Discovery Driven Exploration
of
OLAP Data Cubes

Rakesh Agrawal Sunita Sarawagi Nimrod Megiddo

Summarized by Ziv Rahima

Abstract

Analysts predominantly use OLAP data cubes to identify regions of anomalies that may represent problem areas or new opportunities. The current OLAP systems support hypothesis­driven exploration of data cubes through operations such as drill­down, roll­up, and selection. The authors propose a new discovery­driven exploration paradigm that mines the data for exceptional values and areas and summarizes the exceptions at appropriate levels in advance. It then uses these exceptions to lead the analyst to interesting regions of the cube during navigation.

1. Introduction to OLAP

OLAP stands for On-Line Analytical Processing. The focus of OLAP systems is the extraction of valuable information from multi-dimensional data. OLAP software aims to help the users gain insight into the performance of the enterprise. To achieve this goal, a wide variety of views are used to explore the multi-dimensional data.

OLAP software is typically composed of two parts:

 A server back-end which performs complex data analysis calculations, and

 A client front-end which displays the (summarized) data and allows the end-user to explore it.

1.1. The Data Cube

The data cube is an increasingly popular data model for OLAP applications.

Data cubes consist of two kinds of attributes:

 Dimensions.
Dimensions are attributes of a domain entity (e.g. if an entity is a sale of a product, dimensions are the product name, the time of the purchase, etc). Dimensions usually form hierarchies (e.g. the location dimension has a three-level hierarchy: store (city (region).

 Measures.
Measures are numeric values that are attached to a domain entity (e.g. for the sale entity mentioned above, a possible measure is the amount of the purchase).

1.2. Hypothesis-Driven Exploration

In the traditional exploration technique, the user starts out with a certain hypothesis about the behavior of the problem domain. This hypothesis is generated from the analyst's knowledge, experience, and intuition of that domain.

The analyst then sets out to find proof of such behavior or evidence that refute it. He usually starts at the topmost level of the hierarchy and works his way down, by iteratively applying one of the basic navigation operations (Drill-Down, Roll-Up, and Selection).

While this technique may be applicable to small search-spaces, it does not scale well to meet the demands of medium to large search spaces. A typical search space consists of:

 Five to eight dimensions,

 Two to eight hierarchy levels on each dimension, and

 Tens to hundreds of distinct value in each level.

There are numerous other shortcomings to such a technique. Among them, the most important ones are:

 When the analyst examines a particular level of the cube, he may not be able to detect exceptional values that belong to more detailed levels. Groups of exceptions may cancel each other out, so their accumulated affect is negligible.

 Also, even if the analyst is looking at level the exception occurs in, the exceptional value may be hard to notice when the are many values to examine.

1.3. Discovery-Driven Exploration

To remedy the shortcomings of the traditional approach, the authors suggest a novel way to explore the data cube.

The basic innovation behind the technique is the detection of anomalous regions within the data cube and the guidance of the analyst towards such regions. To achieve this goal, a model for defining exceptions was formalized. This model is then applied to detect exceptional values and to generate indicators of such values. These indicators are present at every detail level, so the analyst may drill down to locate the actual exception.

A formal definition of exceptions follows.

2. Defining Exceptions

Intuitively, a value in a cell of a data cube is an exception if it is surprising.

A naive approach would be to detect these surprising values, and to highlight them to the user. However, we want to lead the user to the interesting regions in the cube, so we must highlight a certain cell even if it's value is not surprising at all, in the case where values underneath it are. We would also like to lead the user down a path on which he would come across the most interesting regions.

To achieve these goals, we define exception-types.

2.1. Exception Types

There are three exception types.

 Type I exceptions: SelfExp. These exceptions represent the surprise value of the cell itself, not taking into account any values that occur underneath it.

 Type II exceptions: InExp. These exceptions represent the surprise values of all cells reachable from this one by drilling down. Formally, it's the maximum SelfExp value of cells underneath this one.

 Type III exceptions: PathExp. These exceptions represent the surprise values of all cells reachable from this one by drilling down a specific path. Formally, it's the maximum SelfExp value of cells reachable by drilling down that path.

2.2. A More Formal Approach

A value is exceptional if it’s surprising according to some Computational Model. This model must consider all Group-Bys in which the value participates. Using this model, we compute an estimate for the value of each cell in the cube. The difference between the estimate and the actual value is the surprise level.

3. The Computational Model

[image: image1.png]Birinein = FO0G e |G C {d1,da, .. .d,})

Consider at first a cell at the most detailed level. The estimate for a cell's value is a function of several terms, which we'll refer to as Gamma-Terms. Each such Gamma-Term represents a Group-By. Thus, we have:

[image: image2.png]

Where is a Gamma-Term, representing the Group-By G.

We can see that f is a function of 2n-1 parameters. We now illustrate this with an example.

3.1. [image: image3.png]AB , BC [AC
= fr v B AE A8 1B 44

The Computational Model - an Example

Consider a 3D cube ABC. The estimate for is given by:

[image: image4.png]Sijk =

[Yii% — sl

Oiik

We'll soon see how to compute each Gamma-Term. Before we do, we have to note that this computation yields unscaled values. We thus have to perform some normalization:

[image: image5.png]o~y

ik

B

C AB

A
i

log §ijk

Y+

i’)’j

v+ v

BC | , AC
Y Ve -

 These values represent the surprise level for each cell.

3.2. The Computational Model - Functional Form of f
The f function can take many forms. The most common ones are:

 Multiplicative

 Additive

 A mixture of the two

[image: image6.png]

We'll use the multiplicative form, as it has given the best results in simulations. For simplicity we take a log of f to ease computations:

3.3. The Computational Model - Estimating Gamma-Terms

Each Gamma-Term is an adjustment to the Group-By average, after taking into account higher-level adjustment. The general term is given by:

[image: image7.png]@-"-

FV=

G'CG

Therefor we have:

Where Ĝ is the average for this Group-By, and G' is a higher-level Group-By. Also, to improve statistical stability, we use a 75% trimmed average.

3.4. The Computational Model - Improving Performance

Recall the f has 2n-1 elements. This means it's very costly to compute. The article suggests a way to rewrite f, so that it becomes a function of n elements. We will not discuss this technique here. Another technique involves parallel computation of Gamma-Terms.

