
Optimal Workload-based Weighted Wavelet Synopses ∗

Yossi Matias

School of Computer Science

Tel Aviv University

Tel Aviv 69978, Israel

matias@tau.ac.il

Daniel Urieli†

School of Computer Science

Tel Aviv University

Tel Aviv 69978, Israel

daniel1@post.tau.ac.il

Abstract

In recent years wavelets were shown to be effective data synopses. We are concerned with
the problem of finding efficiently wavelet synopses for massive data sets, in situations where
information about query workload is available. We present linear time, I/O optimal algorithms
for building optimal workload-based wavelet synopses for point queries. The synopses are based
on a novel construction of weighted inner-products and use weighted wavelets that are adapted
to those products. The synopses are optimal in the sense that the subset of retained coefficients
is the best possible for the bases in use with respect to either the mean-squared absolute or
relative errors. For the latter, this is the first optimal wavelet synopsis even for the regular,
non-workload-based case. Experimental results demonstrate the advantage obtained by the new
optimal wavelet synopses, as well as the robustness of the synopses to deviations in the actual
query workload.

1 Introduction

In recent years there has been increasing attention to the development and study of data synopses,
as effective means for addressing performance issues in massive data sets. Data synopses are
concise representations of data sets, that are meant to effectively support approximate queries to
the represented data sets [10]. A primary constraint of a data synopsis is its size. The effectiveness
of a data synopsis is measured by the accuracy of the answers it provides, as well as by its response
time and its construction time. Several different synopses were introduced and studied, including
random samples, sketches, and different types of histograms. Recently, wavelet-based synopses
were introduced and shown to be a powerful tool for building effective data synopses for various
applications, including selectivity estimation for query optimization in DBMS, approximate query
processing in OLAP applications and more (see [16, 20, 21, 2, 6, 9, 8], and references therein).

The general idea of wavelet-based approximations is to transform a given data vector of size
N into a representation with respect to a wavelet basis (this is called a wavelet transform), and
approximate it using only M ¿ N wavelet basis vectors, by retaining only M coefficients from the
linear combination that spans the data vector (coefficients thresholding). The linear combination

∗Research partly supported by a grant from the Israel Science Foundation.
†Contact author

1

that uses only M coefficients (and assumes that all other coefficients are zero) defines a new vector
that approximates the original vector, using less space. This is called M -term approximation, which
defines a wavelet synopsis of size M .

Wavelet synopses. Wavelets were traditionally used to compress some data set where the pur-
pose is to reconstruct, in a later time, an approximation of the whole data using the set of retained
coefficients. The situation is a little different when using wavelets for building synopses in database
systems [16]: in this case only portions of the data are reconstructed each time, in response to
user queries, rather than the whole data at once. As a result, portions of the data that are used
for answering frequent queries are reconstructed more frequently than portions of the data that
correspond to rare queries. Therefore, the approximation error is measured over the multi-set of
actual queries, rather than over the data itself.

Another aspect of the use of wavelets in database systems is that due to the large data-sizes
in databases (giga-, tera- and peta-bytes), the efficiency of building wavelet synopses is of primary
importance. Disk I/Os should be minimized as much as possible, and non-linear-time algorithms
may be unacceptable.

Optimal wavelet synopses. The main advantage of transforming the data into a representation
with respect to a wavelet basis is that for data vectors containing similar values, many wavelet
coefficients tend to have very small values. Thus, eliminating such small coefficients introduces
only small errors when reconstructing the original data, resulting in a very effective form of lossy
data compression.

Generally speaking, we can characterize a wavelet approximation by three attributes: how the
approximation error is measured, what wavelet basis is used and how coefficient thresholding is
done. Many bases were suggested and used in traditional wavelets literature. Given a basis with
respect to which the transform is done, the selection of coefficients that are retained in the wavelet
synopsis may have significant impact on the approximation error. The goal is therefore to select a
subset of M coefficients that minimizes some approximation-error measure. This subset is called
an optimal wavelet synopsis, with respect to the chosen error measure.

While there has been a considerable work on wavelet synopses and their applications [16, 20,
21, 2, 6, 9, 8], so far there were only a few optimality results. The first one is a linear-time Parseval-
based algorithm, which was used in traditional wavelets literature (e.g [12]), where the error was
measured over the data. This algorithm minimizes the L2 norm of the error vector, and equivalently
it minimizes the mean-squared-absolute error over all possible point queries. No algorithm that
minimizes the mean-squared-relative error over all possible point queries was known. The second
one, introduced recently [9], is a polynomial-time (O(N2M log M)) algorithm that minimizes the
max relative or absolute error over all possible point queries. Another optimality result is a polyno-
mial time dynamic-programming algorithm that obtains an optimal wavelet synopsis over multiple
measures [6]. The synopsis is optimal w.r.t. an error metric defined as weighted combination of L2

norms over the multiple measures (this weighted combination has no relation with the notion of
weighted wavelets of this paper).

Workload-based wavelet synopses. In recent years there is increased interest in workload-
based synopses – synopses that are adapted to a given query workload, with the assumption that
the workload represents (approximately) a probability distribution from which future queries will
be taken. Chaudhuri et al [4] argue that identifying an appropriate precomputed sample that avoids
large errors on an arbitrary query is virtually impossible. To minimize the effects of this problem,

2

previous studies have proposed using the workload to guide the process of selecting samples [1, 3, 7].
By picking a sample that is tuned to the given workload, we can reduce the error over frequent (or
otherwise “important”) queries in the workload.

In [4], the authors formulate the problem of pre-computing a sample as an optimization problem,
whose goal is to pick a sample that minimizes the error for the given workload.

Recently, workload-based wavelet synopses were proposed [14, 18]. Using an adaptive-greedy
algorithm, the query-workload information was used during the thresholding process in order to
build a wavelet synopsis that decreases the error w.r.t. to the query workload. While these workload-
based wavelet synopses demonstrate significant imporvement with respect to prior synopses, they
are not optimal.

In this paper, we address the problem of finding efficiently optimal workload-based wavelet
synopses.

1.1 Contributions

We introduce efficient algorithms for finding optimal workload-based wavelet synopses using weighted
Haar (WH) wavelets, for workloads of point queries. Our main contributions are:

• Linear-time, I/O optimal algorithms that find optimal Workload-based Weighted Wavelet
(WWW) synopses: 1

– An optimal synopsis w.r.t. workload-based mean-squared absolute-error (WB-MSE).

– An optimal synopsis w.r.t. workload-based mean-squared relative-error (WB-MRE).

Equivalently, the algorithms minimize the expected squared, absolute or relative errors over
a point query taken from a given distribution.

• The WB-MRE algorithm, used with uniform workload, is also the first algorithm that mini-
mizes the mean-squared-relative-error over the data values, with respect to a wavelet basis.

• Both WWW synopses are also optimal with respect to enhanced wavelet synopses, which
allow changing the values of the synopses coefficients to arbitrary values.

• Experimental results show the advantage of our synopses with respect to existing synopses.

• The synopses are robust to deviation from the pre-defined workload, as demonstrated by our
experiments.

The above results were obtained using the following novel techniques.

• We define the problem of finding optimal workload-based wavelet synopses in terms of a
weighted norm, a weighted-inner-product and a weighted-inner-product-space. This enables
linear time I/O optimal algorithms for building optimal workload-based wavelet synopses.

The approach of using a weighted inner product can also be used to the general case in which
each data point is given different priority, representing its significance (an example is shown in
Sec. 6). Using these weights, one can find a weighted-wavelet basis, and an optimal weighted
wavelet synopsis in linear time, with O(N/B) I/Os.

1No relation whatsover to the world-wide-web.

3

• We introduce the use of weighted wavelets for data synopses. Using weighted wavelets [5, 11]
enables finding optimal workload-based wavelet synopses efficiently. In contrast, it is not
known how to obtain optimal workload-based wavelet synopses with respect to the Haar
basis efficiently. If we ignore the efficiency of finding a synopsis, the Haar basis is as good as
the weighted Haar basis for approximation.

In wavelets literature (e.g [12]), wavelets are used to approximate a given signal, which is treated
as a vector in an inner-product space. Since an inner-product defines an L2 norm, the approxi-
mation error is measured as the L2 norm of the error vector, which is the difference between the
approximated vector and the approximating vector. Many wavelet bases were used for approxi-
mation, as different bases are adequate for approximating different collections of data vectors. By
using an orthonormal wavelet basis, an optimal coefficient thresholding can be achieved in linear
time, based on Parseval’s formula. When using non-orthogonal wavelet basis, or measuring the
error using other norms (e.g L∞), it is not known whether an optimal coefficient thresholding can
be found efficiently, so usually non-optimal greedy algorithms are used in practice.

A WH basis is a generalization of the standard Haar basis, which is typically used for wavelet
synopses due to its simplicity.

There are several attributes by which a wavelet basis is characterized, which affects the quality
of the approximations achieved using this basis (for full discussion, see [12]). These attribute are:
the set of nested spaces of increasing resolution which the basis spans, the number of vanishing
moments of the basis, and its compact support (if exists). Both Haar basis and a WH basis span
the same subsets of nested spaces, have one vanishing moment, and a compact support of size 1.

Haar basis is orthonormal for uniform workload of point queries. Hence it is optimal for the
MSE error measure. The WH basis is orthonormal with respect to the weighted inner-product
defined by the problem of finding optimal workload-based wavelet synopses. As a result, an optimal
workload-based synopses with respect to WH basis is achieved efficiently, based on Parseval’s
formula, while for the Haar basis no efficient optimal thresholding algorithm is known, in cases
other than uniform workload.

1.2 Paper outline

The rest of the paper is structured as follows. In Sec. 2 we describe the basics of wavelet-based
synopses. In Sec. 3 we describe the basic ideas we rely on in our development, including the
workload-based error metrics and optimal thresholding in orthonormal bases. In Sec. 4 we define
the problem of finding optimal workload-based wavelet synopses in terms of weighted inner product,
and solve it using an orthonormal basis. In Sec. 5 we describe the optimal algorithm for minimizing
WB-MSE, which is based on the construction of Sec. 4. In Sec. 6 we extend the algorithm to work
for the WB-MRE. In Sec. 7 we present experimental results, and in Sec. 8 we draw our conclusions.

2 Wavelets basics

In this section we will start by presenting the Haar wavelets and continue with presenting wavelet
based synopses, obtained by thresholding process, described in Sec. 2.2. The error tree structure
will be presented next (Sec. 2.3), along with the description of the reconstruction of original data
from the wavelet synopses in Sec. 2.4.

Wavelets are a mathematical tool for the hierarchical decomposition of functions in a space-
efficient manner. Wavelets represent a function in terms of a coarse overall shape, plus details that

4

range from coarse to fine. Regardless of whether the function of interest is an image, a curve, or
a surface, wavelets offer an elegant technique for representing the various levels of detail of the
function in a space-efficient manner.

2.1 One-dimensional Haar wavelets

Haar wavelets are conceptually the simplest wavelet basis functions, and were thus used in previous
works of wavelet synopses. They are fastest to compute and easiest to implement. We focus on
them for purpose of exposition in this paper. To illustrate how Haar wavelets work, we will start
with a simple example borrowed from [16].

Suppose we have one-dimensional “signal” of N = 8 data items: S = [2, 2, 0, 2, 3, 5, 4, 4]. We
will show how the Haar wavelet transform is done over S. We first average the signal values,
pairwise, to get a new lower-resolution signal with values [2, 1, 4, 4]. That is, the first two values in
the original signal (2 and 2) average to 2, and the second two values 0 and 2 average to 1, and so
on. We also store the pairwise differences of the original values (divided by 2) as detail coefficients.
In the above example, the four detail coefficients are (2−2)/2 = 0, (0−2)/2 = −1, (3−5)/2 = −1,
and (4− 4)/2 = 0. It is easy to see that the original values can be recovered from the averages and
differences.

This was one phase of the Haar wavelet transform. By repeating this process recursively on the
averages, we get the Haar wavelet transform (Table 1). We define the wavelet transform (also called
wavelet decomposition) of the original eighth-value signal to be the single coefficient representing
the overall average of the original signal, followed by the detail coefficients in the order of increasing
resolution. Thus, for the one-dimensional Haar basis, the wavelet transform of our signal is given
by
S̃ = [23

4 ,−11
4 , 1

2 , 0, 0,−1,−1, 0]

Resolution Averages Detail Coefficients
8 [2, 2, 0, 2, 3, 5, 4, 4]
4 [2, 1, 4, 4] [0,-1,-1, 0]
2 [1.5, 4] [0.5, 0]
1 [2.75] -1.25

Table 1: Haar Wavelet Decomposition

The individual entries are called the wavelet coefficients. The wavelet decomposition is very
efficient computationally, requiring only O(N) CPU time and O(N/B) I/Os to compute for a signal
of N values, where B is the disk-block size.
No information has been gained or lost by this process. The original signal has eight values, and so
does the transform. Given the transform, we can reconstruct the exact signal by recursively adding
and subtracting the detail coefficients from the next-lower resolution. In fact we have transformed
the signal S into a representation with respect to another basis of R8: The Haar wavelet basis. A
detailed discussion can be found, for example, in [19].

2.2 Thresholding

Given a limited amount of storage for maintaining a wavelet synopsis of a data array A (or equiv-
alently a vector S), we can only retain a certain number M ¿ N of the coefficients stored in

5

the wavelet decomposition of A. The remaining coefficients are implicitly set to 0. The goal of
coefficient thresholding is to determine the “best” subset of M coefficients to retain, so that some
overall error measure in the approximation is minimized.

One advantage of the wavelet transform is that in many cases a large number of the detail
coefficients turn out to be very small in magnitude. Truncating these small coefficients from the
representation (i.e., replacing each one by 0) introduces only small errors in the reconstructed signal.
We can approximate the original signal effectively by keeping only the most significant coefficients.

For a given input sequence d0, ..., dN−1, we can measure the error of approximation in several
ways. Let the i’th data value be di. Let qi be the i’th point query, which it’s value is di. Let d̂i be
the estimated result of di. We use the following error measure for the absolute error over the i’th
data value:

ei = e(qi) = |di − d̂i|
Once we have the error measure for representing the errors of individual data values, we would

like to measure the norm of the vector of errors e = (e0, ..., eN−1). The standard way is to use the
L2 norm of e divided by

√
N which is called the mean squared error :

MSE(e) = ‖e‖ =

√√√√ 1
N

N−1∑

i=0

e2
i

We would use the terms MSE and L2 norm interchangeably during our development since they are
completely equivalent, to a positive multiplicative constant.

The basic thresholding algorithm, based on Parseval’s formula, is as follows: let α0, ..., αN−1

be the wavelet coefficients, and for each αi let level(αi) be the resolution level of αi. The detail
coefficients are normalized by dividing each coefficient by

√
2level(ai) reflecting the fact that coeffi-

cients at the lower resolutions are “less important” than the coefficients at the higher resolutions.
This process actually turns the wavelet coefficients into an orthonormal basis coefficients (and is
thus called “normalization”). The M largest normalized coefficients are retained. The remaining
N −M coefficients are implicitly replaced by zero. This deterministic process provably minimizes
the L2 norm of the vector of errors defined above, based on Parseval’s formula (see Sec. 3).

2.3 Error tree

The wavelet decomposition procedure followed by any thresholding can be represented by an error
tree [16].
Fig. 1 presents the error tree for the above example. Each internal node of the error tree is associated
with a wavelet coefficient, and each leaf is associated with an original signal value. Internal nodes
and leaves are labelled separately by 0, 1, ..., N − 1. For example, the root is an internal node
with label 0 and its node value is 2.75 in Fig. 1. For convenience, we shall use “node” and “node
value” interchangeably. The construction of the error tree exactly mirrors the wavelet transform
procedure. It is a bottom-up process. First, leaves are assigned original signal values from left to
right. Then wavelet coefficients are computed, level by level, and assigned to internal nodes.

2.4 Reconstruction of original data

Given an error tree T and an internal node t of T , t 6= a0, we let leftleaves(t) (rightleaves(t))
denote the set of leaves (i.e., data) nodes in the subtree rooted at t’s left (resp., right) child. Also,
given any (internal or leaf) node u, we let path(u) be the set of all (internal) nodes in T that are

6

Figure 1: Error tree for N = 8

proper ancestors of u (i.e., the nodes on the path from u to the root of T , including the root but
not u) with nonzero coefficients.
Finally, for any two leaf nodes dl and dk we denote d(l : h) as the range sum

∑k
i=l di

Using the error tree representation T, we can outline the following reconstruction properties of the
Haar wavelet decomposition [16]:

2.4.1 Single value.

The reconstruction of any data value di depends only on the values of the nodes in path(di).

di =
∑

αj∈path(di)

δij · αj

where δij = +1 if di ∈ leftleaves(αj) or j = 0, and δij = −1 otherwise.

2.4.2 Range sum.

An internal node αj contributes to the range sum d(l : h) only if αj ∈ path(dl) ∪ path(dk).

d(l : h) =
∑

αj∈path(dl)∪path(dh)

xj

where

xj =

{
(h− l) · αj if j = 0
(|leftleaves(αj , l : h)| − |rightleaves(αj , l : h)|) · αj otherwise

7

and where leftleaves(αj , l : h) = leftleaves(αj)∩{dl, dl+1, ..., dh} (i.e., the intersection of leftleaves(αj)
with the summation range) and rightleaves(αj , l : h) is defined similarly.
Thus, a reconstruction of a single data values involves the summation of at most log N + 1 coeffi-
cients, and reconstructing a range sum involves the summation of at most 2 log N + 1 coefficients,
regardless of the width of the range.

3 The basics of our development

3.1 Workload-based error metrics

Let D = (d0, ..., dN−1) be a sequence with N = 2j values. Denote the set of point queries as
Q = (q0, ..., qN−1), where qi is a query which its answer is di. Let a workload W = (c0, ..., cN−1) be
a vector of weights that represents the probability distribution from which future point queries are
to be generated. Let (u0, ..., uN−1) be a basis of RN , than D =

∑N
i=0 αiui. We can represent D by

a vector of coefficients (α0, ..., αN−1).
Suppose we want to approximate D using a subset of the coefficients S ⊂ {α0, ..., αN−1} where

|S| = M . Then, for any subset S we can define a weighted norm WL2 with respect to S, that
provides a measure for the errors expected for queries drawn from the probability distribution
represented by W , when using S as a synopsis. S is then referred to as a workload-based wavelet
synopsis.

Denote d̂i as an approximation of di using S. There are two standard ways to measure the error
over the i’th data value (equivalently, point query):

The absolute error : ea (i) = ea (qi) = |di − d̂i|; and the relative error : er (i) = er (qi) = |di−d̂i|
max{|di|,s} ,

where s is a positive bound that prevents small values from dominating the relative error.
While the general (non-workload-based) approach is to reduce the L2 norm of the vector of

errors (e1, ..., eN) (where ei = ea (i) or ei = er (i)), here we would generalize the L2 norm to reflect
the query workload. Given a workload W that consists of all the queries’ probabilities c1, ..., cN

(where ci is the probability that qi appears), the weighted-L2 norm of the vector of (absolute or
relative) errors e = (e1, ..., eN) would be:

WL2 (e) = ‖e‖w =

√√√√
N−1∑

i=0

ci · e2
i

where 0 < ci ≤ 1,
∑N−1

i=0 ci = 1. The intuition behind this definition of norm is to give each
data value di (or equivalently each point query qi) some weight that represents its significance. In
the above case the square of the WL2 norm is the expected squared error for a point query that
is drawn from the given distribution. In other words, to minimize that norm of the error is to
minimize the expected squared error of an answer to a query.

In general, the weights given to data values need not necessarily represent a probability distri-
bution of point queries, but any other significance measure. For example, in Sec. 6 we use weights
to solve the problem of minimizing the mean-squared relative error measured over the data values
(the non-workload-based case).

Notice that it is a generalization of the MSE norm: by taking equal weights for each query,
meaning ci = 1

N for each i and ei = ea (i), we get the standard MSE norm. We use the term
workload-based error for the WL2 norm of the vector of errors e. When ei are absolute (resp.
relative) errors the workload-based error would be called the WB-MSE (resp. WB-MRE).

8

3.2 Optimal thresholding in orthonormal bases

The construction is based on Parseval’s formula, and a known theorem that results from it (Thm. 1).

3.2.1 Parseval’s formula.

Let V be a vector space, where v ∈ V is a vector and {u0, ..., uN−1} is an orthonormal basis of V .
We can express v as v =

∑N−1
i=0 αiui. Then

‖v‖2 =
N−1∑

i=0

α2
i (1)

An M -term approximation is achieved by representing v using a subset of coefficients S ⊂
{α0, ..., αN−1} where |S| = M . The error vector is than e =

∑
i/∈S αiui. By Parseval’s formula,

‖e‖2 =
∑

i/∈S α2
i . This proves the following theorem.

Theorem 1 (Parseval-based optimal thresholding) Let V be a vector space, where v ∈ V is
a vector and {u0, ..., uN−1} is an orthonormal basis of V . We can represent v by {α0, ..., αN−1}
where v =

∑N−1
i=0 αiui. Suppose we want to approximate v using a subset S ⊂ {α0, ..., αN−1} where

|S| = M ¿ N . Picking the M largest coefficients to S minimizes the L2 norm of the error vector,
over all possible subsets of M coefficients.

Given an inner-product, based on this theorem one can easily find an optimal synopses by choosing
the largest M coefficients.

3.3 Optimality over enhanced wavelet synopses

Notice that in the previous section we limited ourselves to picking subsets of coefficients with
original values from the linear combination that spans v (as is usually done). In case {u0, ..., uN−1}
is a wavelet basis, these are the coefficients that results from the wavelet transform. We next
show that the optimal thresholding according to Thm. 1 is optimal even according to an enhanced
definition of M -term approximation. We define enhanced wavelet synopses as wavelet synopses
that allow arbitrary values to the retained wavelet coefficients, rather than the original values that
resulted from the transform. The set of possible standard synopses is a subset of the set of possible
enhanced synopses, and therefore an optimal synopsis according to the standard definition is not
necessarily optimal according to the enhanced definition.

Theorem 2 When using an orthonormal basis, choosing the largest M coefficients with original
values is an optimal enhanced wavelet synopses.

Proof : The proof is based on the fact that the basis is orthonormal. It is enough to show that
given some synopsis of M coefficients with original values, any change to the values of some subset
of coefficients in the synopsis would only make the approximation error larger:
Let u1, ..., uN be an orthonormal basis and let v = α1u1 + ...+αNuN be the vector we would like to
approximate by keeping only M wavelet coefficients. Without loss of generality, suppose we choose
the first M coefficients and have the following approximation for v: ṽ =

∑M
i=1 αiui. According

to Parseval’s formula ‖e‖2 =
∑N

i=M+1 α2
i since the basis is orthonormal. Now suppose we would

change the values of some subset of j retained coefficients to new values. Let us see that due to
the orthonormality of the basis it would only make the error larger. Without loss of generality we

9

would change the first j coefficients, meaning, we would change α1, ..., αj to be α′1, ..., α′j . In this
case the approximation would be ṽ′ =

∑j
i=1 α′iui +

∑M
i=j+1 αiui. The approximation error would be

v − ṽ′ =
∑j

i=1 (αi − α′i) ui +
∑N

i=M+1 αiui. It is easy to see that the error of approximation would
be: ‖e‖2 = 〈v − ṽ′, v − ṽ′〉 =

∑j
i=1 (αi − α′i)

2 +
∑N

i=M+1 α2
i >

∑N
i=M+1 α2

i .

4 The workload-based inner product

In this section, we define the problem of finding an optimal workload-based synopses in terms of a
weighted-inner-product space, and solve it relying on this construction. Here we deal with the case
where ei are the absolute errors (the algorithm minimizes the WB-MSE). An extension to relative
errors (WB-MRE) is introduced in Sec. 6
Our development is as follows:

1. Transforming the data vector D into an equivalent representation as a function f in a space
of piecewise constant functions over [0, 1). (Sec. 4.1)

2. Defining the workload-based inner product. (Sec. 4.2)

3. Using the inner product to define an L2 norm, showing that the newly defined norm is
equivalent to the weighted L2 norm (WL2). (Sec. 4.3)

4. Defining a weighted Haar basis which is orthonormal with respect to the new inner product.
(Sec. 4.4)

Based on Thm. 1 and Thm. 2 one can easily find an optimal workload-based wavelet synopses with
respect to a weighted Haar wavelet basis.

4.1 Transforming the data vector into a piecewise constant function

We assume that our approximated data vector D is of size N = 2j . As in [19], we treat sequences
(vectors) of 2j points as piecewise constant functions defined on the half-open interval [0, 1). In
order to do so, we will use the concept of a vector space from linear algebra. A sequence of one point
is just a function that is constant over the entire interval [0, 1); we’ll let V0 be the space of all these
functions. A sequence of 2 points is a function that has two constant parts over the intervals [0, 1

2)
and [12 , 1). We’ll call the space containing all these functions V1. If we continue in this manner, the
space Vj will include all piecewise constant functions on the interval [0, 1), with the interval divided
equally into 2j different sub-intervals. We can now think of every one-dimensional sequence D of
2j values as being an element, or vector f , in Vj .

4.2 Defining a workload-based inner product

The first step is to choose an inner product defined on the vector space Vj . Since we want to
minimize a workload based error (and not the regular L2 error), we started by defining a new work-
load based inner product. The new inner product is a generalization of the standard inner product.
It is a sum of N = 2j weighted standard products; each of them is defined over an interval of size 1

N :

〈f, g〉 = N ·
(

N−1∑

i=0

ci

∫ i+1
N

i
N

f (x) g (x) dx

)
where 0 < ci ≤ 1,

N−1∑

i=0

ci = 1 (2)

10

Lemma 1 〈f, g〉 is an inner product.

Proof : Let us check that it satisfies the conditions of an inner product:

• 〈f, g〉 : Vj × Vj → R

• Symmetric:

〈f, g〉 = N ·
N−1∑

i=0

ci

∫ i+1
N

i
N

f(x)g(x)dx = N ·
N−1∑

i=0

ci

∫ i+1
N

i
N

g(x)f(x)dx = 〈g, f〉

• Bilinear:

〈af1 + bf2, g〉 = N ·
N−1∑

i=0

ci

∫ i+1
N

i
N

(af1 + bf2)(x)g(x)dx =

N ·
N−1∑

i=0

ci

∫ i+1
N

i
N

af1(x)g(x)dx + N ·
N−1∑

i=0

ci

∫ i+1
N

i
N

bf2(x)g(x)dx =

aN ·
N−1∑

i=0

ci

∫ i+1
N

i
N

f1(x)g(x)dx + bN ·
N−1∑

i=0

ci

∫ i+1
N

i
N

f2(x)g(x)dx =

a〈f1, g〉+ b〈f2, g〉

• and also
〈f, ag1 + bg2〉 = a〈f, g1〉+ b〈f, g2〉

with a similar proof.

• positive definite:

〈f, f〉 = N ·
N−1∑

i=0

ci

∫ i+1
N

i
N

f(x)f(x)dx = N ·
N−1∑

i=0

ci

∫ i+1
N

i
N

f2(x)dx ≥ 0

and 〈f, f〉 = 0 iff f ≡ 0 since ci > 0 for each i

As mentioned before, a coefficient ci represents the probability (or a weight) for the i’th point
query (qi) to appear. Notice that the answer of which is the ith data value, which is function value
at the i’th interval. When all coefficients ci are equal to 1

N (a uniform distribution of queries), we
get the standard inner product, and therefore this is a generalization of the standard inner product.

11

4.3 Defining a norm based on the inner product

Based on that inner product we define an inner-product-based (IPB) norm:

‖f‖IPB =
√
〈f, f〉 (3)

Lemma 2 The norm ‖f‖IPB measured over the vector of absolute errors is the weighted L2 norm
of this vector, i.e ‖e‖2

IPB =
∑N−1

i=0 cie
2
i = ‖e‖2

w.

Proof : Let f ∈ Vj be a function and let f ′ ∈ Vj be a function that approximates f . let the error
function be e = f − f ′ ∈ Vj . Then the norm of the error function is:

‖e‖2
IPB = 〈e, e〉 = N ·

N−1∑

i=0

ci

∫ i+1
N

i
N

e (x) e (x) dx =

N ·
N−1∑

i=0

ci

∫ i+1
N

i
N

e2 (x) dx = N ·
N−1∑

i=0

ci

∫ i+1
N

i
N

(
f − f ′

)2 (x) dx =

N ·
N−1∑

i=0

ci

N

(
f

(
i

N

)
− f ′

(
i

N

))2

= N
1
N

N−1∑

i=0

ci

(
f

(
i

N

)
− f ′

(
i

N

))2

=
N−1∑

i=0

cie
2
i

where ei is the error on the i’th function value. This is exactly the square of the previously defined
weighted L2 norm.

Notice that when all coefficients are equal to 1
N we get the regular L2 norm, and therefore this

is a generalization of the regular L2 norm (MSE).
Our purpose is to minimize the workload based error which is the WL2 norm of the vector of errors.

4.4 Defining an orthonormal basis

At this stage we would like to use Thm. 1. The next step would thus be finding an orthonormal
(with respect to a workload based inner product) wavelet basis for the space Vj . The basis is a
Weighted Haar Basis. For each workload-based inner product (defined by a given query workload)
there is corresponding orthonormal weighted Haar basis, and our algorithm finds this basis in linear
time, given the workload of point queries. We describe the bases here, and see how to find a basis
based on a given workload of point queries. We will later use this information in the algorithmic
part.

In order to build a weighted Haar basis, we take the Haar basis functions and for the k’th basis
function we multiply its positive (resp. negative) part by some xk (resp. xk). We would like to
choose such xk and yk so that we get an orthonormal basis with respect to our inner product. Let
us illustrate it by drawing. Instead of using Haar basis functions (Fig. 2), we use functions of the
kind illustrated in Fig. 3, where xk and yk are not necessarily (and probably not) equal, so our
basis looks like the one in (Fig. 4). How do we choose xk and yk?

Let uk be some Haar basis function as described above. Let [ak0 , ak1) be the interval over which
the basis function is positive and let [ak1 , ak2) be the interval over which the function is negative.
Recall that ak0 , ak1 and ak2 are both multiples of 1

N and therefore the interval precisely contains
some number of continuous intervals of the form [i

N , i+1
N] (also ak1 = ak0

+ak2
2). Moreover, the

size of the interval over which the function is positive (resp. negative) is 1
2i for some i < j (As

we remember, N = 2j). Recall that for the i’th interval of size 1
N , meaning [i

N , i+1
N) there is a

12

Figure 2: An example for a Haar basis function

corresponding weight coefficient ci which is the coefficient that is used in the inner product. Notice
that each Haar basis function is positive (negative) over some number of (whole) such intervals.
We can therefore associate the sum of coefficients of the intervals “under” the positive (negative)
part of the function with the positive (negative) part of the function.
Let us denote the sum of weight coefficients (ci’s) corresponding to intervals that are under the
positive (resp. negative) as lk (resp. rk).

Lemma 3 Suppose for each Haar basis function vk we choose xk and yk such that

xk =
√

rk

lkrk + l2k
yk =

√
lk

lkrk + r2
k

and multiply the positive (resp. negative) part of vk by xk (resp. yk); by doing that we get an
orthonormal set of N = 2j functions, meaning we get an orthonormal basis.

Proof : We first show that when taking xk and yk such that xk
rk

= yk
lk

the basis is orthogonal. It is
enough to show that the inner product of any vk and a constant function is 0. In order to see why
that suffices:
Let u and v be some 2 Haar basis functions and let Iu and Iv be the intervals over which u and v
are different from zero, respectively. If there is some point (interval) over which both functions are
different from zero, then by the Haar basis definition we get either Iu ⊂ Iv or Iv ⊂ Iu. Suppose
Iv ⊂ Iu then Iv is contained only in the negative part of Iu or only in the positive part of Iu, again,
by the Haar basis definition. Consequently, when multiplying u and v by an inner product, there
are two possible results: either there is no point that both functions are different from zero, or the
non-zero interval of one function is completely contained in a constant part of the other function.
Obviously this goes for our Weighted Haar Basis as well. Now, let us verify that the inner product
of some vk with a constant function f (x) = m is zero:

〈vk, f〉 = N ·
N−1∑

i=0

ci

∫ i+1
N

i
N

vk (x) f (x) dx = N ·
N−1∑

i=0

ci

∫ i+1
N

i
N

vk (x) mdx =

mN ·
N−1∑

i=0

ci

∫ i+1
N

i
N

vk (x) dx =

mN ·
∑

{i|vk(i
N)>0}

ci

∫ i+1
N

i
N

vk (x) dx + mN ·
∑

{i|vk(i
N)<0}

ci

∫ i+1
N

i
N

vk (x) dx =

13

Figure 3: An example for a Weighted Haar Basis function

Figure 4: the weighted Haar Basis along with the workload coefficients, each coefficient under its
corresponding interval. For each level, the functions of the level are different from zero over intervals
of equal size.

mN ·
∑

{i|vk(i
N)>0}

ci
xk

N
−mN ·

∑

{i|vk(i
N)<0}

ci
yk

N
=

mN · xk

N

∑

{i|vk(i
N)>0}

ci −mN · yk

N

∑

{i|vk(i
N)<0}

ci = m (xklk − ykrk) = 0

Now, in order to get an orthonormal basis all we have to do is to normalize those basis functions.

14

Let us compute the norm of some vk whose positive part is set to xk and its negative part is set to
yk:

〈vk, vk〉 = N ·
N−1∑

i=0

ci

∫ i+1
N

i
N

v2
k (x) dx =

N ·
∑

{i|vk(i
N)>0}

ci

∫ i+1
N

i
N

v2
k (x) dx + N ·

∑

{i|vk(i
N)<0}

ci

∫ i+1
N

i
N

v2
k (x) dx =

N ·
∑

{i|vk(i
N)>0}

ci
x2

k

N
+ N ·

∑

{i|vk(i
N)<0}

ci
y2

k

N
=

N
x2

k

N

∑

{i|vk(i
N)>0}

ci + N
y2

k

N

∑

{i|vk(i
N)<0}

ci = x2
klk + y2

krk

From the orthogonality condition we will take yk = xklk
rk

:

x2
klk + y2

krk = 1 ⇔ x2
klk +

(
xklk
rk

)2

rk = 1 ⇔ x2
klk +

x2
kl

2
k

rk
= 1 ⇔

x2
k

(
lk +

l2k
r2
k

)
= 1 ⇔ x2

k =
1

lk + l2
k

r2
k

⇔ xk =
√√√√

1

lk + l2
k

r2
k

=
√

rk

lkrk + l2k

So we will take:

xk =
√

rk

lkrk + l2k
yk =

√
lk

lkrk + r2
k

There is a special case which is the computing of the constant basis function (which represents the
total weighted average) v0 (x) = const. We would like the norm of this function to be 1. We just
have to put xk = yk in the equation x2

klk + y2
krk = 1 and get f (x) = xk = yk =

√
1

lk+rk
= const.

Again, notice that had all the workload coefficients been equal (ci = 1
N) we would get the standard

Haar basis used to minimize the standard L2 norm.

Again, notice that had all the workload coefficients been equal (ci = 1
N) we would get the

standard Haar basis used to minimize the standard L2 norm.
As we have seen, this is an orthonormal basis to our function space. In order to see that it is a

wavelet basis, we can notice that for each k = 1, ..., j, the first 2k functions are an orthonormal set
belonging to Vk (its dimension is 2k) and which is therefore a basis of Vk.

5 The algorithm for WWW transform

In this section we describe the algorithmic part. Given a workload of point queries and a data
vector to be approximated, we build workload-based wavelet synopses of the data vector using a
weighted Haar basis. The algorithm has two parts:

1. Computing efficiently a Weighted Haar basis, given a workload of point queries. (Sec. 5.1)

2. Computing efficiently the Weighted Haar Wavelet Transform with respect to the chosen basis.
(Sec. 5.2)

15

5.1 Computing efficiently a weighted Haar basis

Note that at this point we already have a method to find an orthonormal basis with respect to
a given workload based inner product. Recall that in order to know xk and yk for every basis
function we need to know the corresponding lk and rk. We are going to compute all those partial
sums in linear time. Suppose that the basis functions are arranged in an array like in a binary
tree representation. The highest resolution functions are at indexes N

2 , ..., N − 1, which are the
lowest level of the tree. The next resolution level functions are at indexes N

4 , ..., N
2 − 1, and so on,

until the constant basis function is in index 0. Notice that for the lowest level (highest resolution)
functions (indexes N

2 , ..., N −1) we already have their lk’s and rk’s. These are exactly the workload
coefficients. It can easily be seen in Fig. 4 for the lower four functions. Notice that after computing
the accumulated sums for the functions at resolution level i, we have all the information to compute
the higher level functions: let uk be a function at resolution level i and u2k, u2k+1 be at level i + 1,
where their supports included in uk’s support (uk is their ancestor in the binary tree of functions).
We can use the following formula for computing lk and rk:

lk = l2k + r2k rk = l2k+1 + r2k+1

It can be seen in the example of Fig. 4. Thus, we can compute in one pass only the lowest level,
and build the upper levels bottom-up (in a way somewhat similar to the Haar wavelet transform).
At the end of a phase in the algorithm (a phase would be computing the functions of a specific
level) we would keep a temporary array holding all the pairwise sums of all the lk’s and rk’s from
that phase and use them for computing the next phase functions. Clearly, the running time is
N
2 + N

4 + ... + 1 = O (N). The number of I/Os is O (N/B) I/Os (where B is the block size of the
disk) – since the process is similar to the computation Haar wavelet transform. A pseudo-code of
the computation can be found in Fig. 14. The createFunction() function takes two sums of weight
coefficients corresponding to the function’s positive part and to the function’s negative part, and
build a function whose positive (resp. negative) part’s value is xk (resp. yk) using the following
formulae:

xk =
√

rk

lkrk + l2k
yk =

√
lk

lkrk + r2
k

5.2 Computing a weighted Haar wavelet transform

Given the basis we would like to efficiently perform the wavelet transform with respect to that
basis. Let us look at the case of N = 2 (Fig. 5). Suppose we would like to represent the function
in Fig. 6. It is easy to compute the following result (denote αi as the coefficient of fi):

α0 =
yv0 + xv1

x + y
α1 =

v0 − v1

x + y

(by solving 2x2 matrix). Notice that the coefficients are weighted averages and differences, since
the transform generalizes the standard Haar transform (by taking x = y =

√
2i we get the standard

Haar transform). It’s easy to reconstruct the original function from the coefficients:

v0 = α0 + xα1 v1 = α0 − yα1

This implies a straightforward method to compute the wavelet transform (which is I/O efficient
as well) according to the way we compute a regular wavelet transform with respect to the Haar

16

Figure 5: Weighted Haar Transform with two functions

Figure 6: a simple function with 2 values over [0, 1)

basis: we go over the data, and compute the weighted differences which are the coefficients of
the bottom level functions. We keep the weighted averages, which can be represented solely by
the rest of the basis functions (the “lower resolution” functions - as in the regular Haar wavelet
transform), in another array. We repeat the process over the averages time and time again until
we have the overall average, which is added to our array as the coefficient of the constant function
(v0 (x) = const). While computing the transform, in addition to reading the values of the signal,
we need to read the proper basis function that is relevant for the current stage (in order to use
the xk and yk of the function that is employed in the above formula). This is easy to do, since all
the functions are stored in an array F and the index of a function is determined by the iteration
number and is identical to the index of the corresponding currently computed coefficient. A pseudo
code of the algorithm is can be found in Fig. 15.

As we know, the Haar wavelet transform is a linear algorithm. The steps of our algorithm are
identical to the steps of the Haar algorithm, with the addition of reading the data at F [i] (the
xk and yk of the function) during the i’th iteration. Therefore the I/O complexity of that phase
remains O (N/B) (B is the disk block size) with O (N) running time.

After having the coefficient of the orthonormal basis we would keep the largest M coefficients,
along with their corresponding M functions, and throw the smallest coefficients relying on Thm. 1
We can do it in linear time using the M-approximate quantile algorithm [13].

6 Optimal synopsis for mean relative error

We next show a variant of the weighted-wavelets-based algorithm minimizes the weighted L2 norm
of the vector of relative errors, weighted by the query workload, using weighted wavelets. We
demonstrate another use of giving weights to data values, used to minimize the mean-squared-
relative-error measured over the data values.

Recall that in order to minimize the weighted L2 norm of relative errors, we need to minimize
∑N

i=1 ci

(
|di−d̂i|

di

)2

(actually
∑N

i=1 ci

(
|di−d̂i|

max{di,s}

)2

, but the idea is the same). Since D = d1, ..., dN is

part of the input of the algorithm, it is fixed throughout the algorithm’s execution. We can thus

17

divide each ci by d2
i and get a new vector of weights: W =

(
c1
d2
1
, ..., cN

d2
N

)
. Relying on our previous

results, and using the new vector of weights we minimize
∑N

i=1
ci

d2
i

(
|di − d̂i|

)2
=

∑N
i=1 ci

(
|di−d̂i|

di

)2

,

which is the WL2 norm of relative errors. Notice that in the case bi = 1
N (the uniform case) the

algorithm minimizes the mean-relative-error over all data values. As far as we know, this is the
first algorithm that minimizes the mean-relative-error over the data values.

7 Experiments

In this section we demonstrate the advantage obtained by our workload-based wavelet synopses.
All our experiments were done using the τ -synopses [15] system. For our experimental studies we
used both synthetic and real-life data sets. The synthetic data-sets are taken from the TPCH data
(www.tpc.org), and the real-life data-sets are taken from the Forest CoverType data provided by
KDD Data of the University of California (http://kdd.ics.uci.edu). The data-sets are:

1. TPCH -

• TPCH1 - Data attribute 1 from table ORDERS, filtered by attribute O CUSTKEY,
which contains about 150,000 distinct values.

2. KDD -

• KDD2048 - Data attribute Aspect from table CovTypeAgr filtered by Elevation from
the KDD data, with a total of 2048 distinct values.

The sets of queries were generated independently by a Zipf distribution generator. We used
queries of different skews, distributed by several Zipf parameter values. We took here the zipf
parameters 0.2, 0.5 and 0.8, in order to test the behavior of the synopses under different skews,
which range from close-to-uniform to highly skewed. The sets of queries contained 3000-5000 queries
over each data set.

In Fig. 7 we compared the standard wavelet synopsis from [16] with our WB-MSE wavelet
synopsis. The standard synopsis is depicted in solid line. We measured the WB-MSE as a function
of synopsis size, measured as the number of coefficients in the synopsis. For each M = 10, 20, ..., 100
we built synopses of size M using both methods and compared the WB-MSE error, measured with
respect to a given workload of queries. The workload contained 5000 Zipf distributed point queries,
with a Zipf parameter of 0.5. The data-set was the TPCH1 data. As the synopsis size increases,
the error of the workload-based algorithm becomes much smaller than the error of the standard
algorithm. The reason for this is that synopses of sizes 10,...,100 are very small with respect
to a data of size 150,000. Since the standard algorithm does not take the query workload into
account, the results are more or less the same for all synopses sizes in the experiment. However,
the workload-based synopsis adapts itself to the query workload, which is of size 5000. All the data
values which are not queried by the workload are given very small “importance weights”, so the
synopsis actually has to be accurate over less than 5000 values. Thus, there is a sharp decrease in
the error of the workload-based algorithm as the synopsis size increases.

In Fig. 8 we used a similar experiment, this time with the KDD2048 data. The standard
synopsis is again depicted in solid line. As in the previous experiment, we measured the WB-MSE
as a function of synopsis size. For each M = 20, 40, ..., 200 we built synopses of size M using both

18

methods and compared the WB-MSE error, measured with respect to a given workload of queries.
The workload contained 5000 Zipf distributed point queries, with a Zipf parameter 0.5. The data
was the KDD2048 data, of size 2048. We see that for each synopsis size the error of the standard
algorithm is approximately twice the error of the workload-based algorithm. The reason for this is
that here the query workload is larger than the data-set, in contrast to the previous experiment.
Thus, most of the data is queried by the workload, so the “importance weights” given to data values
are more uniform than in the previous experiment. Therefore, the error difference is smaller than
in the previous experiment, since the advantage of the workload-based algorithm becomes more
significant as the workload gets more skewed. However, since the workload-based synopsis adapts
itself to the workload, the error is still better than the standard synopsis, which assumes uniform
distribution.

In Fig. 9 we compared the standard wavelet synopsis from [16] and the adaptive-greedy workload-
based wavelet synopsis from [14] with our WB-MRE wavelet synopsis. The standard synopsis is
depicted in dotted line with “x”s. Since it is hard to distinguish between the other two synopses in
this resolution level, we zoom into this figure in Fig. 10. We measured the WB-MRE as a function
of synopsis size, measured as the number of coefficients in the synopsis. For each M = 20, 40, ..., 200
we built synopses of size M using the three methods and compared the WB-MRE error, measured
with respect to a given workload of queries. The workload contained 3000 Zipf distributed point
queries, with a Zipf parameter of 0.5. The data-set was the KDD2048 data. Since the standard
algorithm does not take into account the query-workload and is not adapted for relative errors, its
approximation error is more than 30-40 times larger than the approximation errors of the workload-
based algorithms, for each synopsis size.

In Fig. 10 we compare the adaptive-greedy workload-based synopsis from [16] with our WB-
MRE synopsis. The adaptive-greedy synopsis is depicted in solid line. We measured the WB-MRE
as a function of synopsis size, measured as the number of coefficients in the synopsis. For each
M = 20, 40, ..., 200 we built synopses of size M using the two methods and compared the WB-MRE
error, measured with respect to a given workload of queries. The workload contained 5000 Zipf
distributed point queries, with a Zipf parameter of 0.5. The data-set was the KDD2048 data. For
each synopsis size, the approximation error of the adaptive-greedy is 10-20 times larger than the
error of our WB-MRE algorithm.

In Fig. 11 we depict the WB-MRE as a function of synopsis size, for three given query workloads,
distributed with Zipf parameters 0.2, 0.5 and 0.8. The data-set was the KDD2048 data-set, and the
workloads consisted 5000 queries. For each of the given three workloads we build synopses of size
M = 50, 100, ..., 500 and depicted the WB-MRE as a function of synopsis size. It can be seen that
many wavelet coefficients can be ignored before the error significantly increases. This is a desired
feature for any synopsis. For example, for synopses of size 500 the WB-MRE is smaller than 0.05,
and for synopses of size 250 the WB-MRE is smaller than 0.1. It can also be seen that the higher
the skew, the more accurate the workload-based synopses. The reason is that when the skew gets
higher, the synopsis should be accurate over a smaller number of data values.

In Fig. 12 we compare the standard algorithm from [14] with our WB-MRE algorithm in a
different way than before. We compare the ratio between the approximation error of the stan-
dard algorithm and the approximation error of the WB-MRE algorithm, for different workload
skews. The comparison was done for three different query workloads, distributed with different
Zipf parameters. The workloads contained 5000 queries, distributed with Zipf parameters 0.2, 0.5
and 0.8 respectively. The data-set was the KDD2048. For each given workload we measured the
error ratio between the two synopses, for each synopses size M = 50, 100, ...500. It is clearly seen

19

that the higher the skew of the workload, the higher the ratio between the approximation errors
of the synopses. The reason is than as the workload gets far from uniform, the advantage of the
workload-based algorithms naturally becomes more significant over the standard synopsis, which
assumes uniform workload.

In Fig. 13 we show the robustness of the workload-based wavelet synopses to deviations from pre-
defined workload. The experiment addresses the problem of incorrect future workload estimation.
When building our synopsis, we assumed the queries would be distributed as Zipf(0.2). We fixed
the synopsis size, and built our synopsis. We then used the synopsis to answer query workloads
distributed different than expected, e.g with Zipf parameters 0.3,0.4,... etc. The figure depicts the
WB-MRE as a function of the difference between the actual query distribution and our estimated
query distribution (estimated as Zipf(0.2)). The skew difference is the difference between the actual
Zipf parameter and the estimated Zipf parameter, according to which we assumed the queries are
distributed. We show that small errors in the workload estimation introduce only small errors
in the quality of the approximation, and that the error grows continuously as the deviation from
pre-defined workload increases.

8 Conclusions

In this paper we introduce the use of weighted wavelets for building optimal workload-based wavelet
synopses. We present two time-optimal and I/O-optimal algorithms for workload-based wavelet
synopses, which minimize the WB-MSE and and the WB-MRE error measures, with respect to any
given query workload. The advantage of optimal workload-based wavelet synopses, as well as their
robustness, were demonstrated by experimentations.

Recently, and independently of our work, Muthukrishnan [17] presented an optimal workload-
based wavelet synopsis with respect to the standard Haar basis. The algorithm for building the
optimal synopsis is based on dynamic programming and takes O(N2M/ log M) time. As noted
above, standard Haar basis is not orthonormal w.r.t. the workload-based error metric, and an
optimal synopsis w.r.t. this basis is not necessarily also an optimal enhanced wavelet synopsis.
Obtaining optimal enhanced wavelet synopses for the standard Haar wavelets may be an interesting
open problem. Also, as quadratic time is too costly for massive data sets, it may be interesting
to obtain a time efficient algorithm for such synopses. As far as approximation error is concerned,
although in general optimal synopses w.r.t. the standard Haar and a weighted Haar bases are
incomparable, both bases have the same characteristics. It would be interesting to compare the
actual approximation errors of the two synopses for various data sets. This may indeed be the
subject of a future work.

Acknowledgments: We thank Leon Portman for helpful discussions and for his assistance in
setting up the experiments on the τ -synopses system. We also thank Prof. Nira Dyn for helpful
discussions regarding the wavelets theory.

20

Figure 7: Comparing the WB-MSE of the standard and the workload-based synopses, for different
synopses sizes. Data: TPCH1, Workload: 5000 queries distributed as Zipf(0.5).

Figure 8: Comparing the WB-MSE of the standard and the workload-based synopses, for different
synopses sizes. Data: KDD2048, Workload: 5000 queries distributed as Zipf(0.5).

Figure 9: Comparing the WB-MRE of the standard synopsis, the workload-based adaptive-greed
synopsis and our WB-MRE synopsis, for different synopses sizes. Data: KDD2048, Workload: 5000
queries distributed as Zipf(0.5). Since the adaptive and the WB-MRE are indistiguishable in this
scale, an elaboration of that zone is in Fig. 10

21

Figure 10: Comparing the WB-MRE of the workload-based adaptive-greed synopsis and our WB-
MRE synopsis, for different synopses sizes. Data: KDD2048, Workload: 5000 queries distributed
as Zipf(0.5).

50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

Synopsis size

M
R

E

MRE vs synopsis size for different skews

z=0.2
z=0.5
z=0.8

Figure 11: Relative error for different skews. Data: KDD2048, Workload: 5000 queries distributed
as Zipf(0.2), Zipf(0.5), Zipf(0.8).

22

0 100 200 300 400 500
0

500

1000

1500

2000

2500

3000

3500

Synopsis Size

M
R

E
 r

a
ti
o

MRE Ratio (normal/weighted) for different skews

z=0.2
z=0.5
z=0.8

Figure 12: Comparing the ratios between the errors of the standard synopsis and the WB-MRE
synopsis, for different workloads. For each z=0.2,0.5,0.8 we used a workload distributed as Zipf(z),
and showed the error ratio for different synopses sizes.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.8

1

1.2

1.4

1.6

1.8

2

Skew difference

M
R

E

Robustness − weighted algorithm

Figure 13: Robustness of the workload based synopses to workload deviations. A synopsis that
assumes workload distributed as Zipf(0.2) was built, and used to answer workloads distributed
differently. The plot shows the approximation error as a function of the workload estimation error.
Data: KDD2048, Workloads: 5000 queries distributed Zipf(0.3),Zipf(0.4),...23

input: an array W of weight coefficients
output: an array F of basis functions

temp.length = N/2
for i = 0 to N/2 - 1
F[N/2 + i] = createFunction(W[2i], W[2i+1])
temp[i] = W[2i] + W[2i+1]

while temp.length > 1
temp.length /= 2
offset = temp.length
for i = 0 to temp.length/2
F[offset + i] =
createFunction(temp[2i], temp[2i + 1])
temp[i] = temp[2i] + temp [2i + 1]

F[0] = createConstFunction (1/temp[0])

Figure 14: Construction of a WH Basis

input: an array D of data values, an array F of basis functions
output: an array Res of wavelet coefficients
for i = 0 to N/2 - 1
Res[N/2 + i] = (D[2i] - D[2i + 1])/(F[i].pos + F[i].neg)
temp[i] = D[2i] * F[i].neg + D[2i + 1] * F[i].pos/(F[i].pos + F[i].neg)

while temp.length > 1
offset = temp.length/2
for i = 0 to temp.length/2
Res[offset + i] = temp[2i] - temp[2i + 1] /
(F[i].pos + F[i].neg)

temp[i] = (temp[2i] * F[i].neg + temp[2i + 1] * F[i].pos) /
(F[i].pos + F[i].neg)

Res[0] = temp[0]/F[0].constValue

Figure 15: The wavelet transform

24

References

[1] A. Aboulnaga and S. Chaudhuri. Self-tuning histograms: Building histograms without looking
at data. In Proceedings of the 1999 ACM SIGMOD International Conference on Management
of Data, pages 181–192, 1999.

[2] K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim. Approximate query processing
using wavelets. In VLDB 2000, Proceedings of 26th International Conference on Very Large
Data Bases, 2000, pages 111–122.

[3] S. Chaudhuri, G. Das, M. Datar, R. Motwani, , and V. R. Narasayya. Overcoming limitations
of sampling for aggregation queries. In ICDE, pages 534–542, 2001.

[4] S. Chaudhuri, G. Das, and V. Narasayya. A robust, optimization-based approach for approxi-
mate answering of aggregate queries. In Proceedings of the 2001 ACM SIGMOD international
conference on on Management of data, 2001.

[5] R. R. Coifman, P. W. Jones, , and S. Semmes. Two elementary proofs of the l2 boundedness
of cauchy integrals on lipschitz curves. J. Amer. Math. Soc., 2(3):553–564, 1989.

[6] A. Deligiannakis and N. Roussopoulos. Extended wavelets for multiple measures. In Pro-
ceedings of the 2003 ACM SIGMOD International Conference on Management of Data, pages
229–240.

[7] V. Ganti, M.-L. Lee, and R. Ramakrishnan. Icicles: Self-tuning samples for approximate query
answering. The VLDB Journal, pages 176–187, 2000.

[8] M. Garofalakis and P. B. Gibbons. Wavelet synopses with error guarantees. In Proceedings of
the 2002 ACM SIGMOD International Conference on Management of Data, 2002.

[9] M. Garofalakis and A. Kumar. Deterministic wavelet thresholding for maximum-error metrics.
In Proceedings of the 2004 ACM SIGMOD international conference on on Management of data,
pages 166–176.

[10] P. B. Gibbons and Y. Matias. Synopsis data structures for massive data sets. In DIMACS:
Series in Discrete Mathematics and Theoretical Computer Science: Special Issue on External
Memory Algorithms and Visualization, A, 1999.

[11] M. Girardi and W. Sweldens. A new class of unbalanced Haar wavelets that form an uncon-
ditional basis for Lp on general measure spaces. J. Fourier Anal. Appl., 3(4), 1997.

[12] S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, 2nd edition, 1999.

[13] G. S. Manku, S. R., and B. G. Lindsay. Approximate medians and other quantiles in one pass
and with limited memory. In Proceedings of the 1998 ACM SIGMOD International Conference
on Management of Data, pages 426–435, New York, 1998.

[14] Y. Matias and L. Portman. Workload-based wavelet synopses. Technical report, Department
of Computer Science,Tel Aviv University, 2003.

[15] Y. Matias and L. Portman. τ -synopses: a system for run-time management of remote synopses.
In International conference on Extending Database Technology (EDBT), Software Demo, 865-
867 & ICDE’04, Software Demo, March 2004.

[16] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-based histograms for selectivity estimation.
In Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data,
pages 448–459, Seattle, WA, June 1998.

25

[17] S. Muthukrishnan. Workload-optimal wavelet synopsis. Technical report, May 2004.

[18] L. Portman. Workload-based wavelet synopses. M.sc. thesis, Tel Aviv University, 2003.

[19] E. J. Stollnitz, T. D. Derose, and D. H. Salesin. Wavelets for Computer Graphics. Morgan
Kaufmann, 1996.

[20] J. S. Vitter and M. Wang. Approximate computation of multidimensional aggregates of sparse
data using wavelets. In Proceedings of the 1999 ACM SIGMOD International Conference on
Management of Data, pages 193–204, Phildelphia, June 1999.

[21] J. S. Vitter, M. Wang, and B. Iyer. Data cube approximation and histograms via wavelets. In
Proceedings of Seventh International Conference on Information and Knowledge Management,
pages 96–104, Washington D.C., November 1998.

26

