated source si and sink ti.

In a fair connection game the actions Σi of player i in-
clude all the paths from si to ti. The cost of each edge is
shared equally by the set of all players whose paths con-
tain it. Given a joint action, the cost of a player is the
sum of his costs on the edges it selected. More formally,
the cost function of each player on an edge e, in a joint
action S, is fe(ne(S)) = ce

ne(S)
, where ne(S) is the num-

ber of players that selected a path containing edge e in
S. The cost of player i, when selecting path Qi ∈ Σi is
ci(S) =

P
e∈Qi

fe(ne(S)).
In a general connection game the actions Σi of player i

4In some of the existence proofs, we assume that ce > 0 for
simplicity. The full version contains the complete proofs for
the case ce ≥ 0.

is a payment vector pi, where pi(e) is how much player i
is offering to contribute to the cost of edge e.5 Given a
profile p, any edge e such that

P
i pi(e) ≥ ce is considered

bought, and Ep denotes the set of bought edges. Let Gp =
(V, Ep) denote the graph bought by the players for profile
p = (p1, . . . , pn). Clearly, each player tries to minimize his
total payment which is ci(p) =

P
e∈Ep

pi(e) if si is connected

to ti in Gp, and infinity otherwise.6 We denote by c(p) =P
i ci(p) the total cost under the profile p. For a subgraph

H of G we denote the total cost of the edges in H by c(H).
A symmetric connection game implies that the source and

sink of all the players are identical. (We also call a symmet-
ric connection game a single source single sink connection
game, or a single commodity connection game.) A single
source connection game implies that the sources of all the
players are identical. Finally, A multi commodity connection
game implies that each player has its own source and sink.

2.3 Extension Parallel and Series Parallel Di-
rected Graphs

Our directed graphs would be acyclic, and would have
a source node (from which all nodes are reachable) and a
sink node (which every node can reach). We first define the
following actions for composition of directed graphs.

• Identification: The identification operation allows to
collapse two nodes to one. More formally, given graph
G = (V, E) we define the identification of a node v1 ∈
V and v2 ∈ V forming a new node v ∈ V as creating a
new graph G′ = (V ′, E′), where V ′ = V −{v1, v2}∪{v}
and E′ includes the edges of E where the edges of v1

and v2 are now connected to v.

• Parallel composition: Given two directed graphs, G1 =
(V1, E1) and G2 = (V2, E2), with sources s1 ∈ V1 and
s2 ∈ V2 and sinks t1 ∈ V1 and t2 ∈ V2, respectively,
we define a new graph G = G1||G2 as follows. Let
G′ = (V1 ∪ V2, E1 ∪E2) be the union graph. To create
G = G1||G2 we identify the sources s1 and s2, forming
a new source node s, and identify the sinks t1 and t2,
forming a new sink t.

• Series composition: Given two directed graphs, G1 =
(V1, E1) and G2 = (V2, E2), with sources s1 ∈ V1 and
s2 ∈ V2 and sinks t1 ∈ V1 and t2 ∈ V2, respectively, we
define a new graph G = G1 → G2 as follows. Let G′ =
(V1 ∪ V2, E1 ∪E2) be the union graph. To create G =
G1 → G2 we identify the vertices t1 and s2, forming a
new vertex u. The graph G has a source s = s1 and a
sink t = t2.

• Extension composition : A series composition when
one of the graphs, G1 or G2, is composed of a sin-
gle directed edge is an extension composition, and we
denote it by G = G1 →e G2.

An extension parallel graph (EPG) is a graph G consisting
of either: (1) a single directed edge (s, t), (2) a graph G =
G1||G2 or (3) a graph G = G1 →e G2, where G1 and G2

are extension parallel graphs. A series parallel graph (SPG)

5We limit the players to select a path connecting si to ti

and payment only on those edges.
6This implies that in equilibrium every player has its sink
and source connected by a path in Gp.



is a graph G consisting of either: (1) a single directed edge
(s, t), (2) a graph G = G1||G2 or (3) a graph G = G1 → G2,
where G1 and G2 are series parallel graphs.

Given a path Q and two vertices u, v on Q, we denote the
subpath of Q from u to v by Qu,v. The following lemma,
whose proof appears in the full version, would be the main
topological tool in the case of single source graph.

Lemma 2.1. Let G be an SPG with source s and sink t.
Given a path Q, from s to t, and a vertex t′, there exist a
vertex y ∈ Q, such that for any path Q′ from s to t′, the path
Q′ contains y and the paths Q′y,t′ and Q are edge disjoint.

(We call the vertex y the intersecting vertex of Q and t′.)

3. FAIR CONNECTION GAMES
This section derives our results for fair connection games.

3.1 Existence of Strong Equilibrium
While it is known that every fair connection game pos-

sesses a Nash equilibrium in pure strategies [2], this is not
necessarily the case for a strong equilibrium. In this section,
we study the existence of strong equilibrium in fair connec-
tion games. We begin with a simple case, showing that every
symmetric fair connection game possesses a strong equilib-
rium.

Theorem 3.1. In every symmetric fair connection game
there exists a strong equilibrium.

Proof. Let s′ be the source and t′ be the sink of all the
players. We show that a profile S in which all the players
choose the same shortest path Q (from the source s′ to the
sink t′) is a strong equilibrium. Suppose by contradiction
that S is not a SE. Then there is a coalition Γ that can
deviate to a new profile S′ such that the cost of every player
j ∈ Γ decreases. Let Q′j be a new path used by player j ∈ Γ.
Since Q is a shortest path, it holds that c(Q′j \ (Q ∩Q′j)) ≥
c(Q \ (Q∩Q′j)), for any path Q′j . Therefore for every player
j ∈ Γ we have that cj(S

′) ≥ cj(S). However, this contradicts
the fact that all players in Γ reduce their cost. (In fact, no
player in Γ has reduced its cost.)

While every symmetric fair connection game admits a SE,
it does not hold for every fair connection game. In what fol-
lows, we study the network topologies that admit a strong
equilibrium for any assignment of edge costs, and give ex-
amples of topologies for which a strong equilibrium does not
exist. The following lemma, whose proof appears in the full
version, plays a major role in our proofs of the existence of
SE.

Lemma 3.2. Let Λ be a fair connection game on a series
parallel graph G with source s and sink t. Assume that player
i has si = s and ti = t and that Λ has some SE. Let S be
a SE that minimizes the cost of player i (out of all SE),
i.e., ci(S) = minT∈SE ci(T ) and let S∗ be the profile that
minimizes the cost of player i (out of all possible profiles),
i.e., ci(S

∗) = minT∈Σ ci(T ). Then, ci(S) = ci(S
∗).

The next lemma considers parallel composition.

Lemma 3.3. Let Λ be a fair connection game on graph
G = G1||G2, where G1 and G2 are series parallel graphs. If

every fair connection game on the graphs G1 and G2 pos-
sesses a strong equilibrium, then the game Λ possesses a
strong equilibrium.

Proof. Let G1 = (V1, E1) and G2 = (V2, E2) have sources
s1 and s2 and sinks t1 and t2 respectively. Let Ti be the set
of players with an endpoint in Vi \ {s, t}, for i ∈ {1, 2}. (An
endpoint is either a source or a sink of a player). Let T3 be
the set of players j such that sj = s and tj = t. Let Λ1 and
Λ2 be the original game on the respective graphs G1 and G2

with players T1 ∪ T3 and T2 ∪ T3, respectively.
Let S′ and S′′ be the SE in Λ1 and Λ2 that minimizes

the cost of players in T3, respectively. Assume w.l.o.g. that
ci(S

′) ≤ ci(S
′′) where player i ∈ T3. In addition, let Λ′2 be

the game on the graph G2 with players T2 and let S̄ be a
SE in Λ′2.

We will show that the profile S = S′ ∪ S̄ is a SE in Λ.
Suppose by contradiction that S is not a SE. Then, there
is a coalition Γ that can deviate such that the cost of every
player j ∈ Γ decreases. By Lemma 3.2 and the assumption
that ci(S

′) ≤ ci(S
′′), a player j ∈ T3 cannot improve his

cost. Therefore, Γ ⊆ T1 ∪ T2. But this is a contradiction to
S′ being a SE in Λ1 or S̄ being a SE in Λ′2.

The following theorem considers the case of single source
fair connection games.

Theorem 3.4. Every single source fair connection game
on a series-parallel graph possesses a strong equilibrium.

Proof. We prove the theorem by induction on the net-
work size |V |. The claim obviously holds if |V | = 2. We
show the claim for a series composition, i.e., G = G1 → G2,
and for a parallel composition, i.e., G = G1||G2, where
G1 = (V1, E1) and G2 = (V2, E2) are SPG’s with sources
s1, s2, and sinks t1, t2, respectively.

series composition. Let G = G1 → G2. Let T1 be
the set of players j such that tj ∈ V1, and T2 be the set of
players j such that tj ∈ V2 \ {s2}.

Let Λ1 and Λ2 be the original game on the respective
graphs G1 and G2 with players T1 ∪T2 and T2, respectively.
For every player i ∈ T2 with action Si in the game Λ let
Si∩E1 be his induced action in the game Λ1, and let Si∩E2

be his induced action in the game Λ2.
Let S′ be a SE in Λ1 that minimizes the cost of players in

T2 (such a SE exists by the induction hypothesis and Lemma
3.2). Let S′′ be any SE in Λ2. We will show that the profile
S = S′ ∪S′′ is a SE in the game Λ, i.e., for player j ∈ T2 we
use the profile Sj = S′j ∪ S′′j .

Suppose by contradiction that S is not a SE. Then, there
is a coalition Γ that can deviate such that the cost of every
player j ∈ Γ decreases. Now, there are two cases:
Case 1: Γ ⊆ T1. This is a contradiction to S′ being a SE.
Case 2: There exists a player j ∈ Γ ∩ T2. By Lemma 3.2,
player j cannot improve his cost in Λ1 so the improvement
is due to Λ2. Consider the coalition Γ ∩ T2, it would still
improve its cost. However, this contradicts the fact that S′′

is a SE in Λ2.
parallel composition. Follows from Lemma 3.3.

While multi-commodity fair connection games on series
parallel graphs do not necessarily possess a SE (see Theo-
rem 3.6), fair connection games on extension parallel graphs
always possess a strong equilibrium.

Theorem 3.5. Every fair connection game on an exten-
sion parallel graph possesses a strong equilibrium.
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Proof. We prove the theorem by induction on the net-
work size |V |. Let Λ be a fair connection game on an EPG
G = (V, E). The claim obviously holds if |V | = 2. If the
graph G is a parallel composition of two EPG graphs G1

and G2, then the claim follows from Lemma 3.3. It remains
to prove the claim for extension composition. Suppose the
graph G is an extension composition of the graph G1 consist-
ing of a single edge e = (s1, t1) and an EPG G2 = (V2, E2)
with terminals s2, t2, such that s = s1 and t = t2. (The case
that G2 is a single edge is similar.)

Let T1 be the set of players with source s1 and sink t1
(i.e., their path is in G1). Let T2 be the set of players with
source and sink in G2. Let T3 be the set of players with
source s1 and sink in V2 \ t1.

Let Λ1 and Λ2 be the original game on the respective
graphs G1 and G2 with players T1 ∪ T3 and T2 ∪ T3, respec-
tively. Let S′, S′′ be SE in Λ1 and Λ2 respectively. We will
show that the profile S = S′ ∪ S′′ is a SE in the game Λ.
Suppose by contradiction that S is not a SE. Then, there is
a coalition Γ of minimal size that can deviate such that the
cost of any player j ∈ Γ decreases. Clearly, T1∩Γ = φ, since
players in T1 have a single strategy. Hence, Γ ⊆ T2∪T3. Any
player j ∈ T2∪T3 cannot improve his cost in Λ1. Therefore,
any player j ∈ T2 ∪ T3 improves his cost in Λ2. However,
this contradicts the fact that S′′ is a SE in Λ2.

In the following theorem we provide a few examples of
topologies in which a strong equilibrium does not exist,
showing that our characterization is almost tight.

Theorem 3.6. The following connection games exist: (1)
There exists a multi-commodity fair connection game on a
series parallel graph that does not possess a strong equilib-
rium. (2) There exists a single source fair connection game
that does not possess a strong equilibrium.

Proof. For claim (1) consider the graph depicted in Fig-
ure 1(a). This game has a unique NE where S1 = {e, c},
S2 = {b, f}, and each player has a cost of 5.7 However, con-
sider the following coordinated deviation S′. S′1 = {a, b, c},
7In any NE of the game, player 1 will buy the edge e and
player 2 will buy the edge f . This is since the alternate
path, in the respective part, will cost the player 2.5. Thus,
player 1 (player 2) will buy the edge c (edge b) alone, and
each player will have a cost of 5.
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Figure 2: Example of a single source connection game

that does not admit SE.

and S′2 = {b, c, d}. In this profile, each player pays a cost of
4, and thus improves its cost.

For claim (2) consider a single source fair connection game
on the graph G depicted in Figure 2. There are two players.
Player i = 1, 2 wishes to connect the source s to its sink ti

and the unique NE is S1 = {a, b}, S2 = {a, c}, and each
player has a cost of 2. 8 Then, both players can deviate to
S′1 = {h, f, d} and S′2 = {h, f, e}, and decrease their costs
to 2− ε/2.

Unfortunately, our characterization is not completely tight.
The graph in Figure 1(b) is an example of a non-extension
parallel graph which always admits a strong equilibrium.

3.2 Strong Price of Anarchy
While the price of anarchy in fair connection games can

be as bad as n, the following theorem shows that the strong
price of anarchy is bounded by H(n) =

Pn
i=1

1
i

= Θ(log n).

Theorem 3.7. The strong price of anarchy of a fair con-
nection game with n players is at most H(n).

Proof. Let Λ be a fair connection game on the graph G.
We denote by Λ(Γ) the game played on the graph G by a set
of players Γ, where the action of player i ∈ Γ remains Σi (the
same as in Λ). Let S = (S1, . . . , Sn) be a profile in the game
Λ. We denote by S(Γ) = SΓ the induced profile of players in
Γ in the game Λ(Γ). Let ne(S(Γ)) denote the load of edge
e under the profile S(Γ) in the game Λ(Γ), i.e., ne(S(Γ)) =
|{j|j ∈ Γ, e ∈ Sj}|. Similar to congestion games [16, 13] we
denote by Φ(S(Γ)) the potential function of the profile S(Γ)

in the game Λ(Γ), where Φ(S(Γ)) =
P

e∈E

Pne(S(Γ))
j=1 fe(j),

and define Φ(S(φ)) = 0. In our case, it holds that

Φ(S) =
X
e∈E

ce ·H(ne(S)). (1)

Let S be a SE, and let S∗ be the profile of the optimal
solution. We define an order on the players as follows. Let
Γn = {1, ..., n} be the set of all the players. For each k =

8We can show that this is the unique NE by a simple case
analysis: (i) If S1 = {h, f, d} and S2 = {h, f, e}, then player
1 can deviate to S′1 = {h, g} and decrease his cost. (ii) If
S1 = {h, g} and S2 = {h, f, e}, then player 2 can deviate to
S′2 = {a, c} and decrease his cost. (iii) If S1 = {h, g} and
S2 = {a, c}, then player 1 can deviate to S′1 = {a, b} and
decrease his cost.



n, . . . , 1, since S is a SE, there exists a player in Γk, w.l.o.g.
call it player k, such that,

ck(S) ≤ ck(S−Γk , S∗Γk
). (2)

In this way, Γk is defined recursively, such that for every
k = n, . . . , 2 it holds that Γk−1 = Γk \ {k}. (I.e., after the
renaming, Γk = {1, . . . , k}.)

Let ck(S(Γk)) denote the cost of player k in the game
Λ(Γk) under the induced profile S(Γk). It is easy to see that
ck(S(Γk)) = Φ(S(Γk))− Φ(S(Γk−1)).

9 Therefore,

ck(S) ≤ ck(S−Γk , S∗Γk
) (3)

≤ ck(S∗(Γk)) = Φ(S∗(Γk))− Φ(S∗(Γk−1)).

Summing over all players, we obtain:
X
i∈N

ci(S) ≤ Φ(S∗(Γn))− Φ(S∗(φ))

= Φ(S∗(Γn)) =
X

e∈S∗
ce ·H(ne(S

∗))

≤
X

e∈S∗
ce ·H(n) = H(n) ·OPT (Λ),

where the first inequality follows since the sum of the right
hand side of equation (3) telescopes, and the second equality
follows from equation (1).

Next we bound the SPoA when coalitions of size at most
k are allowed.

Theorem 3.8. The k-SPoA of a fair connection game
with n players is at most n

k
·H(k).

Proof. Let S be a SE of Λ, and S∗ be the profile of the
optimal solution of Λ. To simplify the proof, we assume that
n/k is an integer. We partition the players to n/k groups
T1, . . . , Tn/k each of size k. Let Λj be the game on the
graph G played by the set of players Tj . Let S(Tj) denote
the profile of the k players in Tj in the game Λj induced by
the profile S of the game Λ. By Theorem 3.7, it holds that
for each game Λj , j = 1, . . . , n/k,

costΛj (S(Tj)) =
X
i∈Tj

ci(S(Tj))

≤ H(k) ·OPT (Λj) ≤ H(k) ·OPT (Λ).

Summing over all games Λj , j = 1, . . . , n/k,

costΛ(S) ≤
n/kX
j=1

costΛj (S(Tj)) ≤ n

k
·H(k) ·OPT (Λ),

where the first inequality follows since for each group Tj and
player i ∈ Tj , it holds that ci(S) ≤ ci(S(Tj)).

Next we show an almost matching lower bound. (The
lower bound is at most H(n) = O(log n) from the upper
bound and both for k = O(1) and k = Ω(n) the difference
is only a constant.)

Theorem 3.9. For fair connection games with n players,
k-SPoA ≥ max{n

k
, H(n)}.

9This follows since for any strategy profile S, if a single
player k deviates to strategy S′k, then the change in the
potential value Φ(S) − Φ(S′k, S−k) is exactly the change in
the cost to player k.
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Figure 3: Example of a network topology in which

SPoS > PoS.

Proof. For the lower bound of H(n) we observe that in
the example presented in [2], the unique Nash equilibrium
is also a strong equilibrium, and therefore k-SPoA = H(n)
for any 1 ≤ k ≤ n. For the lower bound of n/k, consider
a graph composed of two parallel links of costs 1 and n/k.
Consider the profile S in which all n players use the link
of cost n/k. The cost of each player is 1/k, while if any
coalition of size at most k deviates to the link of cost 1, the
cost of each player is at least 1/k. Therefore, the profile S
is a k-SE, and k-SPoA = n/k.

The results of Theorems 3.7 and 3.8 can be extended to
concave cost functions. Consider the extended fair connec-
tion game, where each edge has a cost which depends on the
number of players using that edge, ce(ne). We assume that
the cost function ce(ne) is a nondecreasing, concave func-
tion. Note that the cost of an edge ce(ne) might increase
with the number of players using it, but the cost per player
fe(ne) = ce(ne)/ne decreases when ce(ne) is concave.

Theorem 3.10. The strong price of anarchy of a fair con-
nection game with nondecreasing concave edge cost functions
and n players is at most H(n).

Proof. The proof is analogues to the proof of Theo-
rem 3.7. For the proof we show that cost(S) ≤ Φ(S∗) ≤
H(n) · cost(S∗). We first show the first inequality. Since the
function ce(x) is concave, the cost per player ce(x)/x is a
nonincreasing function. Therefore inequality (3) in the proof
of Theorem 3.7 holds. Summing inequality (3) over all play-
ers we obtain cost(S) =

P
i ci(S) ≤ Φ(S∗(Γn))−Φ(S∗(φ)) =

Φ(S∗). The second inequality follows since ce(x) is nonde-
creasing and therefore

Pne
x=1(ce(x)/x) ≤ H(ne) · ce(ne).

Using the arguments in the proof of Theorem 3.10 and
the proof of Theorem 3.8 we derive,

Theorem 3.11. The k-SPoA of a fair connection game
with nondecreasing concave edge cost functions and n players
is at most n

k
·H(k).

Since the set of strong equilibria is contained in the set of
Nash equilibria, it must hold that SPoA ≤ PoA, meaning
that the SPoA can only be improved compared to the PoA.
However, with respect to the price of stability the opposite
direction holds, that is, SPoS ≥ PoS. We next show that
there exists a fair connection game in which the inequality
is strict.
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Figure 4: Example of a single source general connection

game that does not admit a strong equilibrium. The

edges that are not labeled with costs have a cost of zero.

Theorem 3.12. There exists a fair connection game in
which SPoS > PoS.

Proof. Consider a single source fair connection game on
the graph G depicted in Figure 3.10 Player i = 1, . . . , n
wishes to connect the source s to his sink ti. Assume that
each player i = 1, . . . , n − 2 has his own path of cost 1/i
from s to ti and players i = n − 1, n have a joint path of
cost 2/n from s to ti. Additionally, all players can share a
common path of cost 1+ε for some small ε > 0. The optimal
solution connects all players through the common path of
cost 1 + ε, and this is also a Nash equilibrium with total
cost 1 + ε. It is easy to verify that the solution where each
player i = 1, . . . , n−2 uses his own path and users i = n−1, n
use their joint path is the unique strong equilibrium of this
game with total cost

Pn−2
i=1

1
i

+ 2
n

= Θ(log n)

While the example above shows that the SPoS may be
greater than the PoS, the upper bound of H(n) = Θ(log n),
proven for the PoS [2], serves as an upper bound for the
SPoS as well. This is a direct corollary from theorem 3.7, as
SPoS ≤ SPoA by definition.

Corollary 3.13. The strong price of stability of a fair
connection game with n players is at most H(n) = O(log n).

4. GENERAL CONNECTION GAMES
In this section, we derive our results for general connection

games.

4.1 Existence of Strong Equilibrium
We begin with a characterization of the existence of a

strong equilibrium in symmetric general connection games.
Similar to Theorem 3.1 (using a similar proof) we establish,

Theorem 4.1. In every symmetric fair connection game
there exists a strong equilibrium.

While every single source general connection game pos-
sesses a pure Nash equilibrium [3], it does not necessarily
admit some strong equilibrium.11

10This is a variation on the example given in [2].
11We thank Elliot Anshelevich, whose similar topology for
the fair-connection game inspired this example.

Theorem 4.2. There exists a single source general con-
nection game that does not admit any strong equilibrium.

Proof. Consider single source general connection game
with 3 players on the graph depicted in Figure 4. Player i
wishes to connect the source s with its sink ti.We need to
consider only the NE profiles: (i) if all three players use the
link of cost 3, then there must be two agents whose total
sum exceeds 2, thus they can both reduce cost by deviating
to an edge of cost 2− ε. (ii) if two of the players use an edge
of cost 2−ε jointly, and the third player uses a different edge
of cost 2− ε, then, the players with non-zero payments can
deviate to the path with the edge of cost 3 and reduce their
costs (since before the deviation the total payments of the
players is 4 − 2ε). We showed that none of the NE are SE,
and thus the game does not possess any SE.

Next we show that for the class of series parallel graphs,
there is always a strong equilibrium in the case of a single
source.

Theorem 4.3. In every single source general connection
game on a series-parallel graph, there exists a strong equi-
librium.

Proof. Let Λ be a single source general connection game
on a SPG G = (V, E) with source s and sink t. We present an
algorithm that constructs a specific SE. We first consider the
following partial order between the players. For players i and
j, we have that i 7→ j if there is a directed path from ti to tj .
We complete the partial order to a full order (in an arbitrary
way), and w.l.o.g. we assume that 1 7→ 2 7→ · · · 7→ n.

The algorithm COMPUTE-SE, considers the players in
an increasing order, starting with player 1. Each player i
will fully buy a subset of the edges, and any player j > i
will consider the cost of those (bought) edges as zero. When
COMPUTE-SE considers player j, the cost of the edges
that players 1 to j−1 have bought is set to zero, and player j
fully buys a shortest path Qj from s to tj . Namely, for every
edges e ∈ Qj \ ∪i<jQ

i we have pj(e) = ce and otherwise
pj(e) = 0. We next show that the algorithm COMPUTE-
SE computes a SE.

Assume by way of contradiction that the profile p is not a
SE. Then, there exists a coalition that can improve the costs
of all its players by a deviation. Let Γ be such a coalition
of minimal size and let player i = max{j ∈ Γ}. For a player
j ∈ Γ let Q̄j and p̄j be the path and payment of player
j after the deviation, respectively. Let Q′ be a path from
the sink of player i, i.e. ti, to the sink of G, i.e. t. Then
Q = Q̄i ∪ Q′ is a path from the source s to the sink t. For
any player j < i, let yj be the intersecting vertex of Q and
tj (by Lemma 2.1 one is guarantee to exist). Let y be the
furthest vertex on the path Q such that y = yj for some
j < i. The path from the source s to node y was fully paid
for by players j < i in p (before the deviation). There are
two cases we consider.
case a: After the deviation player i does not pay for edges
in
S

j∈Γ\{i} Q̄j . This is a contradiction to the minimality of

the coalition Γ size, since the players in Γ \ {i} can form a
smaller coalition with payments p̄.
case b: Otherwise, we show that player i cost after the devi-
ation, i.e. ci(p̄), is at least his cost before the deviation, i.e.
ci(p), contradicting the fact that player i improved his cost.
Recall that given two vertices u, v on path Q̄ we denote by
Q̄u,v the subpath of Q̄ from u to v.



Before the deviation of the coalition Γ, a path from s to
y was fully paid for by the players j < i. Next we show that
no player k > i pays for any edge on any path from s to ti.
Consider a player k > i and let Q′k = Qk ∪Q′′k , where Q′′k is
a path connecting tk to t. Let yk be the intersecting vertex
of Q′k and ti. Since there exists a path from s to yk that was
fully paid for by players j < k before the deviation, in par-
ticularly the path Qi

s,yk
, player k will not pay for any edge

on any path connecting s and yk. Therefore player i fully
pays for all edges on the path Q̄i

y,ti
, i.e., p̄i(e) = ce for all

edges e ∈ Q̄i
y,ti

. Now consider the algorithm COMPUTE-
SE at the step when player i selects a shortest path from
the source s to its sink ti and determines his payment pi. At
this point, player i could buy the path Q̄i

y,ti
, since a path

from s to y was already paid for by players j < i. Hence,
ci(p̄) ≥ ci(p). This contradicts the fact that player i im-
proved its cost and therefore not all the players in Γ reduce
their cost. This implies that p is a strong equilibrium.

4.2 Strong Price of Anarchy
While for every single source general connection game, it

holds that PoS = 1 [3], the price of anarchy can be as large
as n, even for two parallel edges. Here, we show that any
strong equilibrium in single source general connection games
yields the optimal cost.

Theorem 4.4. In single source general connection game,
if there exists a strong equilibrium, then the strong price of
anarchy is 1.

Proof. Let p = (p1, . . . , pn) be a strong equilibrium, and
let T ∗ be the minimum cost Steiner tree on all players,
rooted at the (single) source s. Let T ∗e be the subtree of
T ∗ disconnected from s when edge e is removed. Let Γ(Te)
be the set of players which have sinks in Te. For a set of
edges E, let c(E) =

P
e∈E ce. Let P (Te) =

P
i∈Γ(Te) ci(p).

Assume by way of contradiction that c(p) > c(T ∗). We
will show that there exists a sub-tree T ′ of T ∗, that connects
a subset of players Γ ⊆ N , and a new set of payments p̄, such
that for each i ∈ Γ, ci(p̄) < ci(p). This will contradict the
assumption that p is a strong equilibrium.

First we show how to find a sub-tree T ′ of T ∗, such that
for any edge e, the payments of players with sinks in T ∗e is
more than the cost of T ∗e ∪ {e}. To build T ′, define an edge
e to be bad if the cost of T ∗e ∪ {e} is at least the payments
of the players with sinks in T ∗e , i.e., c(T ∗e ∪ {e}) ≥ P (T ∗e ).
Let B be the set of bad edges. We define T ′ to be T ∗ −
∪e∈B(T ∗e ∪ {e}). Note that we can find a subset B′ of B
such that ∪e∈B(T ∗e ∪ {e}) is equal to ∪e∈B′(T

∗
e ∪ {e}) and

for any e1, e2 ∈ B′ we have T ∗e1 ∩ T ∗e2 = ∅. (The set B′ will
include any edge e ∈ B for which there is no other edge
e′ ∈ B on the path from e to the source s.) Considering
the edges in e ∈ B′ we can see that any subtree T ∗e we
delete from T can not decrease the difference between the
payments and the cost of the remaining tree. Therefore, in
T ′ for every edge e, we have that c(T ′e ∪ {e}) < P (T ′e).

Now we have a tree T ′ and our coalition will be Γ(T ′).
What remain is to find payments p̄ for the players in Γ(T ′)
such that they will buy the tree T ′ and every player in Γ(T ′)
will lower its cost, i.e. ci(p) > ci(p̄) for i ∈ Γ(T ′). (Recall
that the payments have the restriction that player i can only
pay for edges on the path from s to ti.)

We will now define the coalition payments p̄. Let ci(p̄,
T ′e) =

P
e∈T ′e

p̄i(e) be the payments of player i for the sub-

tree T ′e. We will show that for every subtree T ′e, ci(p̄, T ′e ∪
{e}) < ci(p), and hence ci(p̄) < ci(p). Consider the fol-
lowing bottom up process that defines p̄. We assign the
payments of edge e in T ′, after we assign payments to all
the edges in T ′e. This implies that when we assign payments
for e, we have that the sum of the payments in T ′e is equal to
c(T ′e) =

P
i∈Γ(T ′e) ci(p̄, T ′e). Since e was not a bad edge, we

know that c(T ′e ∪ {e}) = c(T ′e) + ce < P (T ′e). Therefore, we
can update the payments p̄ of players i ∈ Γ(T ′e), by setting
p̄i(e) = ce∆i/(

P
j∈Γ(T ′e) ∆j), where ∆j = cj(p) − cj(p̄, T ′e).

After the update we have for player i ∈ Γ(T ′e),

ci(p̄, T ′e ∪ {e}) = ci(p̄, T ′e) + p̄i(e)

= ci(p̄, T ′e) + ∆i
ceP

j∈Γ(T ′e) ∆j

= ci(p)−∆i(1− ce

P (Γ(T ′e))− c(T ′e)
),

where we used the fact that
P

j∈Γ(T ′e) ∆j = P (Γ(T ′e))−c(T ′e).

Since ce < P (Γ(T ′e))− c(T ′e) it follows that ci(p̄, T ′e ∪ {e}) <
ci(p).
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