
Tel Aviv University
Raymond and Beverly Sackler Faculty of Exact Sciences

The Blavatnik School of Computer Science

Keyword Optimization in Search-Based Advertising

Markets

Thesis submitted in partial fulfillment of the requirements

for the M.Sc. degree of Tel-Aviv University

by

Yuval Netzer

The research work for this thesis has been carried out at Tel-Aviv University under the

supervision of

Prof. Yishay Mansour

Acknowledgements

I am heartily thankful to my supervisor, Prof. Yishay Mansour, whose encouragement,
guidance and endless patience allowed me to complete this thesis.

I would also like to thank my loved wife and kids Iris, Itai and Avigail, all who have
supported me in this research, each in their own way :)

Last, I offer my regards and blessings to all of those who supported me in any respect
during the completion of this project.

i

Table of Contents

Page

Table of Contents . ii
Chapter

1 Introduction . 1
1.1 Search-Based Advertising . 1
1.2 Keyword Optimization in Search-Based Advertising 2
1.3 Search related auctions . 4
1.4 Main results . 5

2 The Offline Advertiser’s Keyword Optimization problem 6
2.1 Model definition . 6
2.2 Solving the offline deterministic keyword problem 8
2.3 Prefix policies . 10

3 Online Stochastic Keyword Optimization . 14
3.1 Model definition . 14
3.2 Prefix policies . 15
3.3 Solving the Online problem . 23
3.4 Bucket policies . 24
3.5 Stochastic Model Lower Bound . 26

4 The adversarial Advertiser’s Keyword Optimization problem 27
4.1 Model definition . 28
4.2 Adversarial problem setting . 29
4.3 Analysis of the daily profits . 29
4.4 Information theoretic bound . 31
4.5 Adversarial Lower Bound . 34

5 Experiments . 37
5.1 Experimental Settings . 37
5.2 The Adaptive Bidding algorithm . 41
5.3 An improved UCB1 algorithm . 42
5.4 Results . 43
5.5 Robustness Of Model Free Algorithms . 46

References . 53

ii

Abstract

Search-based advertising is a multi-billion industry which is part of the growing electronic
commerce market. In this work, we study the search-based advertising market from the
advertiser’s point of view. There are three natural participants in the search-based ad-
vertising: the advertisers, promoting their products to consumers based on their search
queries, the users, which are searching for content, and the search providers, who match
the advertisers and users by placing ads in search result pages. It is customary today for
the advertisers to pay only for ad clicks. This guides both the advertisers’ and the search
providers’ strategy. The advertisers’ strategy, which is the focus of this work, requires them
to select keywords, bids and a budget constraint imposed on their advertising spending.
We abstract an optimization problem in which the advertisers set a daily budget and select
a set of keywords on which they bid. We assume that the cost and benefit of keywords is
fixed and known, sidestepping this important strategic issue and focusing on the keyword
optimization problem. The advertisers’ goal is to optimize the utility subject to its budget
constraint. Clearly the advertisers would like to buy the most profitable keywords, subject
to the budget constraint. The problem is that there is uncertainty regarding the type and
number of queries in a day, and the advertisers have to fix a single policy for the online
day. If too few keywords are selected, the advertisers remain with unused budget. If too
many keywords are selected, at the time keywords associated with ’good’ ads appear, the
daily budget may have already been exhausted.

We study the advertisers’ keyword optimization problem in three different settings:
in an offline problem setting in which all problem parameters are known beforehand, in
a stochastic model in which the advertiser knows only some of the parameters of the
stochastic model, and in an adversarial model which makes no statistical assumptions
about the generation of the query sequences. For each of these models we provide lower
and upper bounds to the performance of learning algorithms while using the notion of
regret minimization [1].

We support our theoretical results with extensive simulations in a simulated environ-
ment while comparing our algorithm’s performance against the performance of algorithms
suggested in [3].

Chapter 1

Introduction

1.1 Search-Based Advertising

In the last decade, search-based advertising has become a multi-billion industry and a
market of major interest for many companies. Search-based advertising is a method of
placing online advertisements on Web pages that show results from search engine queries.
These advertisements are targeted to match key search terms (keywords) queried on search
engines. Consumers often use the search engine to identify and compare purchasing options
immediately before making purchasing decisions. The opportunity to present consumers
with advertisements tailored to their immediate buying interests encourages consumers to
click on search ads instead of unpaid search results, which are often less relevant. This
highly focused targeting ability has contributed to the attractiveness of search advertising
for advertisers.

Search based advertising usually takes the following form: when an Internet user enters
a search query into a search engine, he gets back a page with results, containing both the
links most relevant to the query and additional sponsored links which are advertisements.
These sponsored links are distinguishable from the ”organic” search results presented, and
different searches yield different sponsored links. When a user clicks on these sponsored
links, he is sent to the advertisers Web page. A company whose ad is displayed pays the
search engine only when the consumer clicks on the ad. For each such click, the advertiser
pays the search engine a payment determined by the auction mechanism, which is used by
the search engines to sell the online advertising.

The three main players taking place in the search-based advertising market are the
advertisers, the search engines and the consumers (search engine users):

1. The advertisers are companies or individuals interested in promoting their products
to consumers based on their search queries. In most search-based advertising services,
a company sets a daily budget, selects a set of keywords, determines a bid price for
each keyword, and designates one or more ads associated with each selected keyword.
The companies try to maximize their utility of this budget and measure metrics such
as cost per click (CPC) and conversion rates (the percentage of clicks that result in
a commissionable activity, i.e., sale or lead).

2. The search engines - in order to determine which ads to present given a user query, the
search engines conduct auctions to sell ads according to bids received for keywords
matching the query and the relative relevance of the user query to the ads in the
inventory. Since the search engine is paid only for clicks, it is in its interest to present
advertisement on which the user is likely to click. The number of ads that the search

1

engine can present to a user is limited, and different positions on the search results
page yield different results, e.g., an ad shown at the top of a page is more likely
to be clicked than an ad shown at the side. The mechanism most widely used by
search engines are based on the generalized second-price (GSP) auction [2]. In a GSP
auction the bidder pays the minimal bid that is required to get the position he was
assigned.

3. Consumers - when a consumer searches using a search engine, their queries are
matched against advertiser’s selected keywords. The search engines then display
the ads associated with the highest quality scores for those keywords on the search
result page. The quality scores combine the bids and signals such as the keywords’
expected clickthrough rates.

The advertisers, who wish to promote their goods and services via search-based adver-
tising, need to decide between millions of available keywords and a highly uncertain click-
through rate associated with the ads matched to them. Identifying the most profitable
set of keywords, given the daily budget constraint, is a challenging task. This challenging
optimization problem is the subject of this work.

In the rest of this chapter we describe related work and our main thesis results.

1.2 Keyword Optimization in Search-Based Advertis-

ing

Keyword optimization for search based advertising has been the focus of some theoretical
and applicative work.

Rusmevichientong and Williamson ([3]) have formulated a model for keyword selection
in search based advertising. In their model, the advertiser has a fixed daily budget and each
keyword has fixed known cost and profit. However, the keyword click-through probabilities
are unknown. The number of queries appearing in each of the days, as well as the distribu-
tion of keywords, are generated probabilistically with known parameters. They justify their
assumptions about keyword costs and distribution by identifying multiple public available
data sources that may be used to estimate these parameters.

The main result of [3] is to develop an algorithm that adaptively identifies a set of
keywords to bid on, based on historical performance. The algorithm uses a prefix of a
sorted list of keywords, which are sorted by descending order of profit-to-cost ratios, and
uses an approximation algorithm for the stochastic knapsack [4]. They prove that by
considering only subsets of keywords that are prefix, they achieve near optimal profits while
reducing the size of the decision space from 2N to N , where N is the number of keywords
in the problem. The policy adaptively selects prefix keywords in order to maximize the
total expected profit. There is a tradeoff between selecting too few profitable keywords,
and not exhausting the entire daily budget, versus selecting too many keywords, and thus
losing opportunities to receive clicks from profitable words that may arrive after the daily
budget is exhausted. As the click-through rates are unknown, their algorithm balances
between selecting keywords that yield high average profits based on past performance,

and selecting previously unused keywords in order to learn about their click-through rates.
This exploration-exploitation dilemma is well known in the machine learning literature.
Their algorithm mixes between selecting a prefix subset that has an expected cost which is
close to the daily budget, using estimations of click-through rates given past observations
(exploitation), and a random prefix subset (exploration).

Assuming the cost of each click is sufficiently small compared to the daily budget and
that the expected number of searched keywords is close to its mean, they prove that in
expectation the algorithm converges to near optimal profits, where the closeness to opti-
mality depends on how well these assumptions are satisfied. They also perform numerical
simulations to show that their algorithm outperforms existing multi armed bandit algo-
rithms such as UCB1 [5] and EXP3 [6]. Their main point in this comparison is that the
convergence rates of these bandit algorithms, which ignore the special structure of the
problem, depends on the number of keywords, which in practice might be very large. In
contrast their algorithm depends primarily on the largest l such that the expected cost of
the prefix {1, 2, . . . , l} does not exceed the budget. They claim that in practice this number
is significantly smaller then the total number of keywords.

Muthukrishnan et al. ([7]) study the keyword optimization problem under various
stochastic models. In their work, they put a special emphasize on the stochastic models
of the arriving queries, and study the evaluation (given a keyword selection - evaluating
the expected profit) and optimization problems (selecting a bid solution which maximizes
profit) of such models. They present algorithmic and complexity results for three stochastic
models, where in all three models the optimization problem is non convex. Their work also
differs from the work of [3] as they solve the problem in advance rather then by adaptive
learning of the parameters. The three stochastic models discussed in [7] are:

1. Fixed proportions model - in this model the only random variable is the total number
of clicks in a day and the proportions of clicks of each of the keywords remains
constant. For this model they first prove that an optimal solution is a fractional
prefix. In a fractional prefix the advertiser bids on all sorted keywords up to a selected
keyword. For that last keyword in the prefix, the advertiser assign a probability p
which is the probability that he will bid on queries from that keyword. They prove,
using an interchange argument, that there is a fractional prefix which is optimal.
They further show that finding the optimal prefix solution is non trivial since there
are local maxima. Therefore setting the number of clicks to its expectation for each
of the keywords and solving a deterministic problem, or alternatively, the greedy
procedure which starts with an empty solution and keeps adding keywords - both fail
due to possible multiple local maxima. Their solution to the optimization problem
overcomes the infinite number of possible fractional prefix solutions by showing that
it is sufficient to evaluate a polynomial set of ”interesting” solutions which depends
on the number of keywords and the number of different values the total number of
clicks can take.

2. Independent keywords model - in this model, the number of clicks for each keyword
has it’s own probability distribution (which can be different for different keywords).
The key distinguishing feature of this model is that for different keywords, the number

of clicks are independent. For this model they prove that the prefix solution may not
be an optimal solution and there exists a prefix solution which is a 2-approximation
to the optimal solution. They also present a PTAS for evaluating the expected
profit of a proposed policy which combined with the previous result implies a (2 + ǫ)
approximation algorithm.

3. Scenario model - this model attempts to capture the full generality of a joint distribu-
tion without the large number of bits needed to represent an arbitrary joint probability
distribution. It does so by a limited (polynomial) number of scenarios in which the
exact number of clicks for each word is given. A single scenario is taken from a given
probability distribution over scenarios. In this model, the authors prove two negative
results: using a reduction from CLIQUE the keyword optimization problem under
the scenario model is NP-hard, and the gap between the optimal fractional prefix
solution and the optimal (integer or fractional) solution to the optimization problem
can be arbitrarily large.

1.3 Search related auctions

There is variety of work on search related auctions in the presence of a limited budget but it
has primarily focused on the game theoretic aspects and on the search engines perspective:

In [2] the authors investigate the ”generalized second price” (GSP) auction used by the
search engines to sell online advertising and show that, unlike the Vickrey-Clarke-Groves
mechanism, it doesn’t have an equilibrium in dominant strategies and truth telling is not
an equilibrium of GSP.

Blum et al. [8] consider the problem of revenue maximization in online auctions from
the auctioneer’s point of view. They apply online learning techniques to an online auction
problem in which bids are received and dealt with one-by-one. They present algorithms
with asymptotically constant-competitive ratios. They also study a related problem, called
posted-price auctions, in which the auctioneer posts a price to each bidder and the bidder
either accepts or rejects the auctioneer’s offer. They show algorithms for the posted price
model with similar asymptotically constant competitive ratios with respect to the optimal
fixed price revenue.

Metha et al. [9] derived an optimal online algorithm for the revenue maximization
problem faced by search engines, deciding which ads to display with each query. The
problem is to assign queries arriving during the day to advertisers, while respecting their
daily budgets. Their optimal online algorithm achieves a competitive ratio of 1−1/e using
a generalization of the online bipartite matching problem. They generalize their analysis
to more realistic settings in which a bidder pays only when the user clicks on the ad, the
search engine charges the bidder with the next highest bid, while maintaining the same
competitive ratio.

Pandey and Olston [10] consider a similar problem in which the search engine has to
handle new advertisers whose degree of appeal to users is yet to be determined. They
study the tradeoff between exploration and exploitation as a multi-armed bandit problem

and extend traditional bandit formulations to account for budget constraints that occur in
search engine advertising markets.

Ganchev et al. [11] utilize sponsored search data drawn from a wide array of Yahoo!
Overture auctions and performed an exploratory analysis attempting to characterize and
understand real world search auction data. They examined how bids are distributed, what
kinds of models of advertiser value can reasonably be proposed and found an aggregate
exponential decay of prices across auctions. Nevertheless, they showed that aggregate
exponential decay does not fully describe bidding behavior on a per-auction basis where
deviations are hypothesized to occur due to strategic bidding.

Borgs et al. [12] consider the problem of online keyword advertising auctions among
multiple bidders, where the bidder are using a simple heuristic to optimize their utility.
They show that existing auction mechanisms combined with this heuristic can experience
cycling (as been observed empirically in current systems) and propose a modified class of
mechanisms with small random perturbations which provably converges in the case of first
price mechanisms and empirically converge in second price mechanisms.

1.4 Main results

The rest of the thesis is organized as follows. In Chapter 2 we study the advertiser’s
keyword optimization problem as an offline problem in which all parameters are known.
We show that even in this simple model, the keyword optimization problem is NP-complete.
We analyze the performance of a special family of solutions - prefix policies. In a prefix
policy, an advertiser buys a prefix of a list of keywords, where the keywords are sorted
by descending order of their profit to cost ratios. We present near-tight bounds for prefix
policies, under the reasonable assumption that the ratio between the profit of the most
valuable and the least valuable keywords is bounded by some constant.

In Chapter 3 we analyze a stochastic formulation of the problem in which the advertiser
has only partial information about the parameters of the stochastic model. We show that
in the stochastic model, prefix-solutions are optimal. Using the notion of ’regret’, i.e. the
difference between the expected profit of the optimal fixed policy in hindsight and the
advertiser’s expected profit, we derive on-line algorithms which guarantee sublinear regret
in the number of days.

In Chapter 4 we study an adversarial setting. Under some assumptions about the length
of the sequence and on the feedback an algorithm receives, we show that the regret of an
advertiser compared to the best fixed policy, may be as big as O(

√
Tk), where T is the

number of sequences (days) and k is the number of keywords in the problem instance. We
show that this bound is tight (up to a logarithmic factor) by proving a matching upper
bound.

Chapter 5 tests some of our ideas in a simulated environment, adopting the stochastic
model in [3]. Our empirical results support our theoretical findings. We show that a
model free learning algorithm can quickly converge to a near optimal policy while enjoying
robustness which is lacking for model based algorithms.

Chapter 2

The Offline Advertiser’s Keyword

Optimization problem

In this chapter we analyze the advertiser’s keyword optimization problem in an offline
model. In this formulation of the problem, all parameters of the problem are known to
the advertiser beforehand. Unlike the real world problem and the models presented in the
next chapters, the optimization can be done offline. In this model, for each of the days the
advertiser receives a detailed sequence with the query words that will appear in that day.
The advertiser’s task is to select a good fixed set of keywords to buy. His main constraint
is his daily budget.

We show that even in this simple model, the keyword optimization problem in NP-
complete. We further present tight bounds for a special family of solutions which we call
”prefix-solutions”, which albeit being optimal for single days, perform poorly when the per
keyword profits are unbounded.

2.1 Model definition

A keyword optimization problem instance consists of a fixed set of k keywords W =
{w1, w2, . . . , wk} with associated fixed profits−→π = {π1, π2, . . . , πk} and costs−→c = {c1, c2, . . . , ck},
where all costs and profits are positive integers, e.g., cents. We define a daily query sequence
s = (q1, q2, . . . , qm), as a sequence of queries where each query qi is one of the keywords in
W , i.e., qi ∈ W and s ∈ Wm. An advertiser has a fixed total daily budget Bday > 0, which
limits his spend in a single day, and which resets daily.

A keyword optimization problem is therefore formalized as Γ = (W,−→π ,−→c , Bday, T, (mt)
T
t=1, S)

where T is the number of days in the problem and S = (st)
T
t=1, i.e., for every day t ∈ [1, T],

st is the t’th daily sequence with mt queries: (qt1, qt2, . . . , qtmt).
We distinguish between queries and keywords - a query q refers to an instance of a

keyword w in a specific daily sequence s. The subscript indices tj of qtj refer to the location
j in the sequence st of day t, while the subscript index i of wi refers to the keyword index
in W .

The advertisement mechanism works as following: at the beginning of each day t, the
advertiser’s daily budget resets to Bday. For each query qtj in the daily sequence st which
is in the subset of keywords selected by the advertiser, the advertiser is charged with the
keyword’s cost c(qtj) which is subtracted from his daily budget. Day t ends when either
the advertiser’s budget is exhausted or when there are no more queries left in the daily
sequence st. The Advertiser’s profit is the sum of daily profits gained for each of the queries
bought in the sequences st, where the profit for each of the queries is determined according

6

to the queries’ keyword matching profit.
In addition to the overall daily budget Bday we allow the advertiser to have a per

keyword budget
−→
B = {B1, B2, . . . , Bk}. This additional constraint means that after using

Bi budget on queries matching keyword wi, no more queries which match keyword wi are
bought. These budgets also reset daily, and their motivation is described later in this
chapter. For simplicity, we assume these keyword budgets are an integral multiplicative
factor of the keyword costs, i.e., ∀i, Bi = ci · x for some integer x.

The advertiser’s policy
−→
B is therefore defined as the per keyword budgets {B1, B2, . . . , Bk},

i.e., the subset of keywords selected by the advertiser is determined to be the wi for which
Bi > 0. This is in addition to the daily budget Bday.

The advertiser’s profit is calculated by summing over the individual keyword profits
of all queries which were bought by the advertiser. The quantities of each of the bought
keywords are defined by the order of the queries in a given day and by the remaining total
and per keyword budgets for each query. The costs of the queries are disregarded with
respect to the profits and we only use them to limit the number of allowed queries an
advertiser may buy (the cost limit is the total daily budget Bday).

Notice that when limiting the budget of a specific keyword wi, the advertiser buys all
of the instances of this keyword until it exhausts either of the keyword’s Budget Bi or the
total budget Bday. The length mt of each of the daily sequences st may vary considerably,
and as the advertiser is not allowed to select which of the instances of a keyword he buys
- a different order for the queries in a sequence may exhaust the daily budget in different
times. Also, in a given day, for a given query, if the advertiser still has remaining budget in
his total daily budget, and he has remaining budget for the keyword matching this query,
the advertiser must buy that query, and can not ’save’ budget for ’better’ queries. More
precisely the advertiser fixes its policy (budgets) at the start of each day, and cannot modify
it during the day.

Let I(B(qtj , j) ≥ c(qtj)) ≡ buy(qtj) denote the event that query qtj is being bought.
I.e., I is an indicator function which in our case indicates that the budget of the keyword
matching query qtj at the time the query arrives is at least c(qtj), where c(qtj) is the cost of
the keyword wi in W matching qtj , and B(wi, j) is the budget left for keyword wi at time
j.

Formally, given a query sequence st, and budgets Bday and
−→
B , let yt be the largest

integer such that:
yt∑

j=1
c(qtj) · buy(qtj) ≤ Bday. The profit of using the policy

−→
B in day t is

Π(Bday,
−→
B , st,−→π ,−→c) =

yt∑

j=1

π(qtj) · buy(qtj),

where π(qtj) is the profit of the keyword in W matching qtj .

We use the abbreviation Π(Γ,
−→
B) as the total profit of policy

−→
B over the T days in the

problem instance Γ, i.e.,

Π(Γ,
−→
B) =

T∑

t=1

Π(Bday ,
−→
B , st,−→π ,−→c).

The advertiser’s offline optimization problem is therefore the following: given Γ =
(W,−→π ,−→c , Bday, T, (mt)

T
t=1, (st)

T
t=1), to find an optimal fixed (over all of the days) policy

−→
B

that maximize its overall profit Π(Γ,
−→
B).

We define OPT (Γ) as the maximal profit over all policies
−→
B , i.e., OPT (Γ) = max−→

B
Π(Γ,

−→
B).

A β-approximation for OPT guarantees for any instance Γ a profit of at least β ·OPT (Γ),

i.e., Π(Γ,
−→
B) ≥ β · OPT (Γ).

The following claim gives motivation to our per keyword budget model. It shows that
an advertiser with (only) a total daily budget and no per keyword budget may loose as
much as a third of the profit of an advertiser who can set a per keyword budget:

Claim 1 There is a problem instance Γ, such that Π(Γ, {Bday, . . . , Bday}) ≤ 2
3
OPT (Γ).

Proof: Consider the simple case in which there are two keywords W = {w1, w2} with profits
−→π = {4, 2}, costs −→c = {1, 1}, and the total daily budget Bday = 2l where l ≫ 1. Given a
single day sequence s1 = {w2, . . . , w2

︸ ︷︷ ︸

2l times

, w1, . . . , w1
︸ ︷︷ ︸

l times

}, an advertiser with a total daily budget

Bday may earn at most a total profit of 4l (either by buying w1, i.e. Wbuy = {w1}, or by
buying both w1 and w2, i.e., Wbuy = {w1, w2}). An advertiser who uses a per keyword

budget and buys the keywords with a budget vector
−→
B = {l, l} earns a total profit of 6l.

2.2 Solving the offline deterministic keyword problem

In order to study the computational hardness of the problem, we define the advertiser’s
offline keyword decision problem which matches our optimization problem: given Γ =
(W,−→π ,−→c , Bday, T, (mt)

T
t=1, (st)

T
t=1), decide whether there exists per keyword budgets

−→
B for

which the total profit Π(Γ,
−→
B) ≥ K.

Claim 2 The advertiser’s offline deterministic keyword decision problem is NP-complete.

Proof: The Knapsack decision problem is known to be NP-Complete (see e.g. [13] which
refer to the basic offline Knapsack problem in which items may be selected at most once).
We reduce the Knapsack problem to the offline deterministic advertiser keyword decision

problem.
Formally, in the Knapsack problem we are given a set of items S = {1, . . . , m} with

weights ci and values pi and are required to decide whether there exists a subset of items
S ′ ⊆ S for which

∑

i∈S′
ci ≤ C and

∑

i∈S′
pi ≥ K.

For each item i with weight ci and value pi in a Knapsack problem instance, we add
to the keywords set W in the advertiser budget decision problem instance a keyword wi

which we define with profit πi = pi, and cost ci.
We build a single day sequence s1 with the following queries: for each item with index

i we add a single query of type wi. The daily budget is taken to be the knapsack capacity
C, i.e. Bday = C.

If exists a subset S ′ of items for which
∑

i∈S′
ci ≤ C and

∑

i∈S′
pi ≥ K, the solution for the

advertiser’s keyword problem will be to set Bi = Bday for all wi, i ∈ S ′ and Bi = 0 for all
wi, i /∈ S ′. In that case, the advertiser will buy all keywords in S ′ and gain a profit of at
least K.

If
−→
B is a solution to the advertiser’s keyword problem, we build S ′ such that i ∈ S ′

iff Bi ≥ ci. In that case, obviously the advertiser buys the keywords in S ′ which lead to
a total profit of at least K with at most C cost. In the matching knapsack problem, the
profit from S ′ is also at least K and the cost is at most C.

Therefore, there exists a solution to the advertiser budget decision problem with budget
Bday = C and a total profit greater than K iff there exists a subset of items in the knapsack
problem with capacity at most C and a total profit greater or equal to K.

This advertiser’s offline deterministic decision problem is obviously in NP and the re-
duction can be done in polynomial time, therefore it is NP-complete.

Thus the matching advertiser’s offline optimization problem is NP-hard.

One might suggest a greedy algorithm that sorts the keywords by their profit to cost
ratio, and iteratively, adds the next keyword according to this order. In the next problem
instance, we show that in that case OPT may earn as much as twice the profit of such a
greedy algorithm. For the knapsack problem, a small variant on the greedy approach yields
a 2-approximation. That approximation scheme is not valid in our problem settings as the
advertiser adwords optimization problem requires solving multiple knapsack-like problems
simultaneously. Providing an approximation scheme that holds for the advertiser adwords
optimization problem is an open problem.

Greedy Keyword Algorithm

1. Sort keywords in non increasing order of πi

ci
.

2. Greedily add keyword wi by setting Bi, Bi ∈ [0, 1, . . . , Bday] which maximizes the
overall profit (notice that when adding a keyword, the profit may decrease, as in
query series where the budget is already exhausted, adding worse keywords will be
on the expense of the better queries).

Claim 3 Greedy Keyword Algorithm may loose as much as half the profit of the optimal
policy.

Proof: Assume 3 keywords w1, w2, w3 with
−→c = {m/2+ ε,m/2, m/2}, −→π = {(1+ ε) · (m+

2ε), m,m}, Bday = m, and a single repeating sequence s = (w1, w2, w3).
The profit to cost ratios are (2(1+ε), 2, 2). I.e., the list is already sorted by the profit to

cost ratios. Therefore, the greedy algorithm will first add w1 by setting B1 = Bday, leading

to the policy
−→
B = {m/2+ ε, 0, 0}. After doing so, the greedy algorithm will not be able to

benefit from w2, w3. On the other hand, OPT may select the policy
−→
B = {0, m/2, m/2}

which earns a total profit of 2 ·m while the greedy algorithm gains only (1 + ε) · (m+ 2ε).

One may claim that the failure of the greedy algorithm in the previous problem instance
is due to the large query costs used, compared to the daily budget Bday. That is indeed in
contrary to the real world problem where the cost of a single query is usually very small
relative to the daily budget, i.e., ∀i, ci ≪ Bday. This claim is even more evident for the high
budget advertisers. In order to study this more realistic setting, we therefore normalize the
costs to 1 and redefine the profits as the profit to cost (”bang-per-buck”) ratio π′

i = πi/ci
where each instance of keyword wi is replaced with ci instances of the normalized keyword
w′

i with profit π′
i.

In the next claim, we show that the impact of this normalization is negligible:

Claim 4 ∀s, Bday ,
−→
B,−→π ,−→c ,

|Π(Bday ,
−→
B, s′,

−→
π′ ,

−→
1)−Π(Bday ,

−→
B, s,−→π ,−→c)| ≤ maxi πi

where s′ is created from sequence s by replacing each instance of keyword wi with ci instances
of the normalized keyword w′

i, i.e, with ci instances of a keyword with profit π′
i and unit

cost.

Proof: As we restricted keyword budgets to be multiplicative factors of the keyword costs,
the per keyword budgets will not affect our normalization scheme. Nevertheless, using the
normalized costs may result with a fraction of the last keyword wi being bought in the
sequence s′ whenever in s remains a budget Bday < ci yet Bday ≥ 1, that can not be used
as keyword fractions are not allowed.

This normalization simplifies our analysis and results in profit analysis inaccuracies of

up to an additive term of at most
T∑

t=1
maxi πi ≤ Tπmax in the offline model, where πmax is

the maximal profit of a single keyword.
For simplicity of notation, in the rest of this chapter, we use the notation πi for those

normalized profits and sort the keywords in a non-increasing order of the normalized profits,
i.e., ∀i, i′ if i < i′ then πi ≥ π′

i.

2.3 Prefix policies

As we are especially interested in simple structured policies - we examine the case in which
the keywords have been normalized and sorted in a decreasing order of ”bang-per-buck”
ratios and our algorithm chooses to buy a set of keywords of the form w1, . . . , wi for some
integer i with the budgets

−→
B = {Bday, . . . , Bday

︸ ︷︷ ︸

i−1 times

, b, 0, . . . , 0
︸ ︷︷ ︸

k−i times

}. I.e., only a prefix of the

keywords is bought, all keywords but the last are limited with the daily budget Bday, and
the last keyword has a budget b.

We call such a set a prefix solution and notate the prefix solution which buys all words
up to word wi with maximal budget Bday , and word wi with budget b, PRE(Bday, i, b).

Claim 5 Let Γ include a single day list s1, there exists a prefix solution PRE(Bday, i, b)
which has an optimal profit, Π(Γ, PRE(Bday, i, b)) = OPT (Γ).

Proof: Let i∗ = argmax
j<k

{
j∑

i=1
ni ≤ Bday}, where ni is the number of instances of keyword

wi in the sequence s1.

We select the prefix solution PRE(Bday, i
∗+1, Bday−B′) where B′ =

i∗∑

j=1
nj , i.e., buy all

keywords wi, i ≤ i∗, with budget Bday, and buy the keyword wi∗+1 with budget Bday −B′.
If not all queries are bought, the daily budget is fully exhausted. It is also obvious that
increasing budget for less valuable words (as the words are sorted by their profits) may
only decrease the total profit.

For the next two claims, we define the problem instance ΓWC (following [7]):
Let k (the number of keywords) be some even integer, πi = mk−i and ci = 1, ∀i ∈ [1, k],

and let the daily budget Bday = l.
The daily sequences S = (st)

T
t=1 consists of the following k/2 query sequence lists (each

with different number of occurrences as stated in the table):

Day list Number of occurrences Sequence
s1 1 w2, . . . , w2

︸ ︷︷ ︸

l times

, w1, . . . , w1
︸ ︷︷ ︸

l times

s2 m2 w4, . . . , w4
︸ ︷︷ ︸

l times

, w3, . . . , w3
︸ ︷︷ ︸

l times
...

...
...

si m2i−2 w2i, . . . , w2i
︸ ︷︷ ︸

l times

, w2i−1, . . . , w2i−1
︸ ︷︷ ︸

l times
...

...
...

sk/2 mk−2 wk, . . . , wk
︸ ︷︷ ︸

l times

, wk−1, . . . , wk−1
︸ ︷︷ ︸

l times

Lemma 6 Any prefix solution PRE(Bday, i, b) has a profit:

Π(Γ, PRE(Bday, i, b)) ≤ (1/m+ 2/k) ·OPT (Γ)

.

Proof: For ΓWC , OPT which buys only the odd keywords earns for day lists of type si the
profit of keyword w2i−1, l ·m2i−2 times, the total of which is : l ·m2i−2 ·mk−(2i−1) = l ·mk−1.
This gives a profit of k/2 · l ·mk−1 during the entire S.

A prefix solution which selects prefix PRE(Bday, i
∗, Bday) where i

∗ is odd, i.e., i∗ = 2i−1,
earns as OPT for a day of type si, i.e., l ·mk−1. For each other day of type si′ , i

′ 6= i - it
either earns m2i′−2 · l ·mk−2i′ = l ·mk−2 (for the even keyword 2i′) or it earns nothing (if
2i′ − 1 > i∗).

Therefore, the best prefix is of the form i∗ = k− 1, and the prefix policies are bounded
by:

Π(Γ, PRE(Bday, i, b)) ≤ Π(Γ, PRE(Bday, k − 1, b))

= l ·mk−1 + (k/2− 1) · l ·mk−2

≤ (
2

k
+

1

m
)
k

2
l ·mk−1

= (
2

k
+

1

m
) · OPT (Γ).

We conclude the proof by noting that a prefix solution which selects prefix PRE(Bday, i
∗, Bday)

where i∗ is even, i.e., i∗ = 2i buys the same queries as does a prefix solution with i∗ = 2i−1
except for days si in which a less profitable keyword w2i is bought (instead of w2i−1), i.e.,
PRE(Bday, 2i, Bday) ≤ PRE(Bday, 2i− 1, Bday).

Claim 7 A prefix solution is an Θ(1
k
) approximation.

Proof: We first show that there exists a problem instance Γ with k keywords such that
any prefix solution

−→
B has profit Π(Γ,

−→
B) ≤ 3 · OPT (Γ)/k.

Consider ΓWC , withm = k, by Lemma 14, we get that any prefix solution PRE(Bday, i, b),
has Π(Γ, PRE(Bday, i, b)) ≤ OPT (Γ) · (3/k).

For the upper bound, if there are k keyword types, there is at least one keyword type
wi for which 1/k of the total profit is gained by OPT. We select the prefix set {1, 2, . . . , i}.
It is guaranteed that for each query we will get no less than πi and in total at least 1/k of
OPTs profit.

Assuming unbounded single keyword profits seems unrealistic, and indeed if we restrict
the ratio between single keyword profits, we get the following stronger result:

Claim 8 For k ≥ 4, a prefix solution is an Θ(1
log(π1/πk)

) approximation, where π1 and πk

are the maximal and minimal keyword profits, respectively. Also, there exists a problem
instance Γ for which Π(Γ, PRE(Bday, i, b)) = O(log(log(π1/πk))

log(π1/πk)
·OPT (Γ))

For k = 3 there is an instance Γ in which a prefix solution has

1
3
· OPT (Γ) ≤ max

i,b
Π(Γ, PRE(Bday, i, b)) ≤ 1

2−πk
π1

· OPT (Γ).

We note that for k = 3 and large enough πmax, a prefix solution may loose as much as
half of the profit earned by OPT.

Proof: For the lower bound we again use ΓWC, by Lemma 14, now with m = k − 1.
We have π1/πk = (k − 1)k−1, i.e., log(π1/πk) = (k − 1) log(k − 1) and log(log(π1/πk)) =
log(k − 1) + log(log(k − 1)).

Also, we notice that for k > e + 1 , log(log(k − 1)) > 0 implying log(k − 1) =
log(log(π1/πk))− log(log(k − 1)) > log(log(π1/πk)).

Therefore, using Lemma 14, for any prefix solution PRE(Bday, i, b), for k > e + 1, we
get that the total expected profit is bounded by:

Π(Γ, PRE(Bday, i, b)) ≤ (
1

m
+

2

k
) ·OPT (Γ)

= (
1

k − 1
+

2

k
) · OPT (Γ)

≤ 3

k − 1
· OPT (Γ)

≤ 3 log(log(π1/πk))

log(π1/πk)
· OPT (Γ)

For the upper bound we first define a ’bucket’ of keywords as the subset of keywords
which have a profit in the range 2l ≤ πi < 2l+1. Namely, we analyze the simple ’Bucket
prefix’ solution which partitions all keywords into adjacent buckets in which the max profit
is no more than twice the profit of the min profit. There are at most ⌈log π1

πk
⌉ buckets.

Therefore, there is a bucket which is responsible for at least 1/⌈log π1

πk
⌉ of the total

profit of the optimal (non prefix) solution. We compare it’s profit to the prefix solution
which buys all keywords in the buckets until and including of this bucket. For each of the
keywords the prefix solution eventually buys, he is guaranteed to get at least 1/2 of the
profit of OPT, overall leading to a total profit of at least 1

2·⌈log π1
πk

⌉ of OPT.

For the case where k = 3, for the lower bound we use the following setting: there are 3
keywords w1, w2, w3 with −→π = {πmax, 1, 1}, Bday = l.

Day list Number of repetitions Sequence
s1 1 {w2, . . . , w2

︸ ︷︷ ︸

l times

, w1, . . . , w1
︸ ︷︷ ︸

l times

}

s2 πmax − 1 {w3, . . . , w3}
︸ ︷︷ ︸

l times

OPT uses
−→
B = {Bday, 0, Bday} and earns (2πmax−1)l whereas any prefix solution earns

no more than πmaxl simply by considering all three prefix solutions. The upper bound for
k = 3 is the same as in the general case, only that now we have 3 keywords of which at
least one is responsible to at least 1/3 of the optimal profit of OPT.

Chapter 3

Online Stochastic Keyword

Optimization

In this chapter we analyze a more realistic model, inspired by the model in [3]. This model
introduces a few changes: rather than being given a problem instance to be solved offline,
the advertiser is required to adaptively change it’s policy in an online manner. We also
assume that the series of query sequences S = (st)

T
t=1 is taken from a distribution with a

known model but with unknown parameters.
We show that the prefix solutions we introduced in Chapter 2, are optimal in this model

when considering the family of daily fixed policies (where an advertiser is not allowed to
change his policy during a day, but is allowed to change the policy between days). We
also show that finding the parameters for this optimal prefix solution is not trivial, as
there might exist multiple local maxima for the expected reward as a function of the prefix
parameters.

We further show that knowing the distribution over the length of the days is valuable,
as a policy which does not know at the beginning of each day, the length of the daily
sequence of queries, may earn a negligible fraction of the profit of a policy which does know
the length of the daily sequences.

We adopt the notion of External Regret [1] for comparisons between the performance of
online algorithms and the performance of the best single prefix policy in retrospect. We end
this chapter by providing an algorithm, based on UCB1 [5], which achieves O(k

1
2T

2
3 lnT)

regret compared to the optimal solution, where k is the number of keywords in the problem
and T is the number of days. We also provide a regret bound of O(T

3
4 lnT), which is

independent of the number of keywords k. These bounds can be compared to our Ω(k
1
2T

1
2)

lower bound (which is proved in Appendix A).

3.1 Model definition

In the online stochastic model, each of the daily sequences st in the series S, is sampled
from the following model.

Let T be the number of daily sequences in the problem instance (which we assume is very
large, i.e., we are interested in the asymptotic behavior). For each day t ∈ [1, T], we first
sample the length of the sequence mt = |st| of day t, from an unknown distribution P with
a finite support. Given the length mt = |st|, the sequence st = (q1, q2, ..qmt) is generated
using a multinomial distribution: each query qj , 1 ≤ j ≤ mt, is sampled i.i.d. from the set

of keywords W = {w1, w2, . . . , wk} using a multinomial distribution
−→
λ = {λ1, λ2, .., λk},

i.e., we have that Pr[qj = wi] = λi.
14

Rather than selecting a fixed set of keyword budgets
−→
B , as in the offline deterministic

model, the advertiser is allowed to adaptively change the daily policy in which he may
select a daily subset of keywords to buy, i.e., for each day t ∈ [1, T] the advertiser selects

a daily policy
−→
X t. Given the stochastic nature of the model, instead of the per keyword

budgets
−→
B introduced in Chapter 2, we allow the advertiser to buy probabilistically queries

matching keyword wi using a ’weight’ bi ∈ [0, 1] associated with keyword wi. The daily

policy vector of day t,
−→
X t = (b1, b2, . . . , bk) defines a vector of probabilities for buying

instances of keywords in W , i.e., a query q = wi is bought with probability bi (assuming
the advertiser has remaining budget when that query arrives).

The advertiser is required to select the daily policy before the daily query sequence ar-
rives. The model assumes the advertiser knows the associated costs −→c and profits −→π of the
keywords in W , but does not know the distribution

−→
λ of the keywords in W , and the dis-

tribution P over the length of the daily sequences si, i.e.,
−→
X t = f(W,−→π ,−→c , Bday, (Πj)

t−1
j=1),

where Πj is the daily profit of day j. Also, at the end of each day, the advertiser is only
given a single reward scalar which is the total profit for that day (without additional infor-
mation such as the frequency of the keywords, or the amount of used budget, etc.). As P

and
−→
λ are unknown to the advertiser, he is therefore required to adapt to the input, and

to learn his policy online.
Formally, the advertiser’s online stochastic keyword optimization problem is the follow-

ing. Given a stochastic problem instance Φ = (W,−→π ,−→c , Bday, T, P,
−→
λ) where P,

−→
λ are

unknown to the advertiser, for each day t ∈ [1, T] the advertiser has to select a daily policy−→
X t after which he receives a daily profit Πt. The advertiser’s goal is to maximize his overall

profit, i.e.,
T∑

t=1
Πt.

We will denote the expected total profit of the policy (
−→
X t)Tt=1 in the T days of the

problem instance Φ as Π(Φ, (
−→
X t)Tt=1) , where the expectation is over the distributions P and−→

λ . Let OPT (Φ) be the maximal expected profit over all fixed policies
−→
X , i.e., OPT (Γ) =

max−→
X

Π(Γ, (
−→
X, . . . ,

−→
X)). As in the offline model, we assume that the cost of a single

query is small relative to the daily budget, i.e., ∀i, ci ≪ Bday. Therefore we use the same
normalization described there, i.e., ∀i, ci = 1.

3.2 Prefix policies

As in the deterministic offline problem, we are especially interested in simple prefix policies
where we assume that the keywords are sorted in a non increasing profit order. These are
defined as policies in which the advertiser fully buys (as long as he has remaining daily
budget) all instances of all keywords up to some daily selected index ind(t). From keyword
wind(t), in expectation, only a bt fraction of the instances are bought (until the budget is
exhausted), where bt ∈ (0, 1], i.e., X t = (1, . . . , 1,

︸ ︷︷ ︸

ind(t)−1 times

bt, 0, . . . , 0
︸ ︷︷ ︸

n−ind(t) times

). We denote such a

daily prefix solution as PRE(Bday, i, b).

We next show that prefix solutions are indeed optimal within the space of daily fixed
policies (where an advertiser is not allowed to change his policy during a day, but is allowed
to change the policy between days).

Our proof is similar to that of the stochastic proportional model in [7]. There, the only
random variable is the number of daily queries |s|, and the number of occurrences of the

keyword wi is λi · |s|, and
−→
λ is a known vector which determines the fixed proportions of

the keyword instances. Using an interchange argument, the authors prove that the optimal
solution for that case is a prefix solution, where for j > i (words sorted by profit in a non
increasing order) if there is bj > 0 and bi < 1 we can move some ”weight” from a ”bad”
keyword to a ”better” keyword. They calculate the appropriate amount of ”weight” to
move using the

−→
λ values (such that the total expected cost remains the same while the

expected profit may only increase).
Our probabilistic model differs in the fact that the actual occurrences of the queries are

distributed according to a multinomial distribution (with the unknown parameter vector−→
λ). Only the expectation of the actual number of occurrences of word wi is λi ·|s|, and each
of the keywords’ number of occurrences has a binomial distribution B(n, p) with parameters
n = |s| and p = λi (different keywords are negatively correlated).

Claim 9 For every stochastic problem instance Φ = (W,−→π ,−→c , Bday, T, P,
−→
λ), there exists

an optimal fractional prefix solution, such that OPT (Φ) = Π(Φ, PRE(Bday, i, b)), for some
i and b.

Proof: We show that if there are two keywords where the ’better’ word is not fully bought
while the ’worse’ word is being bought, i.e., there are some wi and wj where j > i, bj > 0
and bi < 1 by moving ’weight’ from bj to bi we can only improve the expected profit.
In this case, for a given day with |s| queries, both the number of occurrences of wi and
wj have a binomial distribution. We further notice that by decreasing ε weight from a
word wj which is distributed as B(|s|, λj), we do not buy B(|s|, ε · λj) number of words

wj. By adding ε · λj

λi
to the weight of word wi - a B(S,λi · ελj

λi
) number of words wi are

bought instead, i.e., the two policies (b1 = 1, . . . , bi−1 = 1, bi < 1, . . . , bj > 0, . . .) and

(b′1 = 1, . . . , b′i−1 = 1, b′i = bi + ε · λj

λi
, . . . , b′j = bj − ε, . . .) have the same distribution of

number of words being bought. We note that ε can be taken to be small enough as to keep
b′i and b′j in the range [0, 1]. Therefore, we leave the cost distribution unchanged and can
only improve expected profit by buying from a keyword with a higher (or equal) profit.
This procedure can be used to convert any non prefix solution which is optimal for the
series S into a prefix solution which has a profit at least as profitable as the non prefix
solution. As by the model definition, the distribution of the query series st is constant for
all days t ∈ [1, T], exist a single fixed policy which is optimal for all days.

Although we showed that for each non-prefix policy there exists a prefix policy which
is at least as good, finding the best prefix solution, i.e., the optimal parameters i and b of
PRE(Bday, i, b) is not a trivial task. We first show that selecting a prefix that exhausts, in
expectation, the daily budget is not optimal.

Claim 10 A prefix solution PRE(Bday, i, b) which buys a subset of keywords with an ex-
pected sum of costs which is equal to the daily budget Bday is not necessarily an optimal

prefix, i.e., selecting a prefix PRE(Bday, i, b) for which E(|s| · (
i−1∑

j=1
λj + bλi)) = Bday, where

the expectation is over P , does not guarantee an optimal profit.

Proof: Consider the following example.

Keyword w1 w2

Profit (π) 1000 2
Cost (c) 1 1
Probability (λ) 0.5 0.5

Assume the following distribution over the length of the daily query sequences: w.p 0.9
|s| = Bday/10, w.p 0.1 |s| = 9.1Bday. It is clear that the prefix solution PRE(Bday, 1, 1)
has a better payoff than the prefix solution PRE(Bday, 2, 1) although for the latter

E(|s| · (
i−1∑

j=1

λj + bλi)) = 0.9 · Bday/10 + 0.1 · 9.1Bday = Bday.

We next show that the expected profit as a function of the prefix index is not necessarily
a concave function and there might be multiple local maxima.

Claim 11 For prefix policies, the Advertiser’s expected profit Π(Φ, PRE(Bday, i, b)) as a
function of the prefix index i may have multiple local maxima.

Proof: Consider the following example where α ∈ [ε, 1] and ε ∈ [0, 1]:

w1 w2 w3

Profit (π) 2/ε 2 2
Probability (λ) ε2 α− ε2 1− α

Let the distribution P over the length of daily sequences be: w.p. 1 − ε, we have s1 with
|s1| = Bday, and w.p. ε, we have s2 with |s2| = Bday

ε2
.

We use Chernoff’s inequality Pr[x < (1 − δ)µ] < e−
µδ2

2 where x =
∑

xi and xi ∈ [0, 1],

with e−
µδ2

2 = 1√
Bday

implying δ =
√

log(Bday)

Bday
, to show that in long days, w.p. greater than

1 −
√

log(Bday)

Bday
there are at least Bday(1 − 1√

Bday
) occurrences of w1. Let X1 denote the

random variable counting how many times word w1 appears in a day with
Bday

ε2
queries.

Then

Pr[x1 < (1−
√
√
√
√
log(Bday)

Bday

)
Bday

ε2
· ε2] < e−

Bday

ε2
·ε2·

logBday
Bday

2 =
1

√

Bday

.
The expected profit of the different prefix solutions are:

Π(Φ, PRE(Bday, 1, 1)) ≥ ε ·Bday(1−
1

√

Bday

)(1−
√
√
√
√
log(Bday)

Bday
) · 2

ε
+ (1− ε) · Bday · ε2 ·

2

ε

≥ 2Bday(1−
√
√
√
√
log(Bday)

Bday
− 1
√

Bday

)

= 2Bday − 2
√

Bday · (
√

log(Bday) + 1)

≥ 1.95Bday,

where the last inequality holds for Bday ≥ 220. For the second prefix we have,

Π(Φ, PRE(Bday, 2, 1)) ≤ ε ·Bday · [
ε2 · 2

ε
+ (α− ε2) · 2

ε2 + (α− ε2)
] + (1− ε) · Bday · [ε2 ·

2

ε
+ (α− ε2) · 2]

≤ εBday · [
2ε+ 2α

α
] +Bday · [2α + 2ε]

≤ 2αBday + 6εBday,

where the first term in the right side of the first inequality is due to the fact that the
expected reward in a ’long’ day is lower or equal than the expected reward of an infinite
query series. For the third prefix we have,

Π(Φ, PRE(Bday, 3, 1)) = Bday(ε
2 · 2

ε
+ (α− ε2) · 2 + (1− α) · 2)

= 2Bday(ε(1− ε) + 1)

≥ 2Bday

For α = 0.5 and ε < 0.1, we have (6ε + 2α)Bday < 1.6Bday and there are multiple local
minima.

Modeling the length of the daily sequences st is crucial. We show that an advertiser
that does not know the length of the daily sequences (and can only try to estimate it)
might earn a negligible fraction of the profit of a policy which does know beforehand the
number of daily impressions in each of the days. Note that a policy that selects the best
prefix at each given day is an optimal policy.

Claim 12 Let P −OPT denote the (oracle) policy that knows at the beginning of each day
t (prior to selecting the daily policy) the length of the daily sequence |st|. There exists a
problem instance Φ such that for any i, b, we have

Π(Φ, PRE(Bday, i, b)) ≤
15

m− 1
·Π(Φ, P − OPT)

where m is a parameter and may be arbitrary large.

Proof: We define the problem instance Φ. Fix Bday and the parameter m ≥ 2. Let −→π =

{mk−1, mk−2, . . . , mk−i, . . . , m0}, and let
−→
λ = { Z

m2k ,
Z

m2k−2 , . . . ,
Z

m2k−2i+2 , . . . ,
Z
m2}, where Z

is the normalizing constant, i.e., Z = 1
k∑

i=1

1

m2k−2i+2

.

The distribution P , which selects the number of queries in a day, supports k different
day types:

Day type: |s| P (|s|)
s1

Bday

λ1
= O(

Bdaym
2k

Z
) C

Π(Φ,P−OPT |s1)

s2
Bday

λ1+λ2
= O(

Bdaym
2k−2

Z
) C

Π(Φ,P−OPT |s2)
...

...
...

sj
Bday
j∑

i=1

λi

= O(
Bdaym

2k−2j+2

Z
) C

Π(Φ,P−OPT |sj)

...
...

...

sk
Bday
k∑

i=1

λi

= O(
Bdaym

2

Z
) C

Π(Φ,P−OPT |sk)

where Π(Φ, P −OPT |sj) is the expected profit of P −OPT given that the day type is day
sj and C is the normalizing constant, i.e., 1

k∑

j=1

1
Π(Φ,P−OPT |sj)

.

We notice that in our setting, the expected number of keywords that an unlimited
budget prefix account PRE(∞, j, 1) will buy in a day of type sj is constant for all j ∈ [1, k]
and is equal to Bday .

We first bound the profit of P −OPT by noticing that for a day of type sj, P −OPT

which knows the length of the daily sequence is |sj| = O(
Bdaym

2k−2j+2

Z
) chooses the prefix

solution that is optimal for that day (according to Claim 9 there exists an optimal prefix
solution). The expected profit of that optimal prefix is at least the expected profit of

PRE(Bday, j, 1). Using Chernoff’s inequality Pr[x < (1 − δ)µ] < e−
µδ2

2 where x =
∑

xi

and xi ∈ [0, 1], with δ =
√

2logm
Bday

, we can bound the number of keywords from the set

{w1, w2, . . . , wj} that appear in a day of type sj. W.p. greater than 1 − 1
m

there are at

least Bday(1−
√

2logm
Bday

) queries from that set. Therefore, we get that the expected profit of

P −OPT in a day of type sj is:

Π(Φ, P − OPT |sj) ≥ Π(Φ, PRE(Bday, j, 1)|sj)

≥ (1− 1

m
)(1−

√
√
√
√
2logm

Bday

)[
Bday

j∑

i=1
λi

·
j
∑

i=1

λi]

j∑

i=1
λi · πi

j∑

i=1
λi

.

We next analyze the expected profit of a fixed prefix policy, and show that for any such
fixed prefix, i.e., ∀j, b, PRE(Bday, j, b), the total expected profit is at most 15

m−1
of the

expected profit of P −OPT .
Given a selection of j and b we divide the day types {s1, . . . , sk} into three sets:

1. For sj′ such that j′ ∈ {j − 1, j, j+1}, the prefix algorithm PRE(Bday, j, b) obviously
gets no more than P − OPT . This happens at most, at three day types and by our
choice of the distribution P (|sj|) which divides the expected profit uniformly over the
day types, we are guaranteed that this accounts to no more than 3

k
·Π(Φ, P −OPT).

2. For sj′ such that j′ ≥ j + 2: we notice that the expected profit of a prefix solution
PRE(Bday, j, b) at a day type sj′ is bounded from above by the expected profit of
the same prefix solution in an infinite long day. Also, due to the fact that the profits
(πi)

k
i=1 are sorted, the expected profit of PRE(Bday, j, b) from a single query as a

function of j and b is monotonically decreasing, i.e., if j1 < j2 (or j1 = j2 and

b1 < b2),

j1−1∑

i=1

λiπi+b1·λj1
πj1

j1−1∑

i=1

λi+b1·λj1

≥

j2−1∑

i=1

λiπi+b2·λj2
πj2

j2−1∑

i=1

λi+b2·λj2

.

Therefore, for j′ ≥ j + 2 and any b,

Π(Φ, PRE(Bday, j
′, b)|sj)

Π(Φ, P − OPT |sj)
≤

Bday ·

j+1∑

i=1

λiπi

j+1∑

i=1

λi

(1− 1
m
)Bday(1−

√

2logm
Bday

)

j∑

i=1

λi·πi

j∑

i=1

λi

≤ m

m− 1
· 1

1−
√

2logm
Bday

· 2

m

=
2

m− 1
· 1

1−
√

2logm
Bday

where we used

j+1∑

i=1

λiπi

j+1∑

i=1

λi

≤

j∑

i=1

λi·πi

j∑

i=1

λi

· 2
m

in the last inequality.

3. For sj′ such that j′ ≤ j − 2: the expected profit of a prefix solution PRE(Bday, j, b)
at a day type s′j is bounded from above by the expected profit of the same prefix
solution with infinite daily budget. Again, using the monotonicity of the expected
profit PRE(Bday, j, b) from a single query as a function of j and b we get that for any
j′ ≤ j − 2 and any b,

Π(Φ, PRE(Bday, j
′, b)|sj)

Π(Φ, P − OPT |sj)
≤

[
Bday
j∑

i=1

λi

·
j−2∑

i=1
λi]

j−3∑

i=1

λi·πi

j−3∑

i=1

λi

(1− 1
m
)(1−

√

2logm
Bday

)[
Bday
j∑

i=1

λi

·
j∑

i=1
λi]

j∑

i=1

λi·πi

j∑

i=1

λi

=

j−2∑

i=1
λi

j−3∑

i=1

λi·πi

j−3∑

i=1

λi

(1− 1
m
)(1−

√

2logm
Bday

)
j∑

i=1
λi · πi

=
m

m− 1
· 1

1−
√

2logm
Bday

·

j−2∑

i=1
λi

j−3∑

i=1
λi

·

j−3∑

i=1
λi · πi

j∑

i=1
λi · πi

≤ m

m− 1
· 1

1−
√

2logm
Bday

· 2m2 · 2

m3

=
4

m− 1
· 1

1−
√

2logm
Bday

By selecting Bday > 8logm we have that 1

1−
√

2logm
Bday

< 2, and by setting k = m we conclude

our proof.
In the proof of Claim 12, we have used a problem setting in which the number of

keywords required k > 16 for obtaining a non-trivial bound. In the next claim we show
that even for small keyword sets, an oracle policy P−OPT performs much better compared
to prefix policies.

Claim 13 There exist a stochastic problem instance Φ in which

Π(Φ, PRE(Bday, i, b)) ≤ 0.67 · Π(Φ, P − OPT)

and in which k = 2.

Proof: Consider the following example:

w1 w2

Cost 1 1
Profit 2/α 2
Prob ε 1− ε

where α ∈ [0, 1), and assume the following distribution over the number of daily words:

w.p. 1− p, we have |s| = Bday, and w.p. p, we have |s| = Bday

ε
.

We use Chernoff’s inequality Pr[x < (1 − δ)µ] < e−
µδ2

2 where x =
∑

xi and xi ∈ [0, 1],

with e−
µδ2

2 = 1√
Bday

implying δ =
√

log(Bday)

Bday
. This implies that in long days, w.p. greater

than 1−
√

log(Bday)

Bday
, there are at least Bday(1− 1√

Bday
) occurrences of w1.

P-OPT chooses PRE(Bday, 1, 1) for long days and PRE(Bday, 2, 1) for short days and
it has expected profit:

Π(Φ, P −OPT) ≥ p · 2
α
· Bday

ε
· ε · (1−

√
√
√
√
log(Bday)

Bday
) · (1− 1

√

Bday

) + (1− p)(
ε

α
+ (1− ε)) · 2Bday

The expected profits of the two different prefix policies are:

Π(Φ, PRE(Bday, 1, 1)) ≤ p · 2Bday

α
+ (1− p)ε · 2Bday

α

Π(Φ, PRE(Bday, 2, 1)) = 2Bday · (
ε

α
+ (1− ε))

For fractional prefixes, we have for b ∈ (0, 1]:

Π(Φ, PRE(Bday, 2, b)) ≤ 2Bday · [(1− p)(
ε

α
+ (1− ε)b) + p(

ε

ε+ (1− ε)b
· 1
α
+

(1− ε)b

ε+ (1− ε)b
)]

Selecting α = 0.5, p = 0.5, ε = 0.0005 and Bday > 108 imply that:

Π(Φ, P − OPT) ≥ 2Bday(1−
√
√
√
√
logBday

Bday

)(1− 1
√

Bday

) +B ≥ 2.999Bday.

For the fractional prefixes, we notice that for b ∈ [0, 1], Π(Φ, PRE(Bday, 1, b)) ≤
Π(Φ, PRE(Bday, 1, 1)).

Also, noticing that the function f(b) = (1−ε)b
2

+
ε+(1−ε) b

2

ε+(1−ε)b
has a single minimum in the

range b ∈ (0, 1], implies that Π(Φ, PRE(Bday, 2, b)) ≤ Π(Φ, PRE(Bday, 2, 1)), i.e., for all
i, b, Π(Φ, PRE(Bday, i, b)) ≤ 2(1 + ε)Bday ≤ 2.001Bday.

3.3 Solving the Online problem

Since the distribution
−→
λ over the keywords in W , and the distribution P over the length

of the daily sequences si are unknown to the advertiser, an online learning approach is
needed. In [5] the authors discuss the exploration-exploitation dilemma in the context
of the multi-arm bandit problem. They prove that simple algorithms, such as the UCB1
algorithm [5], asymptotically achieve a logarithmic regret in the number of plays, a regret
which has been showed by [14] to be the best possible for such problems.

We show how to apply the UCB1 algorithm to our problem. In order to cope with the
infinite number of policies available with the continuous prefix policies (as the probability
bi of bidding on the keyword wi can be set to any value in the range (0, 1]) we limit
ourself to prefix accounts where bi is from the discrete set {ε, 2ε, . . . , 1} which we denote
PRE(Bday, i, bε). The following lemma bounds the loss due to the discretization.

Lemma 14 For any problem instance Φ there exists an index i∗ and an integer c such that
Π(Φ, OPT)−Π(Φ, PRE(Bday, i

∗, c · ε)) ≤ ε ·Bdayπi∗T , where T is the number of sequences
in the series S (the number of days).

Proof: By Claim 9, there exists an optimal prefix policy PRE(Bday, i, b) with parameters
i = i∗ and b = b∗. Therefore we can find a policy PRE(Bday, i, bε) with the same i = i∗

and which has a bidding probability b
′
where b∗ − ε ≤ b

′ ≤ b∗. Such a policy will buy
the same keywords bought by Π(Φ, OPT)) as long as Π(Φ, OPT)) has not exhausted the
daily budget, except at most ε · Bday keywords of type wi∗ (Note that if the daily budget
Π(Φ, OPT)) is exhausted, then our policy PRE(Bday, i

∗, b′) can only decrease the difference
by buying additional keywords from the set {w1, . . . , wi−1}).

For multi-arm bandits, the policy UCB1 [5], achieves logarithmic regret without any
preliminary knowledge about the reward distribution. Let UCB1Pre denote a daily chang-
ing PRE(Bday, i, bε) policy, selected from the set of k

ε
prefix policies with i ∈ {1, . . . , k}

and b ∈ {ε, 2ε, . . . , 1}, according to the UCB1 algorithm. I.e., the ’actions’ from which the
UCB1 policy selects are (i, b) where i ∈ {1, . . . , k} and b ∈ {ε, 2ε, . . . , 1}.

The next claim bounds the loss of such a UCB1 policy compared to the optimal prefix
policy:

Claim 15 For any problem instance Φ we have

Π(Φ, OPT)−Π(Φ, UCB1Pre) ≤ εBdayπ1(T + 1) +
k

ε
(
8ln(T)

ε
+ 5 · π1 · Bday)

= O(επ1BdayT +
kln(T)

ε2
+

kπ1 · Bday

ε
)

where T is the number of sequences in the series S.

Proof: As shown in [5], for a bandit problem with k actions, where action i has an expected
profit of µi, the UCB1 algorithm guarantees

Π(Φ, OPT))−Π(Φ, UCB1) =
∑

i

E((µi∗ − µi) ·Ni(t)))

where Ni(t) is the number of times arm i has been chosen during the first t plays, and i∗

is the arm with the maximal expected profit. In [5] it was proved that

E(Ni(t)) ≤
8ln(t)

(µi∗ − µi)2
+ 1 +

π2

3
≤ 8ln(t)

(µi∗ − µi)2
+ 5

.
Therefore:

Π(Φ, OPT)−Π(Φ, UCB1Pre) ≤ εBdayπi∗T +
∑

i,b

(µi∗,b∗ − µi,b)(
8ln(T)

(µi∗,b∗ − µi,b)2
+ 5)

≤ εBdayπi∗T + εT +
∑

i,b|µi∗,b∗−µi,b≥ε

(µi∗,b∗ − µi,b)(
8ln(T)

(µi∗,b∗ − µi,b)2
+ 5),

where we used Lemma 14 in the first inequality and where the last term comes from
the fact that

∑

i,b|µi∗,b∗−µi,b<ε
(µi∗,b∗ − µi,b) ·Ni(T) ≤ ε · T .

In our case, µi∗,b∗ − µi,b ≤ Bday · π1 and we get that:

Π(Φ, OPT)− Π(Φ, UCB1) ≤ εT (π1 · Bday + 1) + k
ε
(8ln(T)

ε
+ 5 · π1 · Bday)).

Corollary 1 For any problem instance Φ: Π(Φ, OPT)−Π(Φ, UCB1) = O(k
1
2BdayT

2
3 lnT).

Proof: Setting ε = k
1
2T− 1

3 gives us

Π(Φ, OPT)−Π(Φ, UCB1) ≤ T
2
3 (k

1
2 · π1 · Bday + 1 + 8ln(T)) + 5T

1
3k

1
2π1Bday

= O(k
1
2BdayT

2
3 lnT),

which derives the bound.

3.4 Bucket policies

We are especially interested in regret bounds which are not dependent on the number of
keywords k in the problem, as we are usually dealing with very large number of keywords.
To do that, we group keywords with similar profit-to-cost (”bang-to-buck”) ratios together
in the following way. We partition the range [πk, π1] into multiplicative buckets, guaranteing
a maximal ratio of 1 + ε between two different keywords sharing a bucket. Let β = π1

πk
, we

create logβ
ε

buckets: (1 + ε)x = β, and xlog(1 + ε) = logβ as log(1 + ε) ≤ ε. The keywords
w1, w2, . . . , wk (which are sorted by their profit to cost ratios) are therefore grouped into
buckets Ai, where i ∈ {1, . . . , logβ

ε
}. Similar to the prefix accounts we defined earlier, we

define bucket prefix accounts with daily budget Bday , which buy all words from buckets
A1, . . . , Ai−1 and a fraction bε of the words in bucket Ai as BUC(Bday , i, bε). The following
lemma shows that the discretization does not lose much.

Lemma 16 For any problem instance Φ there exist integers i
′
and c such that

Π(Φ, OPT)−Π(Φ, BUC(Bday , i
′

, c · ε)) ≤ 2ε ·Bdayπi′T.

Proof: By Claim 9, there exists an optimal prefix policy PRE(Bday, i, b) with parameters
i = i∗ and b = b∗. We can therefore find a policy BUC(Bday , i, bε) with the following
parameters:

1. i = i′ such that i∗ is in Ai′ .

2. a bidding probability bε such that the cost of queries being bought from the bucket
Ai′ is less than the cost of the queries being bought by OPT from Ai, with a cost
difference of less than εBday.

For any of the queries in bucket Ai, i < i′ the bucket prefix earns exactly the same profits
earned by OPT . For the queries in bucket Ai′ , the bucket prefix earns no less the 1

1+ε
of

the profit earned by OPT per query (due to the multiplicative design of the bucket) and
by the selection of bε that profit is gained over no less then 1 − ε of the budget spent by
OPT on that bucket’s keywords.

Let UCB1Buc denote a daily changing BUC(Bday , i, bε) policy, where i ∈ {1, . . . , logβ
ε
},

and b ∈ {0, ε, 2ε, . . . , 1 − ε}. Algorithm UCB1Buc uses the UCB1 algorithm to select a
policy from the set of logβ

ε2
bucket prefix policies BUC(Bday , i, bε).

Corollary 2 For any problem instance Φ: Π(Φ, OPT)−Π(Φ, UCB1Buc) = O(BdayT
3
4 lnT).

Proof: By using Claim 15, Lemma 16, replacing the number of actions k
ε
with k = logβ

ε2
and

by setting ε = T− 1
4 we have:

Π(Φ, OPT)−Π(Φ, UCB1Buc) ≤ 2εBπ1(T + 1) +
logβ

ε2
(
8lnT

ε
+ 5π1Bday)

≤ 2BdayT
3
4π1(Bday +

1

T
) + 8logβT

3
4 lnT (1 +

5

8
Bdayπ1T

− 1
2)

= O(logβπ1BdayT
3
4 lnT)

The special structure of our problem, namely, the fact that different keywords can be
joined together based on their profit to cost ratio, allow Corollary 2 to derive an upper
bound O(BdayT

3
4 lnT), which is not dependant on the number of keywords k. This is not

the case in the general stochastic multi-arm bandit. There the regret from the selection
of each non optimal arm i is min{E(Ni(t)) · (µi∗ − µi), T · (µi∗ − µi)}. Consider a setting
in which all actions except the optimal one have, µi∗ − µi = 1√

T
. As we showed in the

proof of Claim 15, the per action regret is min{ log(T)
µi∗−µi

, T · (µi∗ − µi)} = O(
√
T). For such

a setting, we get a regret bound of O(k
√
T). In the keywords optimization problem, the

special structure of the problem allows us to reduce the dimensionality of the action space
by joining multiple similar actions together. That allows us to derive a bound independent
of the number of keywords k. That holds even for exponential action spaces such as in the
case where k = 2T . In that case, the classical k-arm bandit upper bound is trivial.

3.5 Stochastic Model Lower Bound

We conclude the analysis of the stochastic model by presenting a lower bound for the re-
gret of algorithms which choose (daily) between different prefix policies when compared
to a fixed prefix policy. Our proof to the lower bound is based on the proof used for the
lower bound in the adversarial model presented in the next chapter. For the simplicity of
presentation, and as the proof relies on some of the results presented there, we provide the
proof in appendix A.

Theorem 17 For any given T , k < T 1/3 there exists a problem instance Φ in which for
any algorithm A over prefix policies, Π(Φ, OPT) − Π(Φ, A) = Ω(

√
Tk). For k > T 1/3,

Π(Φ, OPT)−Π(Φ, A) = Ω(T 2/3).

Chapter 4

The adversarial Advertiser’s

Keyword Optimization problem

The previous chapter assumed a simple and stationary stochastic model underlying the
statistics of generated user query lists. In practice, these assumptions may fail to adequately
model the real life variability of users’ interest over time.

Therefore we introduce an adversarial variation of the problem, in which the advertiser
faces an adversary who may create arbitrary generated sequences of queries. No statistical
assumptions are made about the generation of the sequences and we only assume that
these sequences are generated at the beginning of each day before the advertiser selects his
keyword set, i.e., the adversary is oblivious to the algorithm’s actions. The advertiser task
is the same as in the stochastic version of the problem, i.e., to select for each day a good
fixed set of keywords to buy, while maximizing his profit under the daily budget constraint.

We show, that under some assumptions about the length of the sequence, the loss of
an advertiser in the adversarial setting compared to the best fixed policy, may be as big
as Ω(

√
Tk), where T is the number of sequences (days) and k = O(T 1/3) is the number of

keywords in the problem instance. We show that this bound is tight (up to a logarithmic
factor). Our lower bound does not hold for the case where k = Ω(T 1/3). In that case, we
provide a weaker lower bound of Ω(T 2/3), which is independent of k.

Our proof is similar to the lower bound proof of Auer et al [6]. There, the authors intro-
duce the adversarial multi-arm bandit problem, a variant of the classical bandit problem,
in which no statistical assumptions are made about the generation of awards, but rather,
each slot machine is initially assigned with an arbitrary and unknown sequence of rewards
by an adversarial opponent. They prove a lower bound of

√
Tk for any time horizon T and

for any number of actions k ≥ 2. Ironically, the power of the adversary in their lower bound
comes not from adapting to the on-line algorithm A, but from adapting to the number of
trials T .

We note that to prove the lower bound in our adversarial model, we can’t use the lower
bound result for adversarial multi-arm bandits in [6] directly. In their problem setting,
the adversary directly sets the reward of each of the actions, whereas in our model, the
adversary generates arbitrary sets of daily query sequences st. Therefore in the multi-arm
bandit model, the adversary is more powerful: he could specify the reward for each ac-
tion independently, whereas in our model, the adversary can only select the daily query
sequence which determines the profits for all actions simultaneously. I.e., there is a depen-
dency between the profits gained by selecting different sets of keywords given a daily query
sequence. This implies that the adversary can not generate arbitrary profits (rewards for
the different ”arms”) as in the bandit problem.

27

We conclude this discussion by noting an important difference between the stochastic
and adversarial models. In the stochastic model, we clustered ’similar’ words together
into buckets, and by that reduced the action space with a small controllable cost. In
the adversarial model, such clustering is not possible. For example, consider a problem
instance in which there are only three words w1, w2 and w3. Let the profits be such that
π1 > π2, π2 = π3. In contrast to the stochastic model where trading w2 and w3 is possible
(while taking care of their prior distribution

−→
λ), in the adversarial model, the adversary

can easily create daily sequences in which advertisers who buy w2 hurt their overall profit
while buying w3 improves the overall profit (by e.g., creating sequences in which w2 appear
before w1 and other sequences in which w3 appear only after w1). This is a key difference
between the stochastic and the adversarial models.

4.1 Model definition

In the adversarial model, we attempt to capture the full generality of an arbitrary joint
probability distribution. For that, we adopt a model similar to the scenario model in [7].
Instead of using P and λ to represent the distribution of queries from the keywords set W ,
the adversary may create an arbitrary set of daily sequences {s0, s1, . . . , sk} and select an
arbitrary distribution P over these sequences.

The advertiser is allowed to adaptively change the daily policy, i.e., for each day t ∈ [1, T]

the advertiser selects a daily policy
−→
X t, where

−→
X t = (b1, b2, . . . , bk) defines a vector of

probabilities for buying instances of keywords in W . As in the stochastic model,
−→
X t =

f(W,−→π ,−→c , Bday, (rt)
t−1
t=1), where rt is the daily profit of day t. I.e., the model assumes the

advertiser knows the associated costs −→c and profits −→π of the keywords in W , but does not
know the structure of the daily sequences st and the distribution P by which over them.
Again, at the end of each day, the only information the advertiser sees is the profit scalar
rt which is the total profit for that day.

Formally, the advertiser’s online adversarial keyword optimization problem is the follow-
ing: given a stochastic problem instance Φ = (W,−→π ,−→c , Bday, T, (st)

T
t=1, P) where (st)

T
t=1

and P are unknown to the advertiser, for each day t ∈ [1, T] the advertiser has to select a

daily policy
−→
X t after which he receives a daily profit rt. The advertiser’s goal is to maximize

his overall profit, i.e.,
T∑

t=1
rt. As before, we will denote the expected total profit of the policy

(
−→
X t)Tt=1 in the T days of the problem instance Φ as Π(Φ, (

−→
X t)Tt=1) , where the expectation

is over the distribution P .
We define OPT (Φ) as the maximal expected profit over all fixed policies

−→
X , i.e.,

OPT (Φ) = max−→
X

Π(Φ, (
−→
X, . . . ,

−→
X)).

Let ηt = i denote the selection of the (non fractional) prefix account PRE(Bday, i, 1) at
time t. I.e, b = 1.

4.2 Adversarial problem setting

To derive our lower bound we define the following problem instance ΦWC :
The daily sequences are selected by the adversary to be -
s0 ≡ wk . . . wk

︸ ︷︷ ︸

m times

, wk−1 . . . wk−1
︸ ︷︷ ︸

m times

, . . . w2 . . . w2
︸ ︷︷ ︸

m times

, w1 . . . w1
︸ ︷︷ ︸

m times

, w0 . . . w0
︸ ︷︷ ︸

m times

s1 ≡ wk . . . wk
︸ ︷︷ ︸

m times

, wk−1 . . . wk−1
︸ ︷︷ ︸

m times

, . . . w2 . . . w2
︸ ︷︷ ︸

m times

, w1 . . . w1
︸ ︷︷ ︸

m times

s2 ≡ wk . . . wk
︸ ︷︷ ︸

m times

, wk−1 . . . wk−1
︸ ︷︷ ︸

m times

, . . . w2 . . . w2
︸ ︷︷ ︸

m times

. . .
sk−1 ≡ wk . . . wk

︸ ︷︷ ︸

m times

, wk−1 . . . wk−1
︸ ︷︷ ︸

m times

sk ≡ wk . . . wk
︸ ︷︷ ︸

m times

We denote by Pbase = (p0, p1, .., pk) the following distribution over daily sequences {s0, s1, .., sk}
above:

Pbase({sequence = s0} ∪ {sequence = s1} ∪ . . . ∪ {sequence = si}) = 1/2
1−iε

.

Explicitly: p0 =
1
2

and ∀i ∈ {1, . . . , K},

pi =
1/2
1−iε

− 1/2
1−(i−1)ε

= 1
2
· ε
(1−iε)(1−(i−1)ε)

.

In order to have a proper distribution that sums to one, we define a null series, s⊥ with
probability 1− 1/2

1−kε
= 1/2−kε

1−kε
and require that ε ≤ 1/2k. We denote by Pj the distribution

we get by removing an pj+1

10
fraction from pj+1 and moving it to pj (Pj is a perturbed version

of Pbase) for j ∈ {0, 1, . . . , K − 1}.
We define the profits vector −→π as following:

π0 = 1, π1 = 1− ε, π2 = 1− 2ε, .., πj = 1− jε, .., πk = 1− kε

We keep all costs equal: ∀i, ci = 1 and the daily budget Bday = m.

4.3 Analysis of the daily profits

The following table gives the advertiser profit for each daily sequence si. We add also the
probability of si under Pbase and Pj.

s Pbase Pj, j ∈ [1, k − 1] ηt = 0 ηt = 1 ηt = 2 . . . ηt = j . . . ηt = k − 1 ηt = k
s0 p0 p0 m · π0 m · π1 m · π2 . . . m · πj . . . m · πk−1 m · πk

s1 p1 p1 0 m · π1 m · π2 . . . m · πj . . . m · πk−1 m · πk

s2 p2 p2 0 0 m · π2 . . . m · πj . . . m · πk−1 m · πk
...

...
...

...
...

...
...

...
...

...
...

sj−1 pj−1 pj−1 0 0 0 . . . m · πj . . . m · πk−1 m · πk

sj pj pj +
1
10
pj+1 0 0 0 . . . m · πj . . . m · πk−1 m · πk

sj+1 pj+1
9
10
pj+1 0 0 0 . . . 0 . . . m · πk−1 m · πk

...
...

...
...

...
...

...
...

...
...

...
sk−1 pk−1 pk−1 0 0 0 . . . 0 . . . m · πk−1 m · πk

sk pk pk 0 0 0 . . . 0 . . . 0 m · πk

The following table gives the distribution over the different types of earned keywords, under
the base distribution Pbase’s for each of the different prefix policies:

Pbase:

profit ηt = 0 ηt = 1 . . . ηt = j . . . ηt = k − 1 ηt = k

0 1− p0 1− p0 − p1 . . . 1−
j∑

i=0
pi . . . 1−

k−1∑

i=0
pi 1−

k∑

i=0
pi

m · π0 p0 0 . . . 0 . . . 0 0
m · π1 0 p0 + p1 . . . 0 . . . 0 0

...
...

...
...

...
...

...
...

m · πj 0 0 . . .
j∑

i=0

pi . . . 0 0

...
...

...
...

...
...

...
...

m · πk−1 0 0 . . . 0 . . .
k−1∑

i=0
pi 0

m · πk 0 0 . . . 0 . . . 0
k∑

i=0
pi

The last table gives the distribution over the different types of earned keywords, under
the different Pj:

profit ηt = 0 ηt = 1 . . . ηt = j ηt = j + 1 . . . ηt = k − 1 ηt = k

0 1− p0 1− p0 − p1 . . . 1−
j∑

i=0
pi − 1

10
pj+1 1−

j+1∑

i=0
pi . . . 1−

k−1∑

i=0
pi 1−

k∑

i=0
pi

m · π0 p0 0 . . . 0 0 . . . 0 0
m · π1 0 p0 + p1 . . . 0 0 . . . 0 0

...
...

...
...

...
...

...
...

...

m · πj 0 0 . . .
j∑

i=0

pi +
1
10
pj+1 0 . . . 0 0

m · πj+1 0 0 . . . 0
j+1∑

i=0
pi . . . 0 0

...
...

...
...

...
...

...
...

...

m · πk−1 0 0 . . . 0 0 . . .
k−1∑

i=0
pi 0

m · πk 0 0 . . . 0 . . . 0 0
k∑

i=0
pi

4.4 Information theoretic bound

Next, following [6], we derive a useful information theoretic based bound that will lead us
to prove our lower bound. For any random variable Y depending on a sequence of daily
sequences si we will write Ebase(Y), Ej(Y) to denote the expectation of Y with respect to
the distributions Pbase and Pj , respectively.

We denote the profit gained by the algorithm choosing prefix ηt at time t as rt, by rt

the vector of profits (r1, r2, . . . rt), and by r the full vector of profits rT , where T is the
number of daily sequences sampled from (si)

k
i=0.

Let Ni denotes the random variable specifying the number of times prefix i is selected
by the algorithm. The expected profit for each prefix ηt = i, i ∈ {0, 1, . . . , k} over the
distribution Pbase is:

Ebase[rt|ηt = i] = (
i∑

n=0
pn)mπi =

m/2
1−iε

(1− iε) = m
2
.

For the distribution Pj we get ∀i ∈ {0, 1, . . . , k − 1}, i 6= j:

Ej [rt|ηt = i] = (
i∑

n=0
pn)mπi =

m/2
1−iε

(1− iε) = m
2
,

and for i = j:

Ej[rt|ηt = j] = (
j
∑

n=0

pn +
1

10
pj+1)mπj

=
m/2

(1− jε)
(1− jε) +

m

10
pj+1(1− jε)

=
m

2
+

m

10

(

1/2

1− (j + 1)ε
− 1/2

1− jε

)

(1− jε)

=
m

2
+

m

20

1− jε− (1− jε− ε)

(1− jε− ε)(1− jε)
(1− jε)

=
m

2
+

m

20

ε

(1− jε− ε)

≥ m

2
+

m

20
ε.

The following lemma bounds the distance between the expectation of two functions of
the profit sequence r, with respect to the different distributions Pbase and Pj.

Lemma 18 Let f : {1, 1− ε, 1− 2ε, . . . , 1 − kε, 0}T → [0,M] be any function defined on

profits sequence r. Ei[f(r)]−Ebase[f(r)] ≤
√

(2 ln 2)KL(Pbase{r}||Pi{r})

Proof: For any funcion f we havge Ei[f(r)] − Ebase[f(r)] ≤ M
2
||Pi{r} − Pbase{r}||1. Also,

using the known relationship between the L1 norm and the KL-divergence (see Lemma
12.6.1 of [15]) we get that ||Pi{r} − Pbase{r}||21 ≤ (2 ln 2)KL(Pbase{r}||Pi{r}).

The next lemma refers to functions defined over profit sequences r. We notice that the
profit rt is a function of the policy ηt selected by the algorithm A, which is a function of

the profits rt−1. Therefore, Ni is also a function of r, as, Ni =
T∑

j=0
I(A(rt−1) = i) where I is

the indicator function and A(rt) is the policy ηt+1 selected by the algorithm at time t + 1
given the profits vector rt.

Lemma 19 Let f : {1, 1− ε, 1− 2ε, . . . , 1 − kε, 0}T → [0,M] be any function defined on
profits sequence r. Then for ε ≤ 1

4k
and for any i ∈ {0, . . . , k − 1} we have

Ei[f(r)] ≤ Ebase[f(r)] + 0.1εM
√

Ebase[Ni]

Proof: The proof follows the proof of Lemma A.1 in [6], except for the estimate of the
relative entropy KL (Pbase{rt|rt−1}||Pi{rt|rt−1}).

Given a deterministic algorithm A:

KL(Pbase{r}||Pi{r}) ∆
=

∑

r∈{m,m(1−ε),m(1−2ε),..,0}T
Pbase{r} lg(

Pbase{r}
Pi{r}

)

=
T∑

t=1

KL(Pbase{rt|rt−1}||Pi{rt|rt−1})

=
T∑

t=1

∑

rt∈{m,m(1−ε),m(1−2ε),..,m(1−kε),0}t
Pbase{rt} lg(

Pbase{rt|rt−1}
Pi{rt|rt−1})

=
T∑

t=1

∑

rt−1∈{m,m(1−ε),..,0}t−1

Pbase{rt−1}
∑

rt∈{m,m(1−ε),..,0}
Pbase{rt|rt−1} lg(Pbase{rt|rt−1}

Pi{rt|rt−1})

=
T∑

t=1

∑

rt−1∈{m,m(1−ε),..,0}t−1

A(rt−1)=i

Pbase{rt−1}
∑

rt∈{m,m(1−ε),..,0}
Pbase{rt|rt−1} lg(Pbase{rt|rt−1}

Pi{rt|rt−1})

+
∑

rt−1∈{m,m(1−ε),..,0}t−1

A(rt−1)6=i

Pbase{rt−1}
∑

rt∈{m,m(1−ε),..,0}
Pbase{rt|rt−1} lg(Pbase{rt|rt−1}

Pi{rt|rt−1}))

=
T∑

t=1

(Pbase{ηt = i}KL(
i∑

j=0

pj||
i∑

j=0

pj +
1

10
pi+1))

=
T∑

t=1

(Pbase{ηt = i}KL(
1/2

(1 − iε)
|| 1/2

(1− iε)
+

1

10
(

1/2

1− (i+ 1)ε
− 1/2

1− iε
)))

=
T∑

t=1

(Pbase{ηt = i}KL(
1/2

v
|| 9
10

· 1/2
v

+
1

10
· 1/2

v − ε
))

where in the sixth identity we used the fact that for A(rt−1) 6= i, the conditional distri-
butions Pbase{rt|rt−1} and Pi{rt|rt−1} are identical. For ε ≤ 1/4k and v ∈ [3

4
, 1], using

ln(1− x) ≤ −x a rather tedious computation verifies that:

KL(
1/2

v
|| 9
10

· 1/2
v

+
1

10
· 1/2

v − ε
)

=
1/2

v
log

1/2v
9
10

· 1/2
v

+ 1
10

· 1/2
v−ε

+ (1− 1/2

v
) log

1− 1/2v

1− 9
10

· 1/2
v

− 1
10

· 1/2
v−ε

=
1

2v
log

1/2v
9
10

· (v−ε)
2v(v−ε)

+ 1
10

· v
2v(v−ε)

+ (
2v − 1

2v
) log

2v−1
2v

2v(v−ε)− 9
10

v+ 9
10

ε− 1
10

v

2v(v−ε)

=
1

2v
log

v − ε
9
10

· (v − ε) + 1
10

· v + (
2v − 1

2v
) log

(2v − 1)(v − ε)

2v(v − ε)− (v − 9
10
ε)

=
1

2v
log

v − ε

v − 9
10
ε
+

2v − 1

2v
log

(2v − 1)(v − ε)

(2v − 1)(v − ε)− ε
10

=
1

2v
log

(

1−
1
10
ε

v − 9
10
ε

)

+
2v − 1

2v
log

(

1 +
1
10
ε

(2v − 1)(v − ε)− ε
10

)

=
1

ln 2
·
[

1

2v
ln

(

1−
1
10
ε

v − 9
10
ε

)

+
(2v − 1)

2v
ln

(

1 +
1
10
ε

(2v − 1)(v − ε)− ε
10

)]

≤ 1

ln 2
·
[

1

2v

(

−
1
10
ε

v − 9
10
ε

)

+
(2v − 1)

2v

1
10
ε

(2v − 1)(v − ε)− ε
10

]

≤ 1

ln 2
· ε/10

2v
· (2v − 1)(v − 9

10
ε)− [(2v − 1)(v − ε)− ε

10
]

[(2v − 1)(v − ε)− ε
10
](v − 9

10
ε)

≤ 1

ln 2
· ε/10

2v
·

ε
10
(2v − 1) + ε

10

[(2v − 1)(v − ε)− ε
10
](v − 9

10
ε)

≤ 1

ln 2
· ε/10

2v
·

ε
10
2v

[(2v − 1)(v − ε)− ε
10
](v − 9

10
ε)

≤ 1

ln 2
· ε2/100

[(1
2
+ 2ε) · 3

4
− ε

10
]3
4

≤ 1

ln 2
· 32

900
ε2

≤ 0.0246 · ε2.

Therefore KL(Pbase{r}||Pi{r}) ≤ Ebase[Ni](0.0246ε
2). Using Lemma 18 we get:

Ei[f(r)] ≤ Ebase[f(r)] +
M
2
ε
√
0.0246 · 2ln2

√

Ebase[Ni]

which completes the proof.

4.5 Adversarial Lower Bound

We are now ready to prove a lower bound on the loss of profit any algorithm will encounter
compared to the optimal prefix solution in the adversarial model.

In [6], the authors define a model of random payoffs (depending on T but not on
the algorithm) such that the expected regret of any algorithm on a random sample from
this distribution is Ω(

√
Tk). Their proof used a selection of one out of the k actions

uniformly at random, and designating it as the ”good” action. For all other actions,
the payoff in each round is a uniform random sample from {0, 1}, whether for that good
action the payoff is a biased sample from {0, 1} which is 1 with probability 1/2 + ε, where

ε = Θ(
√

k/T). Therefore, a strategy which knows the good action will achieve expected

payoff T/2+Θ(
√
Tk). It can be shown, for information-theoretic reasons, that no strategy

can learn the good action rapidly and reliably enough to play it more than T/k+Θ(ε
√

T 3/k)
times in expectation, from which the lower bound on regret follows.

Similarly, in our keyword optimization problem, the adversary constructs a problem
instance for which all prefixes have the exact same profit except a single randomly selected
prefix, i.e., a distribution P for which one of the prefixes is selected randomly as the
”good” prefix and it’s profit is slightly (m

20
ε) higher than the profit of all other prefixes.

Using Lemma 19, we show it is impossible for an algorithm to learn to identify the ’good’
prefix fast enough and to utilize from it’s additional profit.

As in [6], there is a trade-off between choosing ε too large (which makes it easy to
learn which prefix is the ”good” prefix), or too small (which leads to a negligible difference
between the profit of the ”good” prefix and all others). The optimal trade-off is achieved

for ε =
√

k/T .

As in [6], the adversary’s selections depends on T and not on the algorithm A.

Theorem 20 For any given T , there exists a problem instance Φ in which for any algo-
rithm A, Π(Φ, OPT) − Π(Φ, A) = Ω(

√
Tk) for k ≤ T 1/3 and Π(Φ, OPT) − Π(Φ, A) =

Ω(T 2/3) for k > T 1/3.

Proof: Given T , our adversary constructs the sequences s0, s1, . . . , sk according to ΦWC

and randomly selects Pi uniformly from i ∈ {0, 1, . . . , k − 1}. We will use P∗{·} to denote
probability with respect to this random uniform choice of Pi.

Given an algorithm A, i.e., a deterministic on-line prefix selection strategy ηt = A(rt−1),

the random variable Ni is a function of r, i.e., Ni
∆
= f : rT → [0, T]. Therefore we can use

Lemma 19 to conclude that Ei[Ni] ≤ Ebase[Ni] + 0.1εT
√

Ebase[Ni].

Ei[rt|rt−1] =
m

2
Pi{ηt 6= i}+ (

m

2
+

m

20
· ε

1− (i+ 1)ε
)Pi{ηt = i}

=
m

2
+

m

20
· ε

1− (i+ 1)ε
Pi{ηt = i}.

Using Lemma 19 for i ∈ {0, . . . , k − 1} we get:

Ei(ΠA) =
T∑

t=1

Ei[rt] =
mT

2
+
m

20
· ε

1− (i+ 1)ε
Ei[Ni]

≤ mT

2
+

mε

20(1− (i+ 1)ε)
(Ebase[Ni] + 0.1εT

√

Ebase[Ni]).

Before the daily sequences begin, one prefix i ∈ {0, . . . , k − 1} was chosen uniformly at
random by the adversary to be the ’good’ prefix. Using Lemma 19 and Jensen’s inequality
for f(x) =

√
x and i ∈ [0, k − 1], 1 ≥ 1− (i+ 1)ε ≥ 3

4
, we get:

E∗[ΠA] =
1

k

k−1∑

i=0

Ei[ΠA]

≤ 1

k

k−1∑

i=0

(
mT

2
+

mε

20(1− (i+ 1)ε)
(Ebase[Ni] + 0.1Tε

√

Ebase[Ni]))

=
mT

2
+

k−1∑

i=0

mε

20k(1− (i+ 1)ε)
Ebase[Ni] +

k−1∑

i=0

0.1mTε2

1− (i+ 1)ε

1

k

√

Ebase[Ni]

≤ mT

2
+

2mεT

30k
+

2mε2T

300k

√

T

k

where we used T =
k−1∑

i=0
Ebase[Ni] and

√
T ≥

k−1∑

i=0

√

Ebase[Ni].

When the adversary selects Pi to be the ’good’ prefix, the expected profit of the policy
which selects the good prefix ηt = i in all of the days is:

E∗[Πmax] =
mT

2
+

mT

20
· ε

1− (i+ 1)ε

≥ mT

2
+

mTε

20

Therefore:

E∗[Πmax − ΠA] ≥ mTε

20
− 2mTε

30k
− 2mε2T

300k

√

T

k

=
mTε

60
(3− 4

k
)− m

150

T 3/2ε2

k3/2

We can maximize the regret between the algorithm and the best prefix solution using

ε = Θ(
√

k
T
) giving a lower bound of Ω(m

√
Tk) for k ≥ 2. As we required ε ≤ 1/4k, this

implies that k ≤ Θ(T 1/3).
For k > T 1/3, we can maximize the regret by using ε = 1

4k
, giving a lower bound of

Ω(mT
k
). In that case the adversarial can simply use only T 1/3 keywords and by that, get

Ω(mT 2/3)

We conclude this chapter by providing a tight upper bound (up to the logarithmic
factor) for the regret of an online algorithm compared to the optimal prefix solution. For
that, we use the algorithm EXP3 proven by [6] to have an upper bound of O(

√
gklogk)

expected weak regret, where g is an upper bound on the total return of the single globally
best action at time horizon T .

Corollary 3 For any given problem instance Φ and any given T , an algorithm A which
uses the EXP3 policy over the k different prefix solutions achieves Π(Φ, OPT)−Π(Φ, A) =
O(

√
Tklogk).

Chapter 5

Experiments

This chapter includes empirical results for our setting. We follow the experimental setting
suggested by [3], in which they have compared their model based algorithm with the model
free algorithms EXP3 and UCB1. We show that by using a simple modification on the
UCB1 algorithm, inspired by the bucket policies in Chapter 3, a model free policy can
rapidly converge, with high probability, to a near optimal profit. We further show that
when removing some of the assumptions of the model, a model free approach can actually
outperform a model based approach.

5.1 Experimental Settings

Our first set of experiments uses the exact same model and settings described in [3]. The
model slightly differs from the probabilistic model presented in Chapter 3, as follows. First,
each keyword has an additional parameter - a clickthrough probability - which ties a fixed
probability of a query being clicked with each of the keywords wi. The clickthrough prob-
abilities are the only unknown parameters, i.e., the distribution P over the daily sequences
length and the vector of keyword probabilities

−→
λ are known. Second, the model assumes a

very concentrated distribution for the number of queries P , namely, a Poisson distribution
with a known mean µ. Following the experiments described in [3], there are two settings:

1. SMALL - each SMALL experiment has 100 randomly generated problem instances.
Each instance, has 8000 keywords where the costs are sampled uniformly at random
from the interval [0.1, 0.3), the profits are sampled uniformly at random from the
interval [0.0, 1.0) and the clickthrough rates associated with the keywords are sampled
uniformly at random from the interval [0.0, 0.2). The daily sequence length is sampled
from a Poisson distribution with a mean of 40,000. There are 200 time periods and
a budget of $400 per instance.

2. LARGE - similarly to the SMALL settings, in the LARGE experiments, we have
50,000 keywords, where the cost, profit and clickthtrough rates are generated in the
same way. The budget is increased to $1000 per instance and the number of daily
queries is sampled from a Poisson distribution with a mean of 150,000.

Figure 5.1 shows a typical histogram of the keywords’ profit to cost ratio in a LARGE
problem instance. We can see that the keyword profit to cost ratio is evenly distributed
up to some value, after which, high ratios become less likely. The vertical line in Figure
5.1 marks the profit to cost ratio of the last keyword in the optimal prefix of this specific
problem instance (the location of this keyword, near the end of the evenly distributed area,
is typical to these problem settings).

37

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500
Profit to Cost Histogram

Profit To Cost Ratio

K
ey

w
or

ds

Figure 5.1: Keywords’ profit to cost ratio histogram. The vertical line marks the
location of the optimal prefix.

Figure 5.2 displays the profits as a function of the prefix index, for a sampled SMALL
problem instance, averaged over 200 random days (the error bars illustrate the standard
deviation). As can be seen in the figure, the profit curve seems to have a single global
maxima, although from Figure 5.3, a zoomed version of the maxima area, we can see that
finding the exact maxima with only a few samples may be a non-trivial task as the variance
is quite large.

We conclude this discussion by noting that the experimental settings of [3], which
we have adopted in our experiments, are very simple and directly match the theoretical
model analyzed in [3]. Nevertheless, assuming a highly concentrated Poisson distribution
for the number of daily queries, as well as assuming known and fixed keyword ratios, are
assumptions which are hard to justify in practice.

−1000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

200

400

600

800

1000

1200

1400

1600

1800

2000
Prefix Profits

Prefix

P
ro

fit

Figure 5.2: Prefix Profits

2400 2420 2440 2460 2480 2500 2520 2540 2560

1890

1900

1910

1920

1930

1940

Prefix Profits

Prefix

P
ro

fit

Figure 5.3: Prefix Profits - zoomed on the global maxima

5.2 The Adaptive Bidding algorithm

The adaptive bidding algorithm [3] is a model based algorithm which maintains a per-
keyword estimate of the clickthrough rates based on the observed clicks and impressions.
Given these estimates, the algorithm tries to optimize the profit by selecting the prefix
solution which has an expected daily cost of the daily budget minus some slack. We em-
phasize that the ADAPTIVE BIDDING algorithm assumes all parameters of the model
except clickthrough rates are known, namely, the distribution P over the daily sequences
length, the keyword probabilities

−→
λ , costs −→c and profits −→π , are all known. Here is a formal

presentation of the adaptive bidding algorithm.

ADAPTIVE BIDDING [3]:

1. INPUT: P ,
−→
λ , −→c , −→π , Bday.

We are given a sequence (γt ∈ [0, 1] : t ≥ 1) where γt will denote the probability that
we choose a random decision at time t.

2. INITIALIZATION: For any keyword i, let yti and xt
i denote the number of impressions

and number of clicks, respectively, that the ad associated with keyword i has received
during day t. Set y0i = x0

i = 0 and p̂0i = pinit for all 0 ≤ i ≤ n.

3. At time t:

(a) Let lt be the index such that:

E(|S|) ·
lt∑

u=0

cuλup̂
t−1
u ≤ Bday(1−

1

k
− 2

k(1−α)/2
) ≤ E(|S|) ·

lt+1∑

u=0

cuλup̂
t−1
u ,

where k and α are parameters selected such that k ≥ 1, 0 ≤ α < 1, ci ≤ 1/k
and λi · E[|S|] ≤ kα for all i.

(b) With probability 1 − γt select the prefix policy lt, otherwise, uniformly select a
random prefix.

(c) Observe the resulting impressions xt
i and clicks yti .

(d) Updates: For any keyword i, update p̂ti =

t∑

j=1

xj
i

t∑

j=1

yji

if
t∑

j=1
yji > 0, or p̂ti = pinit if

t∑

j=1
yji = 0.

Notice that k and α place constrains on the magnitude of the cost and the expected
number of arrivals associated with each keyword and their rational (as well as the way to
choose them empirically) is detailed in [3]. In practice, we actually found that the Adaptive
Bidding algorithm may be considerably improved by removing this slack, i.e., setting k = ∞
and selecting lt such that:

E(|S|) ·
lt∑

u=0

cuλup̂
t−1
u ≤ Bday ≤ E(|S|) ·

lt+1∑

u=0

cuλup̂
t−1
u .

We refer to this variation as ADAPTIVE-BIDDING-ZERO-SLACK. Although a slack is
necessary for the proof of the theoretical results in [3], in practice it seems to reduce the
actual profits considerably.

In [3] the authors present a variety of initialization methods and randomization prob-
abilities (γt). For the fairness of the comparison with our suggested algorithm, we used
their best reported setting (which was verified also by our experiments). Namely, we used
an initial probability pinit of 0 and a randomization probability of γt = 1/t.

5.3 An improved UCB1 algorithm

Closely observing the behavior of UCB1 [5] and EXP3 [6] algorithms show that in our
settings, both algorithms perform poorly due to the large action space (50000 different pre-
fixes in the LARGE setting and 8000 in the SMALL setting) compared to the low number
of time periods (200). In such settings, both algorithms remain in the exploration stage
and do not have a real chance to get to any exploitation of the learned actions values.
Motivated by this observation and by the theoretical result of Chapter 3 (Corollary 2),
we present an alternative model free algorithm which exploits the special structure of our
problem. Our algorithm is a simple variation on the algorithm UCB1-TUNED from [5],
where here, the bandit actions are buckets of consecutive keywords, as detailed in Chapter
3. The algorithm, ADAPTIVE-BUCKET-UCB1, follows UCB1-TUNED but has an impor-
tant difference which allows convergence to near optimal performance with high probability.
This is done using a refinement parameter, τ , which defines the rate in which some ’good’
action/bucket is split into two smaller buckets. Each such split adds a single action to the
action space. The criterion for selecting this ’good’ bucket, which is initialized with the
parameters of the bucket from which it was split, is detailed below.

ADAPTIVE-BUCKET-UCB1:
Let µi and σi denote the observed mean and standard deviation, respectively, of the

profits gained by choosing all keywords from the prefix bucket policy i, i.e, selecting all
keywords from A0, . . . , Ai.

1. INPUT: −→c , −→π , a refinement parameter τ and a regularization parameter α.

2. INITIALIZATION: Initialize a single prefix bucket A1 of all sorted keywords.

3. At time t:

(a) Select the prefix solution A0, . . . , Ai for the i which has the maximal µi+σ̂i+α·χi

where σ̂i =
√

ln(t)
ni

min{1/4, Vi(ni)}, Vi(ni) = σ2
i +

√
2lnt
ni

is an upper confidence
of the variance of action i, ni is the number of times action i has been selected,
and χi is a regularization term which is proportional, e.g., to the log of the size
of the bucket Ai.

(b) If t(mod τ) ≡ 0, for the i selected in (a), if χi > χi+1 split Ai, else split Ai+1

(i.e., we select the larger bucket). Initialize the observed mean and standard
deviation of the two new actions with the values µi and σi respectively.

In our experiments we have selected τ = 4, α = 0.00003. We note that by increasing
the regularization parameter α, although slowing down the convergence rate, the algorithm
can handle more complex profit landscapes and handle multiple maxima correctly.

5.4 Results

In order to examine the quality of the policies learned by the algorithms, we have terminated
exploration after 100 days, i.e., at that time, the algorithm ADAPTIVE-BUCKET-UCB1
uses the observed means µi to select the best action. The algorithm ADAPTIVE BIDDING
uses γt = 0, and the Algorithm EXP3 uses the action with the largest weight. This implies
that we have 100 days for exploration and 100 days for exploitation.

Figures 5.4, 5.5 and 5.6, 5.7 show the simulation results for the SMALL and LARGE
settings, respectively. These SMALL and LARGE settings overall result in qualitatively
similar results. Figure 5.4, and 5.6 show the average profits (over 100 random problem
instances) for the algorithms ADAPTIVE-BIDDING[3], ADAPTIVE-BIDDING-ZERO-
SLACK, UCB1[5], ADAPTIVE-BUCKET-UCB1, and OPT (the optimal fixed prefix solu-
tion over the whole problem instance).

We can see that during the entire 100 days of exploration, UCB1 remains in an ’aggres-
sive’ exploration stage, while all other algorithms seem to quickly converge to much better
policies (even during the exploration period). This should be expected due to the large
action space handled by EXP3 in very few exploration steps and in fact, as seen in the
exploitation stage, EXP3 is more likely to learn a poor policy. Our suggested ADAPTIVE-
BIDDING-ZERO-SLACK algorithm seems to outperform ADAPTIVE-BIDDING from [3].
This happens due to a better use of the daily budget, which in the original ADAPTIVE-
BIDDING algorithm tends to be partially un-exhausted. In fact, unlike the results pre-
sented in [3], terminating exploration in EXP3 in the LARGE problem instances actually
outperforms the original ADAPTIVE-BIDDING algorithm in [3].

In Figure 5.5, and Figure 5.7 we consider an exponential average of the profit (with ex-
ponential decay factor of 0.95). We can see that in both the SMALL setting (Figure 5.5),
and in the LARGE setting (Figure 5.7), ADAPTIVE-BUCKET-UCB1 and ADAPTIVE-
BIDDING-ZERO-SLACK practically converge to near optimal average profits with high
probability: in the SMALL setting, there is no significant difference between the mean prof-
its learned by the two policies (0.44 P-Value in a paired T-Test), while in the LARGE set-
ting, ADAPTIVE-BUCKET-UCB1 outperforms the ADAPTIVE-BIDDING-ZERO-SLACK

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

Raw Daily profit

Day

P
ro

fit

Exploration+Exploitation Exploitation

ADAPTIVE−BIDDING−ZERO−SLACK
ADAPTIVE−BIDDING
ADAPTIVE−BUCKET−UCB1
EXP3
OPT

Figure 5.4: Raw profits - SMALL setting

method with a 0.2% relative improvement (statistically significant with a 8.4e-7 P-Value).
ADAPTIVE-BUCKET-UCB1 only seconds ADAPTIVE-BIDDING-ZERO-SLACK with a
slower convergence rate, which is due to the days ’wasted’ on the first few bucket splits.

The bumps in the plots, which can mostly be seen in the exploration period, are due to
’bad’ exploration steps.

We emphasize that ADAPTIVE-BIDDING-ZERO-SLACK requires the knowledge of
the exact multi-nomial distribution

−→
λ and the average sequence length E(|S|), while

ADAPTIVE-BUCKET-UCB1 requires neither. In [3], the authors describe methods by

which advertisers can model the multi-nomial distribution
−→
λ and the average sequence

length E(|S|), but modeling these thousands of parameters in a rapidly changing envi-
ronment is a daunting task. In fact, the problem settings we have followed from [3] are
obviously much simpler then real life problem setting in which the distribution P is much
more complex and in which the keyword distribution

−→
λ is non-stationary.

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

Smoothed average daily profit (smooth factor=0.95)

Day

P
ro

fit

Exploration+Exploitation Exploitation

ADAPTIVE−BIDDING−ZERO−SLACK
ADAPTIVE−BIDDING
ADAPTIVE−BUCKET−UCB1
EXP3
OPT

Figure 5.5: Smoothed profits - SMALL setting

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

Raw Daily profit

Day

P
ro

fit

Exploration+Exploitation Exploitation

ADAPTIVE−BIDDING−ZERO−SLACK
ADAPTIVE−BIDDING
ADAPTIVE−BUCKET−UCB1
EXP3
OPT

Figure 5.6: Raw profits - LARGE setting

5.5 Robustness Of Model Free Algorithms

We end this chapter by repeating the previous experiment while introducing some error to
the model parameters given to the algorithm. Our motivation comes from the fact that
in the real life problem, assuming perfect knowledge of the distribution of the number of
daily queries P , as well as the keyword distribution

−→
λ is far from from being feasible. A

model free algorithm which doesn’t model the complexity of the environment and in which
a theoretical ’clean’ setting may converge slower then a model based algorithm, may be a
more robust approach to select.

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

Smoothed average daily profit (smooth factor=0.95)

Day

P
ro

fit

Exploration+Exploitation Exploitation

ADAPTIVE−BIDDING−ZERO−SLACK
ADAPTIVE−BIDDING
ADAPTIVE−BUCKET−UCB1
EXP3
OPT

Figure 5.7: Smoothed profits - LARGE setting

In this experiment, rather then providing the ADAPTIVE-BIDDING-ZERO-SLACK
algorithm with the correct mean series length E(|S|), we provide it with E(|S|) · (1 + ǫ)
where ǫ varies between [−0.2, 0.2], i.e., simulating a case where the mean series length is
estimated with a relative error of up to 20%. The model free ADAPTIVE-BUCKET-UCB1
algorithm does not use the series length at all, nor does it use the keywords distribution−→
λ , in contrast to the ADAPTIVE-BIDDING-ZERO-SLACK algorithms which require to
receive both as parameters.

Figure 5.8 shows that already at low error levels, the ADAPTIVE-BUCKET-UCB1 al-
gorithm outperforms the ADAPTIVE-BIDDING-ZERO-SLACK algorithms. This implies
that, as expected, the ADAPTIVE-BIDDING-ZERO-SLACK algorithms are very sensi-
tive to model errors, a sensitivity to which a model-free algorithm such as ADAPTIVE-
BUCKET-UCB1, does not suffer from.

One can also observe that the Adaptive-Bidding algorithm is much more sensitive to
overestimates than to underestimates of the number of queries.

0 20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

1000

1200

1400

1600

1800

2000
Smoothed Average Daily Profit (gamma=0.95)

Day

P
ro

fit

ADAPTIVE−BIDDING−ZERO−SLACK +5% ERROR
ADAPTIVE−BIDDING−ZERO−SLACK +10% ERROR
ADAPTIVE−BIDDING−ZERO−SLACK +20% ERROR
ADAPTIVE−BIDDING−ZERO−SLACK −5% ERROR
ADAPTIVE−BIDDING−ZERO−SLACK −10% ERROR
ADAPTIVE−BIDDING−ZERO−SLACK −20% ERROR
ADAPTIVE−BUCKET−UCB1

Figure 5.8: Smoothed profits, error in estimation of E(|S|)

Appendix A

Our proof to the lower bound in the probabilistic model is based on the proof used for
the lower bound in the adversarial model presented in Chapter 4. We build a problem
setting that with high probability produces the exact same profits presented there, which
eventually lead to the same asymptotic regret, assuming long enough query sequences.

Proof of Theorem 17

Proof: We define the following problem instance Φ:
Let −→π = {1, 1 − ε, . . . , 1 − iε, . . . , 1 − kε}, and let

−→
λ = { Z

xk ,
Z

xk−1 , . . . ,
Z

xk−i , . . . ,
Z
x0},

where Z is the normalizing constant, i.e., Z = 1
k∑

i=0

1

xk−i

. We keep all costs equal: ∀i, ci = 1

and the daily budget is set as Bday = m.

A day of type i, si, has a query sequence length: |si| = m · axk−i

Z
where a and x are

parameters that we set later, and the distributions over the day length P follow those
presented in Chapter 4. I.e., Pbase = (p0, p1, .., pk) is the following distribution over daily
sequences {s0, s1, .., sk}: p0 = 1

2
and for i ∈ {1, . . . , K},

pi =
1/2

1− iε
− 1/2

1− (i− 1)ε
=

1

2
· ε

(1− iε)(1− (i− 1)ε)
.

In order to have a proper distribution that sums to one, we define a null query sequence,
s⊥ with probability 1− 1/2

1−kε
= 1/2−kε

1−kε
and require that ε ≤ 1

2k
.

We denote by Pi the distribution we get by removing an pi+1

10
fraction from pi+1 and

moving it to pi (Pi is a perturbed version of Pbase) for i ∈ {0, 1, . . . , K − 1}.

Claim 21 For a day with |si| queries, a prefix policy ηi gains a profit of mπi with probability
at least 1− 2ma

x
− e−

ma
2 .

Proof: We bound the probability by considering the event that at leastm queries of keyword
wi occur, and no query of keywords wj, for j ≤ i − 1 occur in a day with query sequence
of length |si|.

We first show that in a day with |si| queries, with high probability there will be more
than m queries of keyword wi. Let ni be the r.v. of the number of queries of keyword
wi, given |si| queries. By definition E(ni) = |si| · λi =

maxk−i

Z
Z

xk−i = ma. using Chernoff’s

inequality Pr[ni < (1 − δ)ma] < e−
maδ2

2 , by setting δ = a−1
a

and for a ≥ 2 we can bound
the number of queries ni from keyword wi that appear in a day of length |si| as follows

Pr[ni < m] = Pr[ni < (1− δ)E(ni)] = Pr[ni < (1− a− 1

a
)ma) < e−

ma
2

·(a−1
a

)2 < e−
ma
2 .

50

Second, for x ≥ 2 we show that with high probability there will be no queries of any
keyword w0, w1, . . . , wi−1 in a day with query sequence of length |si|:

Pr[
i−1∑

j=0

nj > 0] ≤ |si| ·
j=i−1
∑

j=0

λj ≤ |si| · 2λi−1 = ma
xk−i

Z
· 2 Z

xk−i+1
=

2ma

x
.

Therefore, w.p. at least 1 − 2ma
x

− e−
ab
2 , we get that a prefix policy ηi earns an exact

profit of m · πi.

Claim 22 For a day with |si| queries, a prefix policy ηj for j > i gains a profit of exactly
mπj with probability at least 1− 2ma

x
− e−

ma
2 .

Proof: By definition, a day with query sequence of length |si| has more queries than a
day with query sequence of length |sj| for j > i. By Claim 21 for a day with query sequence
of length |sj|, after |sj| queries, w.p. at least 1 − 2ma

x
− e−

ma
2 , a prefix ηj has a profit of

exactly m · πj .

Claim 23 For a day with |si| queries, for all j < i, a prefix policy ηj gains no profit with
probability equal or higher than 1− 2ma

x
.

Proof: We can bound the number of queries from keywords w0, w1, . . . , wj in a day with
|si| queries as follows:

Pr[
i−1∑

j=0

nj > 0] ≤ |si| ·
j=i−1
∑

j=0

λj ≤ |si| · 2λi−1 = ma
xk−i

Z
· 2 Z

xk−i+1
=

2ma

x
.

Therefore, using the union bound and the claims above, for T days, w.p. greater than
T (1− 6ma

x
− 2e−

ma
2) we get the exact same profit-per-prefix as in the proof of Theorem 20.

Define δ = 6ma
x

+ 2e−
ma
2 and using the proof of Theorem 20 we get:

E∗[ΠA] ≤ δT · T ·mπ0 + (1− δT)[
mT

2
+

2mεT

30k
+

2mε2T

300k

√

T

k
],

where we bounded the profit of the algorithm in the case where the profits do not match
those in Chapter 4 with the maximum possible daily profit.

Also, the expected profit of the optimal prefix is lower bounded by:

E∗[Πmax] ≥ (1− δT)[
mT

2
+

mTε

20
]

Therefore:

E∗[Πmax −ΠA] ≥ mTε

60
(3− 4

k
− 3δT)− δ

mT 2

2
− m

150

T 3/2ε2

k3/2

As in the proof of Theorem 20, by using ε = Θ(
√

k
T
) for 4 ≤ k ≤ Θ(T 1/3) we get:

E∗[Πmax − ΠA] ≥ m
√
Tk

150
(
15

2
− 1− 3δT − 150T 3/2δ

2
√
k

− 1)

=
m
√
Tk

150
(
11

2
− 3δT − 150T 3/2δ

2
√
k

)

by setting a = 3
m
(log T + 2) and x = 225maT 3/2√

K
, we get a lower bound of Θ(m

√
kT) for

T < k1/3 and Θ(mT 2/3) for T ≥ k1/3.

References

[1] Blum, A. and Y. Mansour (2007). Learning, regret minimization, and equilibria. In N.
Nisan, T. Roughgarden, E. Tardos, and V. Vazirani (Eds.), Algorithmic Game Theory.
Cambridge, U.K.: Cambridge University Press.

[2] Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. Internet Advertising and
the Generalized Second-Price Auction: Selling Billions of Dollars Worth of Keywords.
American Economic Review, 97(1):242259, 2007.

[3] Paat Rusmevichientong and David P. Williamson. 2006. An adaptive algo-
rithm for selecting profitable keywords for search-based advertising services.
In Proceedings of the 7th ACM conference on Electronic commerce (EC
’06). ACM, New York, NY, USA, 260-269. DOI=10.1145/1134707.1134736
http://doi.acm.org/10.1145/1134707.1134736

[4] Brian C. Dean, Michel X. Goemans, and Jan Vondrak. 2004. Approximating the
Stochastic Knapsack Problem: The Benefit of Adaptivity. In Proceedings of the 45th
Annual IEEE Symposium on Foundations of Computer Science (FOCS ’04). IEEE
Computer Society, Washington, DC, USA, 208-217. DOI=10.1109/FOCS.2004.15
http://dx.doi.org/10.1109/FOCS.2004.15

[5] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time Analysis
of the Multiarmed Bandit Problem. Mach. Learn. 47, 2-3 (May 2002), 235-256.
DOI=10.1023/A:1013689704352 http://dx.doi.org/10.1023/A:1013689704352

[6] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E. Schapire.
2003. The Nonstochastic Multiarmed Bandit Problem. SIAM J. Com-
put. 32, 1 (January 2003), 48-77. DOI=10.1137/S0097539701398375
http://dx.doi.org/10.1137/S0097539701398375

[7] S. Muthukrishnan, Martin Pal, and Zoya Svitkina. 2007. Stochastic models for budget
optimization in search-based advertising. In Proceedings of the 3rd international con-
ference on Internet and network economics (WINE’07), Xiaotie Deng and Fan Chung
Graham (Eds.). Springer-Verlag, Berlin, Heidelberg, 131-142.

[8] Avrim Blum, Vijay Kumar, Atri Rudra, and Felix Wu. 2003. Online learning in online
auctions. In Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete
algorithms (SODA ’03). Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 202-204.

[9] Aranyak Mehta , Amin Saberi , Umesh Vazirani , Vijay Vazirani, AdWords
and Generalized On-line Matching, Proceedings of the 46th Annual IEEE Sym-
posium on Foundations of Computer Science, p.264-273, October 23-25, 2005
[doi¿10.1109/SFCS.2005.12]

53

[10] S. Pandey, and C. Olston. Handling Advertisements of Unknown Quality in Search
Advertising. NIPS 06

[11] Kuzman Ganchev, Alex Kulesza, Jinsong Tan, Ryan Gabbard, Qian Liu, and Michael
Kearns. 2007. Empirical price modeling for sponsored search. In Proceedings of the
3rd international conference on Internet and network economics (WINE’07), Xiaotie
Deng and Fan Chung Graham (Eds.). Springer-Verlag, Berlin, Heidelberg, 541-548.

[12] Christian Borgs, Jennifer Chayes, Nicole Immorlica, Kamal Jain, Omid Etesami, and
Mohammad Mahdian. 2007. Dynamics of bid optimization in online advertisement
auctions. In Proceedings of the 16th international conference on World Wide Web
(WWW ’07). ACM, New York, NY, USA, 531-540. DOI=10.1145/1242572.1242644
http://doi.acm.org/10.1145/1242572.1242644

[13] Michael R. Garey , David S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman & Co., New York, NY, 1979.

[14] T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances
in Applied Mathematics, 6:4-22, 1985.

[15] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: Wiley,
1991.

