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Abstract—A synchronizer with a phase counter (sometimes called asynchronous phase clock) is an asynchronous distributed

algorithm, where each node maintains a local “pulse counter” that simulates the global clock in a synchronous network. In this paper,

we present a time-optimal self-stabilizing scheme for such a synchronizer, assuming unbounded counters. We give a simple rule by

which each node can compute its pulse number as a function of its neighbors’ pulse numbers. We also show that some of the popular

correction functions for phase clock synchronization are not self-stabilizing in asynchronous networks. Using our rule, the counters

stabilize in time bounded by the diameter of the network, without invoking global operations. We argue that the use of unbounded

counters can be justified by the availability of memory for counters that are large enough to be practically unbounded and by the

existence of reset protocols that can be used to restart the counters in some rare cases where faults will make this necessary.

Index Terms—Computer systems organization, computer-communication networks, network architecture and design subjects,

distributed networks, mathematics of computing, discrete mathematics, graph theory, algorithms, reliability, theory.
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1 INTRODUCTION

Asynchronizer [4] is a distributed algorithm that enables
algorithms designed for synchronous networks to

execute correctly on asynchronous networks. It simulates
the “lock-step” property of synchronous networks. That is,
in synchronous networks, the computation is performed in
rounds, each performed exactly at the same time at all the
nodes. The duration of a round is enough for a node v to
receive messages from all the neighbors (or to read all the
neighbors), to compute everything that v needs to compute
based on these values (and based on v’s own state), and to
send messages with the results to all the neighbors (those
messages can be read by the neighbors in the next round).
Let pulse i at node v be the event that starts the ith round of
the execution in node v. When no confusion arises, we use
the names round and pulse interchangeably.

A synchronizer is an algorithm that generates a series of
events called pulses in every node in asynchronous networks.
Pulse iþ 1 is generated in a node v after all the messages sent
to node v in pulse i have arrived. That is, the ith pulse at
node v can be used by an application at node v to know that
the application can now compute the same results that it
could have computed in a synchronous network after round
i ended. Note that this does not necessarily mean that v uses

a pulse counter, and even if v does, the value iþ 1 is not
necessarily exposed to v’s neighbors. Indeed, the synchro-
nizer of [4] uses a counter modulo 3.

A phase clock [30], [43], [26], [31], [28] in a synchronous
network is a distributed algorithm that maintains in every
node a copy of an integer valued variable, the counter, or the
clock, which is incremented at every pulse. The values of all
the copies are supposed to be always the same (in the
literature, such clocks are said to move in unison [26], [31],
[28]). As noted, for example, in [30], this task is not trivial,
even when given that the network is synchronous.

In this note, we present a synchronizer that also supplies a
phase clock for the resulting synchronous network. In fact,
we do not address these two tasks separately. The
implementation of the phase clock (in the asynchronous
network) is our method for implementing the synchronizer.
That is, in our synchronizer, every node does keep the pulse
number in a counter (clock) that is shared with its neighbors
(this can be implemented in a message passing system by
sending this value to the neighbors from time to time). Here,
this value serves two purposes. First, when the clock value at
node v is iþ 1, an application at node v can know that
messages of round i sent to v by v’s neighbors already
arrived. Second, v’s neighbors can know that v is done
sending messages for round i and is now sending messages
of round iþ 1.

When the algorithm is applied to an asynchronous
network, the clock values at a node v may still be larger by 1
than the value at its neighbor u. Still, a synchronous
algorithm can be applied to the network, since in this case, v
waits (before taking any step intended for the next time
unit) until u’s value is incremented.

As noted, for example, in [30], in a synchronous network,
if the clocks have the same value, then no communication is
needed, since they are incremented at the same rate.
Actions of the algorithms are then needed only to 1) detect
that the clocks are “out of phase” and 2) bring the clocks
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back to the correct situation, where they are equal. In
asynchronous networks, the algorithm needs communica-
tion also in order to increment the clock, even when the
clocks are “in phase.”

Our algorithm has the important feature that it starts
operating correctly, regardless of its initial state. That is, it is
self-stabilizing [19]. In practice, this means that the algorithm

adjusts itself automatically to any change in the network or
any unpredictable fault of its components, so long as the
faults stop for some sufficiently long period. For example,
assume that two partitions of a network merge (or two peer-
to-peer networks merge), and the clock values in each
partition are very different than those in the other. The
algorithm will bring them to a correct global state, where no
values gap exists.

Our algorithm is simple and easy to implement. The
algorithm stabilizes in time proportional to the diameter of

the network, which is optimal. As detailed below, this
improves both the time complexity of previous algorithms
and the time complexity of algorithms that were published
after the original version of this paper.

Problem statement. We are given an asynchronous
message passing network, and our objective is to implement
a distributed pulse service at the nodes. The service must
provide the node at all times with a pulse number, subject to
the following conditions:

Synchronization. Any message sent at local pulse i is
received at the other end point before local pulse iþ 1 (of
the other end point).

Progress. There exist parameters � and � (that may
depend on the network topology) such that for any time
interval of length t > �, the number of consecutive pulses
generated at every node is at least � � ðt��Þ. The parameter
� is called network slack, and � is the progress rate.

A self-stabilizing protocol is required to satisfy these
conditions only after a certain stabilization time has elapsed.

More intuition and elaborate description of the desired
properties from such a service are given in Section 3.

The concept of unbounded counters. By the definitions
used in this paper, the value of the clock is supposed to
grow unboundedly. As detailed below, under related work,
effort was invested in the literature in the nontrivial task of
bounding the clock value. Hence, in terms of the assump-
tion on the memory, the result in this paper is weaker than
in some other papers that we reference. On the on the other

hand, the result in the current paper is stronger in terms of
the time complexity. Having said that, let us try motivating
the theoretical assumption of “unbounded counters.”

First, let us note that the theory of computer science often
assumes memory unbounded machines. For example, a
Turing machine is assumed to have an infinite tape. A
machine with only a finite tape would be a finite state
automaton, which is usually considered too weak a model
to represent a realistic computer. An informal motivation

may be that a real machine (as opposed to a Turing
machine) may not posses infinite memory, but it has
“enough” memory for the specific instances of the problems
that it encounters. Another informal assumption mentioned
sometimes is that if a machine exhausts its memory, then it

will be given additional memory either by having people
upgrade it or by accessing some remote reserves.

Similarly, it is not difficult to use a clock variable that is
“virtually” unbounded. For example, if the clock has
several hundreds of bits, then the clock value will not reach
the bound, unless a fault tampers with the value and sets it
very high. Hence, had we not required self-stabilization, an
unbounded clock would not have posed any problem
whatsoever (except in the sense of a constant factor in the
memory complexity; recall that in this paper, we address
the time complexity).

A self-stabilizing algorithm must assume that a fault may
occur. Here, our assumption of an unbounded clock
prevents such a fault from bringing the clock close to a
bound. We note that unbounded memory, even for fault-
tolerant systems and unbounded clocks, are often assumed
in the literature (for example, see [27], [31], [32], [2]). In
addition, papers that use memory that is OðlognÞ when n,
which is the number of nodes, is not known and may
change may also be viewed as using unbounded memory.

We would nevertheless like to mention that there exists a
tool in the literature that can be used to solve the case that a
clock that is supposed to be “practically unbounded” does
reach a bound. This is not necessarily an efficient mechan-
ism. However, if the size of the clock is so large that it is
“practically unbounded,” then this happens rarely, so
efficiency may be somewhat less important.

Such a mechanism is a self-stabilizing reset protocol. Note
that reset is beyond the scope of the current paper (that deals
with unbounded counters) and is mentioned here only as a
motivation. However, such multiple protocols were sug-
gested in the literature, for example, see [3], [9], [7], [45], [51],
[23], [50], [13], [21], [5] to name just a few. Moreover, it was
noted in [1] that it is rather easy to translate a self-stabilizing
spanning tree construction protocol into a reset protocol. As
mentioned below, the important work of Spinelli and
Gallager [48] can also be transformed into a reset protocol
if we ignore the complexity.

A general approach to bounding unbounded counters by
using reset appeared in [8] (please see references therein for
papers presenting algorithms using unbounded counters).
Let us just sketch here the idea in that paper. A reset
protocol can be triggered by any nonempty subset of the
nodes. It is supposed to bring the network into a target
state, which is some predefined (legal) initial state. In the
case of an asynchronous system, a protocol (including a
reset protocol) cannot “act at the same time” in different
nodes. Hence, the actual target state is one that is a legal
successor of the above initial state. Moreover, the actual
target state is “close” to the desired initial state in the sense
that an asynchronous algorithm cannot distinguish between
them. More formally, both the actual target state and the
intended one can have the same snapshot. Hence, if the
clock value at some node (or nodes) reaches the bound, then
the reset protocol resets the values at all the nodes to an
intended target initial state of zero value (actually, the
system is reset to an actual target state, where some of the
values already moved up from zero but are not “too far,”
say, polynomial in n).
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Now, having established that “unbounded” clocks can
be used in practice (and even that they can be bounded if so
desired), let us try to discuss where their use can be more
desirable. First, note that, at least, in synchronous networks,
there exists a trivial solution that minimizes the number of
clock states. That is, the pulse assumed in the synchronous
networks model is already a clock whose number of states
is 1. This is good enough for some applications. For other
applications, the phase clock problem in a synchronous
network can be viewed actually as “how the number of
clock states can be increased” (the observation that the case
of a higher number of clock values may be harder than the
case of a smaller number is also implied in [36]).

In general, application requirements may sometimes call
for a clock that is unbounded. Applications written for a
model where a clock is assumed may include a statement
such as “wait x time (increments of the clock value) and
then take an action,” where x depends on the specific
instance of the input. It may even be the case that x is
computed by the application at runtime and that no a priori
bound on x is known in advance. Looking at an application
program and finding out before an execution what the
value of x is may even be undecidable. A clock of some
constant number of states may not be able to supply this
service for such an x.

Of course, an application may be able to use a constant
number of state clock to implement its own, say, x states
clock. However, this implementation requires solving a
version of the phase clock problem: Given a clock with a
states, design a clock with a given of b > a states.

Finally, the designers of a clock with a bounded number
of steps are more likely to take an action that decreases the
value of the clock (for example, to zero out its value). Such
an action is indeed taken in algorithms presented in some of
the papers mentioned below. We expect a typical applica-
tion using a phase clock to expect the value of the clock to
be monotonically increasing. Such an application may face
problems with decreases in the value of the clock.

Previous and subsequent work. The problem discussed
here bears some resemblance to the problem of clock
synchronization as addressed, for example, by the Internet
Time Protocol [42]. As mentioned in [11], there are differ-
ences between the two problems. Because of the very rich
literature on the latter problem, we cannot survey it here.

Synchronizers were the target of considerable research,
for example, [4], [12], [47], [10], [6]. The concept of self-
stabilization was introduced by Dijkstra [19]. A few general
“stabilizer” schemes that upgrade nonstabilizing protocols
to be self-stabilizing have been proposed. The problem
(termed there unison) of maintaining clocks in phase in
synchronous networks was discussed in [26] for unbounded
clocks. The algorithm was not self-stabilizing.

In [31], two self-stabilizing unbounded phase clock
algorithms for synchronous networks were suggested. We
note here that it is easy to see that one of these algorithms
(an adaptation of the algorithm in [26]) stabilizes also in
asynchronous networks. However, its stabilization time is a
function of the initial difference between the clock values.
This difference is controlled by faults and, hence, it may be
arbitrarily large. The second algorithm presented in [31]

uses a rule that, as shown in the current paper, does not
stabilize in asynchronous networks.

Several papers were devoted to bounding the size (in bits
or in states) of the clock. Two stabilizing bounded values
clock protocols for synchronous networks are presented in
[30]. The first was intended only for tree networks. Its
stabilization time is the diameter of the network. The
second is a probabilistic protocol for general (synchronous)
networks. A specific setting is given in [30], where the
expected stabilization time is exponential.

Other papers dealing with special topologies were
suggested, for example, [39], [33], [34]. In [11], a bounded
value self-stabilizing algorithm for synchronous networks is
presented. The problem there is named digital clocks, and
applications to chip designing are explained. The rule used
there is shown here not to stabilize for asynchronous
networks. In [17], the assumptions are both that the network
is synchronous and that a node can read in an atomic step
the values of all its neighbors. The algorithm uses a rule that
we show not to stabilize in asynchronous networks (the
main contribution in [17] is the reduction in the size of the
clock).

All of the above papers deal with the synchronous case. In
[28], a bounded-value self-stabilizing algorithm for asynchro-
nous networks is given. The stabilization time there too is a
function of the initial difference between the clock values.
Recall that this could be arbitrarily large. We note that the
advantage of our algorithm compared to that of [28] is
manifest in the case that no rollover is necessary (we assume
unbounded counters) or if rollover (reset) events are rare, as
in the case when a clock has hundreds of bits. In other cases
such as a deeply embedded very low power network,
relatively lean clocks with few bits are quite useful because
clock values can be piggybacked on messages with minimal
cost. In these cases, rollover might be relatively frequent, and
it can be handled gracefully by the algorithm in [28].

Two papers that appeared after the original version of
this paper deal with bounded counters, asynchronous net-
works, and self-stabilizing protocols. They improved the
time of other papers mentioned above; however, this
improvement relies on the assumption that certain graph
properties are known. In [29], it is assumed that a bound on
the diameter of the network is known, and the stabilization
time depends on this bound. In contrast, for our algorithm,
the time is of the order of magnitude of the actual diameter
(the main contribution of [29] is the useful additional
property of time adaptivity; that is, the stabilization time is
proportional to the number of faults). Recently, in [16], it is
assumed that the algorithm has access to a known bound on
the size of cycles with certain properties (such as the largest
hole in the graph). The stabilization time depends on that
bound (the main contributions of [16] are the bound on the
size of the counter and the demonstration that phase clocks
are applicable to a wide range of applications). In [16], in
every case that a node notices that its clock value is not
consistent with that of a neighbor, the node, in effect, resets
the whole system. We try avoiding such a drastic measure.
For example, if a new node joins the network, with its clock
value being 0, then the clock is corrected in Oð1Þ time
without a reset.
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Some of the clock papers deal with additional issues. For
example, a node in some of the algorithms performs a step
based on looking at one neighbor at a time (in our
algorithm, a node first reads all the neighbors; however,
we do not assume that this is done atomically). Other
papers combine dealing with transient state faults (by self-
stabilization) and dealing with other kinds of faults [24],
[25], [20], [46], [44]. The above survey is by no means
complete. We mainly mention here papers that we also
mention in the next section. There, we demonstrate why the
logic used by some of these papers does not yield optimal
stabilization time or, sometimes, even stabilization at all in
the asynchronous model.

A somewhat different problem was studied in [35], [36],
[37]. There, all the clocks should reach phase i before
phase iþ 1 is started (the implementation of a synchronizer,
studied in the current paper, only requires that the
difference between the clocks of neighbors is at most 1,
and this allows for large differences between clocks of
nodes that are far away). In [35], a known upper bound on
the diameter is assumed, and the stabilization time there
depends on that upper bound rather than on the actual
diameter. In [36], [37], the stabilization time depends on the
number of different clock values in the faulty state. In the
worst case, this number can be �ðnÞ (where n is the number
of the nodes), which is much larger than the actual diameter
that is a constant in the system studied in [36] (the main
issue in [36], [37] is tolerating multiple types of faults).

In the discussion of unbounded counters above, we
mentioned references for self-stabilizing reset. It is worth
stressing the important work of Spinelli and Gallager [48]
on topological update in dynamic networks. This algorithm
has many attractive features (in addition to its simplicity).
The main property of the algorithm is that it stabilizes in
time proportional to the diameter. Given such a self-
stabilizing protocol, many tasks become much simpler,
including the task of constructing a reset protocol. The space
and communication complexity of this algorithm is high.

Our results. We present a simple new rule for the self-
stabilizing synchronization of networks, with network slack
diameter and progress rate 1. Our rule does not invoke
global operations, stabilizes in time linear in the actual
diameter of the network without any prior knowledge, and
does not require any additional memory space (other than
for the pulse counter itself). By the lower bound in [39], this
stabilization time is optimal. In the course of developing
this rule, we obtain some interesting results regarding
common synchronization rules, with applications to clock
synchronization schemes. In particular, we show that rules
used in other contexts (especially rules used in algorithms
for synchronous networks) do not yield correct results here.
We believe that the analysis of the new rule captures some
of the inherent properties of synchronization.

Paper organization. This paper is organized as follows:
In Section 2, we define the basic notations and the model of
computation that we use. In Section 3, we develop the
requirements from a desirable synchronization scheme by
exploring the disadvantages of some popular schemes. In
Section 4, we specify the new synchronization rule and

analyze its complexity. In Section 5, applications to
problems other than synchronizers are mentioned.

2 NOTATIONS AND MODEL OF COMPUTATION

We model the processor network as a fixed undirected
graph G ¼ ðV ;EÞ. For u, v 2 V , we denote by distðu; vÞ the
length of the shortest path between u and v. We follow the
notational convention that n ¼ jV j and that

d ¼ diameter ¼ diameterðGÞ ¼ max
u;v2V
fdistðu; vÞg:

For each node v 2 V , we denote NðvÞ ¼ fu : distðu; vÞ � 1g.
We assume the model of unit capacity data links, in which

there is at most one outstanding message in transit on every
channel at any given time. If an outgoing link is not empty,
then the sender cannot send anything to it until the link
becomes empty (in [7], [50], it was justified as a realistic
model for any message passing system, with some bound on
the capacity of the channels).

The message delivery time can be arbitrary. For the
purpose of analysis, we normalize time so that each
message is delivered in at most one time unit. That is,
given an execution (for example, see [41]) of a distributed
algorithm, assign any duration to the delivery time of each
message, as long as this assignment is consistent with the
execution (and the relation happened before [38]). Call the
longest such duration one time unit. The time complexity is
the worst case (over the above duration assignments)
number of time units of an execution. We note that
computing the time according to this assumption is
equivalent to computing it according to another common
method of asynchronous rounds. See definition for time, for
example, in [41], [49].

Note that by the time a message arrives at its destination,
the state at the sender may have already changed. In terms
of the notion of the scheduler assumed sometimes in the
context self-stabilizing systems, this is equivalent to a
distributed daemon [15]. Without loss of generality, it is
nevertheless common to assume in a distributed asynchro-
nous system that an event (of receiving a message,
computing, and possibly sending messages) at a node is
atomic. Note that this does not restrict the model, since even
if several nodes take an action exactly at the same time, the
result of the actions of each node v cannot be known to
other nodes until v’s messages reach them.

We use the method of local detection or local checking [1],
[7], [50], in which each node constantly sends its state to all
its neighbors. This enables us to present our protocol in a
compact formulation of local rules. These rules are functions
that take the state of the neighborhood (made available by
the underlying local detection mechanism) and output a
new state for the node.

3 REQUIREMENTS AND EXAMPLES

In this section, we consider a few preliminary ideas for
synchronization rules. These ideas are not arbitrary. In
addition to their being intuitive, these ideas were used in
previous work, as well as in papers that appeared after the
original version of this paper. In other contexts (mainly in
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the context of synchronous networks), these ideas were

shown to yield correct algorithms, whereas in our context,

they fail (or, at least, are not time optimal). By studying the

properties of these algorithms, we develop and demonstrate

the requirements from a desirable scheme.
We start with a definition of the basic requirement of

synchronization.

Definition 3.1. Let G ¼ ðV ;EÞ be a graph and P : V ! IN be a

pulse assignment (where IN is the set of natural numbers). We

say that the configuration ðG;P Þ is legal for link ðu; vÞ,
denoted legalðu; vÞ, if jP ðuÞ � P ðvÞj � 1. The configuration is

said to be legal for a node v if it is legal for all its incident

links. The configuration is said to be legal if it is legal for all

e 2 E.

The idea behind Definition 3.1 is explained as follows: In

the synchronous setting, all messages sent at pulse i are

received by pulse iþ 1. When we simulate executions of

synchronous protocols on an asynchronous network, we do

not have a global pulse-producing clock. Rather, we want to
maintain the validity of the messages sent. This can be done

by ensuring that a node sends pulse iþ 1 messages only

after it has received all the pulse i messages from its

neighbors. Since message delivery is not simultaneous,

there can be a skew of the pulse counters at neighbors, but

this skew is allowed to be at most 1: if the pulse numbers at

two adjacent nodes differ by more than 1, then necessarily,
the node with the higher pulse number has advanced

without receiving all messages of prior pulses. This notion

of legal configuration gives rise to the following simple

synchronization rule, which is implicit in the � synchroni-

zer in [4] (we note that self-stabilization is not a concern in

[4]; however, similar rules are used in papers that ensured

self-stabilization [11], [31], [30], [17], [34]).

Rule 1 (Min Plus One).

P ðvÞ  min
u2NðvÞ

fP ðuÞg þ 1:

The idea is that just before the pulse number is changed, the
node sends out all the messages of previous rounds, which
have not been sent yet. Note that since v 2 NðvÞ, we have
minu2NðvÞfP ðuÞg � P ðvÞ and, hence, P ðvÞ cannot increase by
more than 1 in a single application of Rule 1. This has the
nice consequence that each node goes through all pulse
numbers, as expected.

Stabilization issues. As is well known, Rule 1 is stable; that is,
if the configuration is legal (as in Definition 3.1), then
applying the rule arbitrarily can yield only a legal configura-
tion. Notice, however, that if the state is not legal, then
applying Rule 1 may cause pulse numbers to drop. This is
something to worry about, since the regular course of the
algorithm requires pulse numbers only to grow. Thus, it is
conceivable that actions taken in legal neighborhoods are
adversely affected by the actions taken in illegal neighbor-
hoods. This intuition is captured by the following theorem.

Theorem 3.1. Rule 1 is not self-stabilizing.

Proof. The proof is by a counterexample. Consider the pulse
configuration of a 10-node ring, as depicted in Fig. 1a.
The vertical edges represent illegal links. Consider now
the execution described in Figs. 1a, 1b, 1c, 1d, 1e, 1f, 1g,
1h, and 1i, obtained by the repeated application of
Rule 1. It is readily seen that the last configuration
(Fig. 1i) is basically identical to the configuration in
Fig. 1a, with all the pulse numbers incremented by 1, and
rotated one step counterclockwise. Repeating this sche-
dule results in an infinite execution, in which each
processor takes infinitely many steps, but none of the
configurations is legal. tu

Let us make a short digression here. The above leads also
to an interesting observation for clock synchronization: One of
the popular schemes for clock synchronization [40] is
“repeated averaging.” Roughly speaking, under the re-
peated averaging rule, each node sets its value to be the
average value of its neighbors but advances the clock if this
average is close enough to its own value.

Observation 3.2. Repeated averaging does not stabilize.
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Proof sketch. The scenario in the proof of Theorem 3.1

shows that averaging with rounding down does not work.

A similar scenario can be constructed for averaging with

rounding up.
Time complexity issues. Consider Fig. 1a. Note that the

illegal state manifests in the fact that the nodes with the

minimum clock values have value gaps with their neigh-

bors (1 versus 3). Intuitively, one would hope that the illegal

state is resolved by the fact that the nodes with the

minimum value increment their clocks and catch up with

the others. Looking at Fig. 1i, the nodes with the minimum

values indeed incremented their clocks. However, other

nodes decreased the values of their clocks and became the

new minima. Moreover, the illegal state in 1 (Fig. 1i)

manifests again in the gap in the values between these

minimum nodes and their neighbors (2 versus 4).
One idea that can pop into mind in trying to repair the

flaw exposed by the proof on the previous page is never

letting pulse numbers go down. A similar rule appears in

[28] (except for the case of a wraparound of the bounded

clock). In [31] (Section 5), such a rule is suggested as a

modification that makes the rule in [26] self-stabilizing.

Formally, the rule is the following:

Rule 2 (Monotone Min Plus One).

P ðvÞ  max P ðvÞ; min
u2NðvÞ

fP ðuÞg þ 1

� �
:

Rule 2 can be proven to be self-stabilizing. However, it

suffers from a serious drawback regarding its stabilization

time. Consider the configuration depicted in Fig. 2.
A quick thought should suffice to convince the reader

that the stabilization time for this configuration using Rule 2

is about 1,000,000 time units, which seems to be unsatisfac-

tory for such a small network. This example demonstrates

an important property that we shall require from any self-

stabilizing protocol: The stabilization time must not depend

on the initial state; rather, it should be bounded by a

function of the network topology. A clear lower bound on

the stabilization time is the diameter of the network (for

example, if n� 1 nodes must change their pulse number).

In the example above, using Rule 2, the stabilization time

depends linearly on the value of the pulses, thus implying

that the stabilization time can be arbitrarily large.
Asynchrony issues. The next idea is to have a combination

of rules: Certainly, if the neighborhood is legal, then the

problem specification requires that Rule 1 is applied.

However, if the neighborhood is not legal, then another

rule can be used. The first idea that we consider is the

following Maximum rule for the case that a node detects

locally that the network is not stable. A similar rule is used

in [31], [11], [20] in the context of synchronous networks.

Rule 3 (Maximum).

P ðvÞ  minu2NðvÞfP ðuÞg þ 1; if legalðvÞ
maxu2NðvÞfP ðuÞ; P ðvÞg; otherwise:

�

It is straightforward to show that if an atomic action consists
of a node reading its neighbors and setting its own value (in
particular, no neighbor changes its value in the meantime),
then Rule 3 above converges to a legal configuration.
Unfortunately, this model, traditionally called the central
daemon [19], [14], requires tight synchronization between
nodes, which is not considered realistic usually. As shown in
[31], [11], a similar rule suffices even without such an atomic
action, but assuming a synchronous network. Unfortunately,
Rule 3 does not work in asynchronous networks without a
central daemon.

Theorem 3.3. Rule 3 is not self-stabilizing in an asynchronous
system.

Proof. A scenario where the system does not self-stabilize is
given in Fig. 3. The move from the configuration in
Fig. 3c to that in Fig. 3d may seem surprising. However,
in an asynchronous environment, the message that the
left node increased its clock value from 2 to 4 (moving
from Fig. 3a to Fig. 3b) may be slower than messages
from the node on the right. In this case, the estimation at
the middle node of the value of the left node in the
configuration in Fig. 3c is 2. The middle node then
applies the correcting part of Rule 3, resulting in yet
another illegal configuration (Fig. 3d). Since the config-
uration in Fig. 3e is equivalent to the configuration in
Fig. 3a, with pulse numbers incremented by 2, we
conclude that repeating this schedule results in an
execution with infinitely many illegal states. tu
Locality and simplicity issues. Finally, we would like to

address two properties that are somewhat harder to capture
formally: locality and simplicity. It seems, however, that these
properties are of the highest importance in practice. The
rules discussed above exhibit these properties, even though
each such rule had other disadvantages. In mending the
above rules, we should not spoil the locality and simplicity
that they exhibit.

By locality we mean that it is much preferable that a
processor will be able to operate while introducing only the
minimal possible interference with other nodes in the
network. In other words, invoking a global operation is
considered costly, and we would like to avoid it as much as
possible. One way to capture this intuition approximately in
our case is to require that the only state information at the
nodes is the pulse number and that protocols should
operate by applying local rules as above.

6 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO. 3, JULY-SEPTEMBER 2007

Fig. 2. A pulse assignment for Rule 2.

Fig. 3. An execution using Rule 3 in a truly distributed system. The node

that sends or receives in each step is marked.



As an illustrative exercise, contrast this approach with
the following solution: Whenever an illegal state is detected,
reset the whole system. This solution, although it may be
unavoidable in some cases, does not seem particularly
appealing as a routinely activated procedure. Consider, for
example, the common situation in which a new node joins
the system (perhaps, it was down for some time). We would
like the protocols to feature graceful joining in this case, that
is, that other nodes would be affected only if necessary (for
example, the neighbors). Note that a rule that reduces the
value of a clock always to the minimum among the
neighbors will not handle such a join gracefully, even if
no reset is used. That is, the joining node may have a zero
value for its pulse. A rule such as Rule 1 can cause all the
nodes in the network to reduce the values of their clocks
significantly.

The last property that we require from distributed
protocols is even harder to define precisely. Essentially,
we would like to have the protocols conceptually simple.
This will make the protocols easy to understand and,
therefore, easy to implement and maintain. This require-
ment is one of the main obstacles for many sophisticated
protocols that are not used in practice.

4 AN OPTIMAL SELF-STABILIZING RULE

In this section, we give a simple self-stabilizing optimal rule
of synchronization and analyze its stabilization time.
Specifically, our synchronization scheme is based on the
following rule.

Rule 4 (Max Minus One).

P ðvÞ  minu2NðvÞfP ðuÞg þ 1; if legalðvÞ
maxu2NðvÞfP ðuÞ � 1; P ðvÞg; otherwise:

�

In words, Rule 4 requires applying a “minimum-plus-
one” rule (Rule 1) when the neighborhood seems to be in a
legal configuration and if the neighborhood seems to be
illegal to apply a “maximum-minus-one” rule (but never

decrease the pulse number). The similarity to the “max-
imum” rule (Rule 3) is obvious. The intuition behind the
modification is that if nodes change their pulse numbers to
be the maximum of their neighbors, then “race conditions”
might evolve, where nodes with high pulse numbers can
“run away” from nodes with low pulse numbers. Since the
correction action takes the pulse number to be 1 less than
the maximum, nodes with high pulse number are “locked,”
in the sense that they cannot increment their pulse counters
until all in their neighborhood have reached their pulse
number. This “locking” spreads automatically in all the
“infected” area of the network. Formally, the way Rule 4
corrects any initial state is analyzed in detail in the proof of
Theorem 4.1.

Theorem 4.1. Let G ¼ ðV ;EÞ be a graph with diameter d and
P : V ! IN be a pulse assignment. Then, applying Rule 4
above results in a legal configuration in at most d time units.

In order to prove Theorem 4.1, we develop some tools to
analyze the behavior of the synchronization scheme. The
basic concept that we use is a certain potential value that we
associate with every node, described in the following
definition.

Definition 4.1. Let v be a node in the graph. For any node u, the
wave height of u over v is

DvðuÞ ¼ P ðuÞ � P ðvÞ � distðu; vÞ:
The potential of v, denoted �ðvÞ, is

�ðvÞ ¼ max
u2V
fDvðuÞg:

Intuitively, DvðuÞ measures by how much the pulse
number of v lagging behind the pulse number of u is after
allowing for a correction due to the distance between them.
The potential �ðvÞ is a measure of the largest distance-
adjusted skew in the synchronization of v. Graphically, one
can think that every node u is a point on a plane, where the
x-coordinate represents the distance of u from v, and the
y-coordinate represents the pulse numbers (see Fig. 4 for an
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Fig. 4. (a) An example of a graph with pulse assignment. Geometrical representations of this configuration are shown in (b) and (c). (b) The plane

corresponding to node c is shown, and (c) the plane corresponding to node b is shown. As can be readily seen, �ðcÞ ¼ 1 and �ðbÞ ¼ 4. Also, �ðcÞ ¼ 1

and �ðbÞ ¼ 1 (see Definition 4.2).



example). In this representation, v is at the origin (and it is
the only node on the line x ¼ 0), DvðuÞ is the vertical
distance between u and the 45-degree line from the origin,
and �ðvÞ is the maximal vertical distance DðuÞ of any point
(that is, node u) above the 45-degree line yðxÞ ¼ P ðvÞ þ x.

Let us start with a few simple properties of �.

Lemma 4.2. For all nodes v 2 V , �ðvÞ � 0.

Proof. By definition, �ðvÞ � DvðvÞ ¼ 0. tu
Lemma 4.3. A configuration of the system is legal if and only if

for all v 2 V , �ðvÞ ¼ 0.

Proof. Suppose first that �ðvÞ ¼ 0 for all v. Then, in
particular, for each edge ðu; vÞ, we have

P ðuÞ � P ðvÞ ¼ DvðuÞ þ 1 � �ðvÞ þ 1 ¼ 1;

and, similarly, P ðvÞ � P ðuÞ � 1. That is, the difference
between the pulse numbers of every pair of neighbors is
at most 1, so the configuration is legal. Conversely,
suppose now that �ðvÞ > 0 for some node v. Then, for
some node u, DvðuÞ > 0, that is, P ðuÞ � P ðvÞ > distðu; vÞ.
Pick any path from u to v of length distðu; vÞ. Since the
difference in the pulse assignments in the end points is
larger than the number of links along the path, by the
pigeonhole principle, there must exist a link ðw; yÞ on the
path such that P ðyÞ � P ðwÞ > 1 and, hence, the config-
uration is illegal. tu
So far, we analyzed a given configuration in terms of the

values of the pulse counters at the nodes. We now turn to
analyze the way configurations change dynamically over
time. To this end, we must consider the effect of the
asynchronous schedule. In particular, at any given instant,
the value of a pulse counter at a node may not necessarily
be its value as perceived by its neighbor. We denote the
pulse value of a node x as perceived by its neighbor y by
PxðyÞ. Another notational convention that we adopt is that
when we talk about two states where one occurs before the
other, we denote all functions of the later state by a prime;
for example, �ðvÞ is the potential of v in the first state, and
�0ðvÞ is the potential of v in the later state.

To facilitate the analysis, we first state the self-stabiliza-
tion property that we assume on the links.

Lemma 4.4. Suppose that the computation starts in an arbitrary
state. Consider the sequence of pulse values PuðwÞ read by a
node u from a neighbor w and the sequence of P ðwÞ values in
node w. Then, with the possible exception of a prefix of at most
T0 time units, these sequences are identical and, moreover,
every value of P ðwÞ appears as a value of PuðwÞ after at most
one time unit.

For the remainder of the discussion, we will identify the
start of the computation with the aforementioned T0; that is,
our analysis assumes that the links have already stabilized.

The following lemma is the key to dealing with an
asynchronous schedule.

Lemma 4.5. For all neighbors u and v at all times, we have
PvðuÞ � P ðuÞ.

Proof. The proof follows from Lemma 4.4, and the fact
that the sequence of pulse numbers in a node is
nondecreasing. tu

Lemma 4.6. Consider a given state and suppose that some node u
changes its pulse number by applying Rule 4. Then, for all
nodes v 2 V , �0ðvÞ � �ðvÞ.

Proof. The first easy case to consider is the potential of u
itself. Since by Lemma 4.5, P 0ðuÞ > P ðuÞ in this case, we
have

�0ðuÞ ¼ max
w2V
fP 0ðwÞ � P 0ðuÞ � distðw; uÞg

¼ max max
w 6¼u
fP ðwÞ � distðw; uÞ � P 0ðuÞg0

� �

� max
w2V
fP ðwÞ � P ðuÞ � distðw; uÞg

¼�ðuÞ:

Let us now consider v 6¼ u. The only value that was
changed in the set fDvðwÞjw 2 V g is DvðuÞ. We prove
that D0vðuÞ � DvðwÞ for some w 2 NðuÞ and, hence,
�0ðvÞ � �ðvÞ. There are two cases to consider. First,
assume that u changed its pulse by applying the “min
plus one” part of Rule 4. Since u 6¼ v, there must be a
node w 2 NðuÞ, with distðw; vÞ ¼ distðu; vÞ � 1. Also,
since “min plus one” was applied, and using Lemma 4.5,
we have P 0ðuÞ � PuðwÞ þ 1 � P ðwÞ þ 1. Therefore,

D0vðuÞ ¼P 0ðuÞ � P ðvÞ � distðu; vÞ
� ðP ðwÞ þ 1Þ � P ðvÞ � ðdistðw; vÞ þ 1Þ
¼P ðwÞ � P ðvÞ � distðw; vÞ
¼DvðwÞ

and, hence, �0ðvÞ � �ðvÞ in this case.
The second case to consider is when u has changed its

value by applying the “max minus one” part of Rule 4.
The reasoning is dual to the first case. Let w be a neighbor
of u such that PuðwÞ ¼ maxfPuðrÞjr 2 NðuÞg. Then, using
Lemma 4.5, we have P ðwÞ � PuðwÞ þ 1 ¼ P 0ðuÞ þ 1. By
the triangle inequality, distðw; vÞ � distðu; vÞ þ 1 and,
hence,

D0vðuÞ ¼P 0ðuÞ � P ðvÞ � distðu; vÞ
� ðP ðwÞ � 1Þ � P ðvÞ � ðdistðw; vÞ � 1Þ
¼P ðwÞ � P ðvÞ � distðw; vÞ
¼DvðwÞ

and we are done. tu
In other words, each time a node with a positive

potential changes its pulse number, its potential strictly
decreases. This fact, when combined with Lemmas 4.2 and
4.3, can be used to prove eventual stabilization. However,
this argument only shows that the stabilization time is
bounded by the total potential of the configuration, which,
in turn, depends on the initial pulse assignment. We need a
stronger argument in order to prove a bound on the
stabilization time that depends only on the topology, as
asserted in Theorem 4.1. Toward this end, we define the
notion of “wave front.”

Definition 4.2. Let v be any node. The wave of v, denoted WðvÞ,
is the set

WðvÞ ¼ fu 2 V jDvðuÞ ¼ �ðvÞg:
The wave front distance of v, denoted �ðvÞ, is defined by

�ðvÞ ¼ minfdistðu; vÞju 2W ðvÞg:

In the graphical representation, the wave front distance
of a node is simply the distance to the closest node on the

8 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO. 3, JULY-SEPTEMBER 2007



“potential line” (see Fig. 4 for an example). Intuitively, one
can think of �ðvÞ as the distance to the “closest clock that is
maximum too far ahead” of v. The importance of the wave
front becomes apparent in Lemma 4.10, but let us first state
its immediate property.

Lemma 4.7. Let v 2 V . Then, �ðvÞ ¼ 0 if and only if �ðvÞ ¼ 0.

The following lemma captures the “locking effect” of the
“max minus one” part of Rule 4.

Lemma 4.8. Suppose that at a given state, �ðvÞ > 0, and
u 2W ðvÞ. Then, applying Rule 4 does not change the pulse
number at u.

Proof. First, we claim that for all w 2 NðuÞ, we have P ðwÞ �
P ðuÞ þ 1 because

P ðwÞ ¼ DvðwÞ þ P ðvÞ þ distðv;wÞ
� DvðuÞ þ P ðvÞ þ distðv; uÞ þ 1 ¼ P ðuÞ þ 1:

It follows that any application of the “max minus one”
part of Rule 4 cannot increase the number at u. As for the
“min plus one” part, suppose that all links incident to u
are legal. Observe that u 6¼ v because �ðvÞ > 0. Let w 2
NðuÞ be such that distðv; wÞ ¼ distðv; uÞ � 1; that is, w is
on the shortest path from v to u. Since u 2WðvÞ, we have
DvðwÞ � DvðuÞ and, hence,

P ðwÞ ¼ DvðwÞ þ P ðvÞ þ distðv;wÞ
� DvðuÞ þ P ðvÞ þ distðv; uÞ � 1 ¼ P ðuÞ � 1:

Therefore, if u applies the “min plus one” part of Rule 4,
then the resulting pulse number cannot be more than
P ðwÞ þ 1 ¼ P ðuÞ; that is, P ðuÞ remains unchanged. tu
The following lemma states that WðvÞ is monotonically

growing, so long as the potential of v is positive.

Lemma 4.9. Suppose that at a given state, u 2WðvÞ. If in the
following state, �0ðvÞ > 0, then u 2W 0ðvÞ.

Proof. Suppose that node x applied Rule 4 between the two
states. By Lemma 4.8, if x ¼ u, then the state remains
unchanged, and the lemma follows trivially. If x ¼ v, then
for all nodes, w 6¼ v,D0vðwÞ ¼ DvðwÞ � ðP 0ðvÞ � P ðvÞÞ; that
is, allDv values are decreased by the same amount (which
is exactly the increase in the pulse number of v).
Therefore, D0vðuÞ remains maximal among D0vðwÞ values
for w 6¼ v. If �0ðvÞ > 0, then D0vðuÞ > D0vðvÞ and, hence,
u 2W 0ðvÞ. Finally, suppose that x =2 fu; vg moved. In this
case, D0vðuÞ does not change and, hence, �0ðvÞ ¼ �ðvÞ by
Lemma 4.6. It follows that u 2W 0ðvÞ in this case too. tu

Lemma 4.10. Suppose that at a given state, we have �ðvÞ > 0.
Then, after one time unit, we have �0ðvÞ � �ðvÞ � 1.

Proof. Suppose �ðvÞ ¼ f > 0 at the given state. If after one
time unit, we have �0ðvÞ ¼ 0, then we are done, since in
this case, �0ðvÞ ¼ 0 by Lemma 4.7. Thus, assume
henceforth that �0ðvÞ > 0. Consider any node u 2WðvÞ
such that distðu; vÞ ¼ �ðvÞ. Let closervðuÞ 2 N ðuÞ be such
that distðv; closervðuÞÞ ¼ f � 1; that is, closervðuÞ is on the
shortest path from v to u. Note that such a node closervðuÞ
must exist because �ðvÞ > 0 and, hence, u 6¼ v. We claim
that after one time unit, P 0ðcloservðuÞÞ � P ðuÞ � 1. To see
that, first note that at the given state, P ðcloservðuÞÞ �
P ðuÞ � 1 because closervðuÞ =2WðvÞ (otherwise, �ðvÞ
would have been f � 1). This means that the link
ðcloservðuÞ; uÞ is in an illegal state. Therefore, after at

most one time unit, closervðuÞ will read the pulse number
of v, and by Rule 4, this will set its pulse number to be at
least P ðuÞ � 1. It follows that after one time unit, for
each node in u 2WðvÞ, there exists a node closervðuÞ,
which is closer to v by one unit and whose pulse
number is at least P ðuÞ � 1, which means that
D0vðcloservðuÞÞ � D0vðuÞ. Since by Lemma 4.9, u 2W 0ðvÞ,
we must also have closervðuÞ 2W 0ðvÞ and, therefore,
�0ðvÞ � �ðvÞ � 1. tu
The next corollary follows from Lemma 4.7 and an

inductive application of Lemma 4.10.

Corollary 4.11. Let v be any node. Then, after at most �ðvÞ time
units, �ðvÞ ¼ 0.

We can now prove Theorem 4.1.

Proof of Theorem 4.11. By Lemma 4.3, it suffices to show
that after at most d time units, �ðvÞ ¼ 0 for all v 2 V .
From Corollary 4.11, we actually know that a slightly
stronger fact holds: for all nodes v 2 V , after at most �ðvÞ
time units, �ðvÞ ¼ 0. The theorem follows from the facts
that for all v 2 V , �ðvÞ � d, and by the fact that �ðvÞ
never increases by Lemma 4.6. tu
It is straightforward to see that starting in a legal

configuration, every application of Rule 4 leaves the system
in a legal configuration, as long as no additional faults
occur. Clearly, our Rule 4 satisfies the synchronization
condition; that is, any message sent at local pulse i is
delivered at the other end point before its local pulse iþ 1
(see discussion after Definition 3.1). Finally, note that our
synchronizer has progress rate 1 and network slack equal to
the diameter of the network.

5 CONCLUSION

Many of the related papers deal with aspects that are not
studied in the current paper. Below, we mention some such
issues and discuss how they may be relevant to our paper
or to future research.

The tool proposed here seems to motivate the research
about composition between self-stabilizing protocols to
obtain a good time complexity. Specifically, one may want
to use a reset procedure, together with the algorithm
proposed here, in order to make the result work for bounded
clocks. Such a specific kind of composition was discussed in
[8], as well as in the original version of this paper, but only
for the task at hand. This issue was later developed in a
wider context in other papers such as [22]. It seems that there
are still interesting open questions in this area.

In this paper, we devised a phase clock as a method to
synchronize networks in a self-stabilizing manner. As noted
in [16], [26], [20], [31], [11], a phase clock has many other
applications. An interesting question is whether better
algorithms exist for specific applications. In particular,
should one need a synchronizer only (the application
discussed in this paper)? Does there exist better algorithms
for that problem (better than for the asynchronous phase
clock problem)? For example, multiple papers dealt with
the issue of bounding the size of the phase clock. Given a
lower bound on the size of phase clocks, does this lower
bound apply to the problem of constructing a self-
stabilizing synchronizer?

As mentioned above, a trivial solution of one state exists
in synchronous networks. However, such a solution is not
useful (beyond the service that a synchronous network
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provides anyhow). It was shown in [39] that no determi-
nistic clock algorithm for a clock with a constant number of
bits exists. It was mentioned in [11] that their scheme needs
�ðnÞ states in some graph in order not to deadlock. Note
that any local scheme (incrementing the value of the clock
based only on the value of the clocks of a node and its
neighbors) must use Rule 1 in cases where the clock values
are legal. Since this is the rule used in [11], there exist
graphs where the size of the clock is bounded from below
by �ðnÞ for “local” schemes (as shown in [16], there exist
smaller clocks in many graphs). Does this lower bound
apply to local schemes for a self-stabilizing synchronizer?
What is the minimum size of a clock if the algorithm is not
required to be local (in the sense mentioned above)? It
seems likely that such a nonlocal algorithm may consume
more time between pulses. Is there a time-rate trade-off?
Moreover, our time optimal algorithm is not space optimal.
Does there exist an algorithm that is optimal in all the
parameters?

Several papers deal with models that allow additional
kinds of faults such as crash faults, napping faults, and
Byzantine faults. For example, see [24], [25], [20], [46]. One
can ask what the optimal stabilization time in these models
is. Is it inherently larger than the model of self-stabilization?
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