Perfect hashing.

We consider the following *perfect hashing* problem: Given a set S of n keys from a universe U, build a look-up table T of size O(n) such that a membership query (given $x \in U$, is $x \in S$) can be answered in constant time.

We show that a perfect hash table can be built in linear expected time. The idea is to build a two-level table (see Fig. 1). In the first level, a hash function f partitions the set S into n subsets, denoted as buckets, B_1, B_2, \ldots, B_n . For a bucket B_i , we denote its size as $b_i = |B_i|$. In the second level, each bucket B_i has a separate memory array whose size is $\Theta(b_i^2)$, and a separate hash function g_i that maps the bucket injectively into that memory array. All the memory arrays are placed in a single table T, and for each bucket B_i we maintain the offset p_i , which gives the position in T where B_i 's memory array begins.

A high level description of the algorithm is as follows:

- Step 1 Find a function $f: U \to [1..n]$, that partitions S into buckets B_1, B_2, \ldots, B_n such that $\sum_{i=1}^n b_i^2 \leq \beta n$, where β is a constant that will be determined later.
- Step 2 For each bucket B_i , compute an offset $p_i = \sum_{j=1}^{i-1} \alpha b_j^2$, and allocate a subarray M_i of size αb_i^2 in array T between positions $p_i + 1$ and p_{i+1} in T, where α is a constant that will be determined later.
- Step 3 For each bucket B_i find a function $g_i : u \to [1..\alpha b_i^2]$, such that g_i is injective on B_i . For every key $x \in B_i$, place x in $T[p_i + g_i(x)]$.

In Step 1, the function f is recorded. We use two additional arrays: P[1..n] to record the offsets in Step 2, and G[1..n] to record the functions g_i in Step 3. The table T is of size $\alpha \sum_{i=1}^n b_i^2 \leq \alpha \beta \cdot n$, and the total memory required by the data structure is therefore O(n), as required. Given a key $x \in U$, a membership query for x is supported in constant time as follows:

- 1. Compute i = f(x).
- 2. Read g_i from G[i] and compute $j = g_i(x)$.
- 3. If T[P[i] + j] = x then answer " $x \in S$ ", and otherwise answer " $x \notin S$ ".

More details and analysis:

In our analysis we will use four basic facts from probability theory, and a property of universal hash functions:

1. Boole's inequality: For any sequence of events $A_1, A_2, \ldots, A_m, m \geq 1$, $\mathbf{Pr}(A_1 \cup A_2 \cdots \cup A_m) \leq \mathbf{Pr}(A_1) + \mathbf{Pr}(A_2) + \cdots + \mathbf{Pr}(A_m)$.

- 2. Markov inequality: Let X be a nonnegative random variable, and suppose that $\mathbf{E}(X)$ is well defined. Then for all t > 0, $\mathbf{Pr}(X \ge t) \le \mathbf{E}(X)/t$. Alternatively, for all $\tau > 0$, $\mathbf{Pr}(X \ge \tau \mathbf{E}(X)) \le 1/\tau$.
- 3. Linearity of expectation: $\mathbf{E}(X+Y) = \mathbf{E}(X) + \mathbf{E}(Y)$; more generally, $\mathbf{E}(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} \mathbf{E}(X_i)$.
- 4. Expectation in geometric-like distribution: Suppose that we have a sequence of Bernoulli trials, each with a probability $\geq p$ of success and a probability $\leq 1-p$ of failure. Then the expected number of trials needed to obtain a success is at most 1/p.
- 5. Collisions in universal hash functions: If h is chosen from a universal collection of hash functions and is used to hash N keys into a table of size B, the expected number of collisions involving a particular key x is (N-1)/B.

We can now provide more details on Step 1, which consists of the following sub-steps.

Step 1a Select at random a function $f: U \to [1..n]$ from a universal class of hash functions.

Step 1b Compute a hash-table T' with chaining using the hash function f, so that insertion takes constant time.

Step 1c Compute an array B2, so that $B2[i] = b_i^2$.

Step 1d If $\sum_{i=1}^{n} b_i^2 > \beta n$ then go to Step 1a; otherwise record the function f.

Analysis Step 1a takes constant time, Step 1b takes O(n) time and O(n) space, Step 1c takes O(n) time using the table T', and Step 1d takes O(n) time, using array B2. The time complexity, T_1 , of Step 1 is therefore O(tn), where t is the number of iterations, i.e., the number of functions f selected before the condition $\sum_{i=1}^{n} b_i^2 \leq \beta n$ is satisfied. The following claim shows that for $\beta \geq 4$ we have $\mathbf{E}(T_1) = O(n)$.

Claim: If $\beta \geq 4$ then $\mathbf{E}(t) \leq 2$.

Proof. Let C_x be the number of collisions of a key $x \in S$ under f; i.e., the number of $y \in S$, $y \neq x$, for which f(x) = f(y). Due to the collision property of universal hash functions (with N = B = n) we have $\mathbf{E}(C_x) < 1$.

We consider the total number of collisions C_S in S. Specifically, let C_S be the number of (ordered) pairs $\langle x, y \rangle$, $x, y \in S$ and $x \neq y$, such that f(x) = f(y). Clearly, $C_S = \sum_{x \in S} C_x$. Therefore, by linearity of expectation,

$$\mathbf{E}(C_S) = \sum_{x \in X} \mathbf{E}(C_x) < |S| \cdot 1 = n . \tag{1}$$

On the other hand, we note that collisions are defined among keys mapped into the same buckets, and can be counted as:

$$C_S = \sum_{i=1}^n |\{\langle x,y
angle\} : x,y \in B_i, x
eq y\}| = \sum_{i=1}^n b_i \cdot (b_i - 1) = \sum_{i=1}^n b_i^2 - \sum_{i=1}^n b_i \; .$$

Therefore, since $\sum_{i=1}^{n} b_i = n$,

$$\sum_{i=1}^n b_i^2 = C_S + n$$
 ,

and by Eq (1)

$$\mathbf{E}\left(\sum_{i=1}^{n}b_{i}^{2}
ight)=\mathbf{E}\left(C_{S}
ight)+n<2n$$
 .

By Markov Inequality, applied to the random variable $X = \sum_{i=1}^{n} b_i^2$,

$$\mathbf{Pr}\left(\sum_{i=1}^n b_i^2 \geq 4n
ight) \leq 1/2$$
 .

If $\beta \geq 4$, then for a function f selected at random the condition $\sum_{i=1}^{n} b_i^2 \leq 4n$ is satisfied with probability at least 1/2. Therefore, the expected number, t, of functions f tried before the condition is satisfied is at most 2.

To compute Step 2, note that $p_i = p_{i-1} + \alpha b_{i-1}^2$ for i > 1, and $p_1 = 0$. Therefore, p_i can be computed and recorded in array P by iterating for i = 1, ..., n. Step 2 takes $T_2 = O(n)$ time.

Finally, Step 3 consists of the following sub-steps, executed for all i, i = 1, ..., n:

Step 3a Initialize the subarray T[P[i]+1,...,P[i+1]] to nil.

Step 3b Select at random a function $g_i: U \to [1..\alpha b_i^2]$ from a universal class of hash functions.

Step 3c For each $x \in B_i$, if $T[P[i] + g_i(x)]$ is not nil then go to Step 3a (g_i) is not injective on B_i and a new g_i is to be selected); else write x into $T[P[i] + g_i(x)]$.

Step 3d Record g_i in G[i].

Analysis We analyze first Step 3 for bucket B_i . Step 3a takes time $O(b_i^2)$. Step 3b takes constant time. Step 3c can be implemented in $O(b_i)$ time, using the *i*'th list in the hash table T' computed in Step 1. Step 3d takes constant time. The time complexity of Step 3 for bucket B_i is therefore $t_i = O(\tau_i b_i^2)$, where τ_i is the number of iterations, i.e., the number of functions g_i selected before an injective function is found for B_i .

Comment: We could have each iteration take only $O(b_i)$ time by removing Step 3a, initializing the table T in Step 2, and modify Step 3c as follows:

Step 3c' For each $x \in B_i$, if $T[P[i] + g_i(x)]$ is not nil then for all $y \in B_i$ assign nil to $T[P[i] + g_i(y)]$ and go to Step 3a; else write x into $T[P[i] + g_i(x)]$.

The following claim shows that for $\alpha \geq 2$ we have $\mathbf{E}(t_i) = O(b_i^2)$.

Claim: If $\alpha > 2$ then $\mathbf{E}(\tau_i) < 2$.

Proof. Let C_x be the number of collisions of a key x in B_i under g_i ; i.e., the number of $y \in B_i$, $y \neq x$, for which $g_i(x) = g_i(y)$. Due to the collision property of universal hash functions (with $N = b_i$ and $B = \alpha b_i^2$) we have

$$\mathbf{E}(C_x) < b_i/(\alpha b_i^2) = 1/\alpha b_i.$$

By Markov Inequality,

$$\mathbf{Pr}\left(C_{x} \geq 1\right) \leq \mathbf{E}\left(C_{x}\right) < 1/\alpha b_{i} . \tag{2}$$

Therefore, by Boole's inequality and Eq (2), the probability that there are any collisions in B_i is

$$\mathbf{Pr}\left(\exists x \in B_i \text{ such that } C_x \geq 1\right) \leq b_i \cdot (1/\alpha b_i) = 1/\alpha$$
.

For $\alpha \geq 2$, the function g_i is injective with probability at least $1 - 1/\alpha \geq 1/2$, and the expected number of trials, τ_i , required before an injective function is found is at most 2.

For $\alpha \geq 2$ we have

$$\mathbf{E}\left(t_{i}\right) = O(\mathbf{E}\left(\tau_{i}\right)b_{i}^{2}) = O(b_{i}^{2}) .$$

The total time, T_3 , for Step 3 over all buckets is then

$$\mathbf{E}(T_3) = \sum_{i=1}^{n} \mathbf{E}(t_i) = O(\sum_{i=1}^{n} b_i^2) = O(\beta n)$$

The running time, T, of the entire algorithm can now be bounded as

$$\mathbf{E}(T) = \mathbf{E}(T_1 + T_2 + T_3) = \mathbf{E}(T_1) + \mathbf{E}(T_2) + \mathbf{E}(T_3) = O(n)$$
.

Exercises

- 1. If h is chosen at random from an almost-universal collection of hash functions and is used to hash N keys into a table of size B, the collision probability of any two particular keys x and y is at most 2/B, and the expected number of collisions involving a particular key x is at most 2(N-1)/B.
 - Modify the algorithm above so that almost-universal functions are used instead of universal functions, and such that the expected running time remains O(n).
- 2. Modify the algorithm above and analyze it, so that the first level function f maps the input set S into 2n buckets, instead of n buckets.
- 3. (*) Generalizing (2), modify the algorithm above and analyze it, so that the first level function f maps the input set S into γn buckets, and select γ that gives favorable complexity (in terms of constants).