Proximity Search in Databases

by
Roy Goldman, Narayanan Shivakumar, 

Suresh Venkatasubramanian, Hector Garcia-Molina

Summarized by Eyal Mishor

Introduction

Proximity search is successfully used in information retrieval systems to locate documents that have words occurring “near” each other. The paper applies this notion to search across an arbitrary database for objects that are “near” other objects. Proximity search across an entire database gives a rough or “fuzzy” measure of how related objects are. While some situations demand “precise” query results, more and more online databases - such as content databases on the Web - enable users to interactively browse results and submit refining queries.

For object-proximity searching, the database is viewed as a collection of objects that are related by a distance function. The objects may be tuples, records, actual objects, or even fields within these structures. The distance function is provided by the system or an administrator; it indicates how “closely related” certain (not necessarily all) pairs of objects are.

Traditional information retrieval proximity search is intra-object, i.e., it only considers word distances within a document. This paper introduces inter-object search, i.e., ranking objects based on their distance to other objects. This problem introduces more complicated distance computations on a much bigger input.
The Problem

The basic problem is to rank one given set (the Find set) based on their proximity to objects in another given set (the Near set), assuming objects are connected by given numerical “distances”.

Example: 

The following query will search for all movies involving both John Travolta and Nicolas Cage.

Find movie Near Travolta Cage

Conceptual Model

The figure below shows the components of the model. An existing database system stores a set of objects. Applications generate Find and Near queries at the underlying database. The database evaluates the queries and passes the Find and Near object result sets to the proximity engine. The proximity engine then ranks the Find set, using distance information provided by the distance module.

[image: image1.png]Find Query Find/Near Objects Rarked

- Find

Objects
Database

Proximity
Engine

Distance
Modle
Near Query




Computing Object Distances

For the proximity computations to be practical there is a need to efficiently find the distances between pairs of objects. Classical Shortest-Path algorithms can not be used here, because their enhancement to disk-based graphs yields too many random seeks.

 A “Self-Joins” algorithm that builds an indexed distance table is presented. This algorithm computes the distances iteratively using a well-known technique for processing “self-joins” in relational databases. The algorithm runs with a little I/O overhead.

 An improvement for the above algorithm using hub indexing is presented. Hubs are nodes that separate the graph into balanced components. A heuristic for finding such nodes is described, and it is shown how a small number of such hubs improve significantly the time and space performance.

 Additional improvements like caching portions of the index in memory, or clustering related data of the database are shortly discussed by the authors.

Results

The authors built a prototype of their model and ran some experiments on it. The experiments showed that when choosing no more than 2.5% of nodes as hubs the time and space performance increased dramatically. 

The algorithm seems to scale well when increasing the input. 

Examples of queries time on the prototype where around 2-3 seconds.

Related Work

Most existing approaches for supporting proximity search in databases are restricted to searching only within specific fields known to store unstructured text.

There is a work that enables proximity search using universal relation in a relational database. Still, this approach does not support proximity search in general, and it provide no mechanism for ranking relevant results.
Remarks

The prototype presented by the authors, which implement their model, achieved very interesting query results and with very reasonable time requirements. The presented model can be the basis of a new search engine. 

The authors of the paper describe only a heuristic for selecting the hub nodes. This heuristic seems to work well in practice, but it is worth while to continue looking for less heuristic method for doing it. The problem that needed to be solved is how we can partition a graph for balanced connectivity components.

A very useful possible enhancement of the paper’s algorithm is to calculate the shortest-paths in addition to calculating the shortest-distances. This way the user can get more information about the results of his queries. For example (based on the paper example), he can find out how the movie “Original Sin” is related to the actors “Travolta” and “Cage” (“Original Sin” stars Gina Gershon, who also played a part in “Face/Off” which both actors played in).

The shortest-paths can be calculated while the shortest-distances are being calculated, and can be stored also on the disk.

More Information

A prototype that implements the conceptual model presented in the paper can be found at: http://www-db.stanford.edu/lore; users can submit their own searches and browse the results.

The complete paper and previous papers can be found at the homepages of the authors:

{royg, shiva, suresh, hector}@cs.stanford.edu. 
