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Abstract

A context-based scanning technique for images is presented. An image is scanned along a context-based space
filling curve that is computed so as to exploit inherent coherence in the image. The resulting one-dimensional
representation of the image has improved autocorrelation compared with universal scans such as the Peano-
Hilbert space filling curve. An efficient algorithm for computing context-based space filling curves is presented.
We also discuss the potential of improved autocorrelation of context-based space filling curves for image and video
lossless compression.

1. Introduction

A space-filling curve (SFC) is a continuous scan that tra-
verses every pixel of an image exactly once (see Figure 1).
SFC’s are attractive to many image-space algorithms which
are based on the spatial coherence of nearby pixels. As de-
picted in Figure 2, an image is scanned using a SFC. The
resulting sequence of pixels is processed as required by the
particular application. For instance, the sequence may be
compressed using lossless or lossy compression, it may be
processed for halftoning, analysis, pattern recognition or tex-
ture analysis, and it may be converted into an analog form
and be transmitted through channels with limited bandwidth.
To obtain the image after processing, the (possibly mod-
ified) pixel-sequence is placed back in a frame along the
same SFC. In the above applications and others, it is im-
portant that the intraframe correlation in the image trans-
lates to a favorable autocorrelation within the pixel-sequence
4; 9; 2; 10; 1; 13; 6; 5.

The scan-line is a standard scanning method, which tra-
verses a frame line by line. It is well known, however, that
SFC’s, which are defined recursively, end up with more fa-
vorable properties than the scan-line. Intuitively, the recur-
sive nature of the SFC requires it to traverse neighboring
pixels before moving to more distant ones, resulting in bet-
ter exploitation of the two-dimensional locality. The most
popular recursive SFC is the Peano-Hilbert curve, which has
been considered for numerous applications (e.g.9; 2; 10; 1; 13).
The Peano-Hilbert curve is particularly appealing as it has

an inherently strong locality property: it never leaves its cur-
rent quadrant, at any level of refinement, before traversing
all the pixels of the quadrant (see12).

Lempel and Ziv showed16 that, for images generated by
suitably random sources, the entropy of the pixel-sequence
obtained using the Peano-Hilbert curves converges asymp-
totically to the two-dimensional entropy of the image.
Hence, compressing the sequence using the Lempel-Ziv en-
coder15 results in an image compression scheme that is op-
timal in the information theoretic sense. Matias and Shamir
considered11 the relationship between the two-dimensional
autocorrelation of an image and the one-dimensional au-
tocorrelation of the pixel-sequence. They showed that, for
first-order Markov isotropic images, the autocorrelation of
the pixel-sequence is a function of the fractal-dimensionν
of the SFC. Hence, the Peano-Hilbert curve for whichν = 2
(highest possible), gives the best autocorrelation, compared
with a random SFC (as in Figure 1) for whichν � 4=3, and
with the scan-line, for whichν = 1 (lowest possible). These
studies support the approach that recursive SFCs, such as the
Peano-Hilbert curve would be a good choice as a universal
SFC that would work well (statistically) for large families of
images.

In this paper we propose the use ofcontext-based space
filling curves, that are to be computed so as to exploit inher-
ent coherence in the image. That is, rather than relying on a
universal SFC that works statistically well, our approach is
to select a SFC that would work well for the particular im-
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Figure 1: A pseudo-random space filling curve (this image and others must be printed on a high resolution printer).

1D Digital Signal
Image Applicationscan

Figure 2: The framework for image scan.

age, or group of images, it needs to serve. To illustrate the
motivation for a context-based SFC, consider the simple ex-
ample of the black&white deer image of Figure 3. A favor-
able SFC would traverse the pixels within the deer image for
as long as possible before moving across the border edges to
traverse the pixels outside the deer. That is, the number of
crossings should ideally be minimized. As can be seen, the
Peano scan maintains locality but gives a substantial num-
ber of edge crossings. In contrast, a context-based SFC is
tailored to avoid edge crossings to a considerable extent, re-
sulting in a smoother pixel-sequence.

The advantage of context-based SFC is illustrated by the
three scans of the car image in Figure 4. The pixel-sequences
are displayed as a raster scan into the displayed frame, and
consist of the following SFCs: a scan line (a) (hence showing
the original image), Peano scan (b), and the context-based
scan (c). As can be observed, the pixel-sequence resulting
from the context-based SFC in (c) is smoother than the one
based on the Peano curve (b). The first coefficients of the au-
tocorrelation function of the three sequencesare given in (d),
demonstrating a clear advantage to the context-based SFC.

Getting back to Figure3, the context-based SFC may be
quite intriguing: how can it be tailored to avoid crossing
edges as it does, and why does it not do a better job in that?
Ideally, we would have liked the context-based SFC to fill
the entire deer before starting to traverse the background.
Unfortunately, given an arbitrary shape, the problem of find-
ing such a SFC is NP-hard, as implied by a hardness result
on computing Hamiltonian paths on general grid graphs8.
For practical purposes, it would suffice to find a SFC that
tends to minimize the number of crossings, and it is essential
that the computation of such SFC be efficient. Another con-
sideration is that, unlike with universal SFCs, the selected

context-based SFC needs to be encoded along with the pixel
sequence, to enable retrieval at a later stage. In fact, it can be
useful for applications where the image is stored scrambled
in public, and the key is given in private. In other applica-
tions, such as compression, it would be desirable to mini-
mize the size of the encoded SFC, implying an interesting
tradeoff between its size and the advantage obtained in auto-
correlation.

Finding a good context-based SFC can be related to the
following approximation problem: The input picture is rep-
resented by a rectangular weighted grid graph, where ver-
tices represent pixels and weights reflect differences be-
tween the corresponding pixel values. The objective then is
to find a Hamiltonian path over the grid graph for which the
total weight is small. Finding a path with the minimum total
weight is the travelling salesperson problem, which is NP-
hard, and for which known approximation are too slow to be
considered in most applications of interest.

We present a simple, efficient algorithm for computing
context-based SFCs. Given an image, the algorithm first de-
fines a weighted grid graph over the image, so that the weight
of an edge in the graph represents the resemblance between
neighboring pixels near the edge. Then, a minimum-weight
spanning tree is computed in near-linear time. Edges with
weight that is relatively high for their neighborhood (corre-
sponding to edges in the original image) would typically not
be selected for the minimum spanning tree. Finally, the tree
is replaced with a SFC which inherit the locality properties
from the minimum spanning tree.

In Section 2 we introduce the algorithm for computing
context-based SFC. In Section 3 we discuss the encoding of
the curve. In Section 4 we discuss the autocorrelation and the
redundancy of the context-based scans. We conclude with
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Figure 3: Scanning a deer image using a Peano scan (left) and a context-based scan (right).

(a) (b)

(d) (c)

Figure 4: Scanning an image of a car using a scan line (a), Peano scan (b), and context-based scan (c). The autocorrelation of
the three scans (d): The horizontal axis is the distance (in pixels) and the vertical axis is the computed autocorrelation; the best
autocorrelation corresponds to the context-based scanned image.

remarks regarding future directions of research on context-
based SFC.

2. Context-based Space Filling Curves

The image is considered as a directed graph whose ver-
tices are the pixel’s image, where each two adjacent pixels
are connected by an edge. Our goal is to find anadaptive
context-basedcurve that traverses every pixel of a given im-
age. This is equivalent to the problem of finding a Hamil-
tonian path in an undirected graph8. Our algorithm utilizes
a technique for generating pseudo-random SFC’s that was
developed to scramble a video signal as an encryption tech-

nique for applications requiring protected transmission of
video11. The method of producing a Hamiltonian circuit in
a grid graph is based on the concept ofcover and merge.
The property of a grid graph is required to guarantee the
polynomial-time complexity of the Hamiltonian path con-
struction. First, all vertices are covered by small disjoint cir-
cuits and then merged into a single Hamiltonian circuit. Let
Gbe a grid graph. Choose disjoint external circuits that cover
all the vertices ofG . Two circuitsA andB are adjacent if
there are two edgese1 in A ande2 in B and two edgesf1 and
f2 in G that connecte1 ande2 to form a square, as shown in
Figure 6(a). Merging two such adjacent circuits by replac-
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(a) (b)

Figure 5: The Cover and Merge concept: merging the MST (a) into a Hamiltonian cycle(b).
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Figure 6: The merge of two circuits.

ing e1 ande2 with f1 and f2 (Figure 6(b)), creates a circuit
which covers exactly the same vertices thatA andB covered.

DefineG0 to be the dual graph ofG, whose vertices are the
initial circuitsC1; :::;Ck, and its edges are the pairs(Ci ;Cj )
such thatCi andCj are adjacent circuits. To merge all these
circuits into one connected circuit, a spanning tree onG0 is
found. For each edge(Ci ;Cj ) in the spanning tree, merge the
circuit Ci with Cj in G to yield a single circuit that spans all
the vertices covered by the initial circuits (Figure 5(b)).

In the following we extend the above basic method to effi-
ciently generate a context-based Hamiltonian path. Our aim
is to construct a Manhattan-Hamiltonian path such that rear-
ranging the pixels in the order defined by that path exhibits
the inherent 2D coherence that exists in the image. Given
an image withn columns andm rows, letG be the Manhat-
tan grid-graph whose set of verticesV consists of all pixels
in the image. Each pair of adjacent pixels, in a Manhattan
grid graph, is connected by an edge, where even rows and
columns are directed in the opposite direction to odd rows
and columns, respectively. The reason we use a Manhattan
graph is that it has a rather simple encoding, which will be
discussed in Section 3.

First, the image is covered with a set of 1�1 circuits as
shown in Figure 7(a). These initial circuits are calledsmall
circuits. Define a dual graphG0 = (V0;E0) such that each
small circuit inG defines a vertex inG0 and the two edges
u;w connecting the two small circuitsA andB in G define
an edgev0 in the dual graph (fig 7(b)). A weight is assigned
to each edgev0 in G0. The weight is the cost of merging
the two associated circuitsA andB in G, which correspond
to the verticesA0 andB0 in G0. In other words, the weight

between two given circuitsA andB is the cost of exchanging
the edgeseand f with the edgesu andw:

W(A;B) = juj+ jwj� jej� j f j

where the cost of an edge is the difference between the val-
ues of its endpoints.

The algorithm builds a MST by iteratively merging cir-
cuits into a growing subtree according to the cost of the
merge operation (Figure 8). After all the small circuits are
merged into the growing tree, its edges form a Hamiltonian
circuit that covers all the vertices inG with Manhattan orien-
tation. The image is scanned along the cycle to form a highly
correlated stream of pixels.

Finding the MST can actually be done in time complexity
O(N log� N) 7, where N is the number of pixels in the image.
For practical reasons, in our implementation we use Prim’s
minimum spanning tree algorithm3, with a heap for the pri-
ority queue which guarantees that the construction time of
the MST isO(N logN).

The choice of weight function ensures that our adaptive
curve fills the image area-by-area, where all pixels in a cer-
tain area have similar colors, thus preserving important two-
dimensional information in a one-dimensional sequence of
pixels arranged in the order defined by the curve. Figure
10(a) shows an example were the cost of merging circuitA
with cirquit C and the cost of merging circuitB with C are
equal. Yet, merging circuitA will result in a smoother curve,
while merging circuit B destroys the sequence of black pix-
els along the Hamiltonian curve. To ensure the addition of
merging circuitA we can use the weight function (see Fig-
ure 10(b)):
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Figure 7: The graph G of the image (a), and the dual graph G’ (b).

W(Ci ;Cj ) = juj+ jwj+ jxj+ jyj+ jzj� jej� j f j. In this
function, the weight of an edge(Ci;Cj ) is the cost of adding
the vertexCj to the spanning tree. Of course, other weight
functions can be used to achieve that goal. Moreover, a suit-
able weight function can be chosen to improve other two
dimensional properties. For RGB color images, the weight
of each edgee= (a;b) is w(e) = jared�bredj+ jagreen�
bgreenj+ jablue�bbluej so that one curve is computed for the
Red, Green and Blue components.

3. Encoding the Space Filling Curve

The main advantage of a context-free SFC is that there is
no need to explicitly store the order of the scan. Both the
encoder and the decoder agree on the next pixel to be pro-
cessed. In a Peano-Hilbert curve the next pixel to be tra-
versed can be expressed as a function of the coordinates of
the current pixel. In a context-based scan the next step is
determined by the context of the current pixel and its neigh-
bors. The penalty is that the path along which pixels are en-
coded must be stored explicitly. In a general grid Hamilto-
nian path, two bits-per-pixel are necessary to indicate which
of the three possible directions is next. Note that there are
only three possible directions, as the entry direction cannot
be chosen. However, for the restricted, yet large family of
Manhattan-Hamiltonian paths, the cost of representing the
path is just one bit per pixel. Only one bit is needed to in-
dicate whether the next step is vertical or horizontal. The
directions, up, down, left, right are directly implied from the
position of the current pixel.

One important enhancement is to encode the MST in-
stead of the path. Instead of the one-bit representation of
the Hamiltonian path, it is possible to directly represent the
spanning tree of the dual graph using only three bits for each
vertex in the dual graph. Since each vertex in the spanning
tree has up to three sons, the three bits can indicate which
sons of the current vertex exist, where their direction is im-
plied from the traversal of the tree. Thus, the cost of rep-
resenting the path is 3/4 of a bit per pixel, since it requires
three bits per a vertex in the dual graph. This requires a mi-
nor change in the algorithm. Instead of encoding the path,

the spanning tree is encoded as triples of bits. In the decoder,
the path is reconstructed from the spanning tree structure.

Note that the cost of the representing the curve is inde-
pendent of the dynamic range of the pixels and it has a fixed
size. This implies the relative cost of encoding the curve is
decreasing when the dynamic range of the pixels is higher.
For example, in many digital medical media, like MRI or
CT, a pixel dynamic range is 12 bits.

The Manhattan orientation of the graphG might force the
addition of someboundary-crossing circuits to the spanning
tree, as illustrated in Figure 9(a), where the addition of the
small circuit which destroys the sequence of black pixels
along the final curve to the spanning tree is inevitable. Note
that, in this example, it is possible to have a Hamiltonian
path that crosses only once from a black region to a white
region and only once from white to black region. In such
a case it is effective to “split” the basic problematic circuit
into two parts, such that the new curve crosses the boundary
from black to white once and from white to black once (see
Figure 9(c)).

Therefore, when constructing the spanning tree over the
dual graph and adding a vertex whose four closest neigh-
bors are already in the tree, an additional check is required
to decide whether to split the vertex horizontally or verti-
cally. Finding the MST with that additional checking can be
done in time complexityO(N log� N). When allowing a ver-
tex to be split into two vertices, the Manhattan orientation
of the curve is destroyed. Yet, the order in which the pixels
are scanned is unique, and can be recovered from the span-
ning tree simply by checking the number of fathers for each
square. A square with two fathers is broken into two parts.

4. Autocorrelation and Redundancy

The proposal for context-based space filling curve is primar-
ily motivated by the proposition that a curve tailored for a
given image would better exploit its spatial coherence than a
universal curve. To support this proposition, we compare the
autocorrelation and redundancy of 1-D pixel-sequences gen-
erated by both context-based and Peano-Hilbert space filling
curves. The pixel-sequences were generated for the five pi-
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(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

(11) (12) (13) (14) (15)

(16) (17) (18) (19) (20)

Figure 8: Generating a context-based SFC by merging small circuits.

cures in Figure 11, and their average autocorrelation is dis-
played.

As expected, the autocorrelation of context-based scans is
better than the one for the Peano-Hilbet scans. For compari-
son, we also display the average autocorrelation of scan-line,
which is inferior to both.

As a complementary approach to evaluate the redundancy

of the pixel-sequences,we use a Lempel-Ziv encoder (LZW)
15; 14, whose performance is dependent on the redundancy of
the sequence. The pixel-sequences of 2D images were po-
sitioned using line scan to form pictures (as illustrated in
Figure 4), and were compressed using GIF encoder, which
effectively executes an LZW encoding to the sequences. The
results, depicted in Table 1, show an increased redundancy
at the range of 5-10% over Peano-Hilbert scans. Similar im-
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(a) (b) (c)

Figure 9: Splitting a circuit into two.
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Figure 10: The improved weights.

provements were observed for other Lempel-Ziv encoders
(e.g. Unix gzip).

To evaluate the concrete advantage, one has to also con-
sider the cost incurred by the representation of the associated
curve. When adding the size of the encoded curve, the gain
over the Peano scans is lost: the advantage of 5-10% over
the Peano-Hilbert curve becomes a disadvantage of 4-7%.
However, for a sequence of correlated images, such as video
sequences or volume slices, taking the XOR of two context-
based curves corresponding to successive slices can reduce
the cost of the curve. Since context-based SFCs of succes-
sive slices are coherent, their pixel-to-pixel XOR would re-
sult in many 0’s and few 1’s, which has a low entropy. To ap-
ply the compression on a sequence of frames/slices, the first
frame is compressed along its context-based curve. Then for
each of the other frames, the corresponding curve is com-
puted and its XOR with that of the previous frame is stored
compressed, along with the compressed sequence of pixels.
Compression results of sequences of video frames show an
improvement of 1-2% over the line-scan compression. Two
frames of two video-sequences, 32 frames each, frame size
240�360, are shown in Figure 12. It should be emphasized
again that the compression is lossless.

5. Conclusions

We have presented a context-based scanning technique for
images which exploits the spatial coherence of the images
better than the conventional line scan, and the well studied
Peano-Hilbert space filling curve. There are many applica-
tions that operate on an image by first projecting the im-

age into a 1-D sequence, and then processing it sequentially.
Space filling curves are standard means for such projection;
they translate the 2-D spatial coherence in the image into
a 1-D autocorrelation in the sequence. The use of Peano-
Hilbert curve in such applications was studied extensively,
due to their favorable universal property. The increased au-
tocorrelation of context-based space filling curves is of po-
tential advantage to those applications. We learned that using
context-based scan for 2D-image compression can improve
the compression ratio of the pixel-sequence alone. However,
in 3D case the cost of the curve is amortized over a num-
ber of frames and the overall compression can be better than
conventional lossless compressions.

In some applications, where the curve encoding can be
given implicitly or by other means, the compression can be
effective. For other applications such as halftoning, pattern
recognition, or texture analysis, the cost of the curve is irrel-
evant, and the potential advantage is under study.

The balance between the improved quality of the 1-D se-
quence and the cost of the context-based curve introduces an
interesting trade-off. One can compute more limited context-
based scans, which only partially exploits the spatial coher-
ence, and which on the other hand incur reduced cost. For in-
stance, a curve, which would use mostly rigid patterns (e.g.,
straight line), except when it is sufficiently advantageous to
change its course, can be represented more concisely. We
are now studying the use of such curves, which we callbi-
asedcontext-based scans, and the tradeoff obtained. See for
example the biased space filling curve in Figure 13.

Another promising direction of research underway in-
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(illusion) (building) (room)

(hippo) (horses)

Figure 11: The average autocorrelation of the five figures above. Each image was scanned using line scan, Peano scan and
context-based scan. The average autocorrelation of each kind of scan is the average autocorrelation of the red blue and green
components of all the images scanned that way. The context-based scanned images have the best autocorrelation.

Table 1: GIF compression results of the line scanned, Peano scanned and context-based scanned 2D-images.

figure original scan-line peano context-based

illusion 328440 94147 93167 85054

room 790560 149958 142081 128735

building 633696 149086 143182 136536

hippo 180000 44271 44039 41916

horses 339600 80277 80690 76263

cludes extending the context-based scanning technique to
3D data. A true 3D context-based curve would exploit the
3D spatial coherency which may be quite better than the 2D
spatial coherency of each volume slice.

This work is a first step in exploring the utility of context-
based space filling curves, as alternative to well studied
context-free space filling curves such as the Peano-Hilbert
curves. Future research will reveal to what applications and
to what degree the context-based scanning technique can be
advantageous.
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