Efficient pebbling for list traversal synopses *

Yossi Matias' Ely Porat?
Tel Aviv University Bar-Ilan University
& Tel Aviv University

Abstract

We show how to support efficient back traversal in a unidirectional list, using small memory
and with essentially no slowdown in forward steps. Using O(lgn) memory for a list of size n,
the 7’th back-step from the farthest point reached so far takes O(lg4) time in the worst case,
while the overhead per forward step is at most € for arbitrary small constant € > 0. An arbitrary
sequence of forward and back steps is allowed. A full trade-off between memory usage and time
per back-step is presented: k vs. kn'/* and vice versa. Our algorithms are based on a novel
pebbling technique which moves pebbles on a virtual binary, or t-ary, tree that can only be
traversed in a pre-order fashion.

The compact data structures used by the pebbling algorithms, called list traversal synopses,
extend to general directed graphs, and have other interesting applications, including memory
efficient hash-chain implementation. Perhaps the most surprising application is in showing that
for any program, arbitrary rollback steps can be efficiently supported with small overhead in
memory, and marginal overhead in its ordinary execution. More concretely: Let P be a program
that runs for at most T steps, using memory of size M. Then, at the cost of recording the input
used by the program, and increasing the memory by a factor of O(lgT) to O(M1gT), the
program P can be extended to support an arbitrary sequence of forward execution and rollback
steps: the i’th rollback step takes O(lgi) time in the worst case, while forward steps take O(1)
time in the worst case, and 1 + € amortized time per step.

1 Introduction

A unidirectional list enables easy forward traversal in constant time per step. However, getting
from a certain object to its preceding object cannot be done effectively. It requires forward traversal
from the beginning of the list and takes time proportional to the distance to the current object,
using O(1) additional memory. In order to support more effective back-steps on a unidirectional
list, it is required to add auxiliary data structures.

*A preliminary version of this paper was presented at [13].

tSchool of Computer Science, Tel Aviv University; matias@cs.tau.ac.il. Research supported in part by the
Israel Science Foundation.

tDepartment of Mathematics and Computer Science, Bar-Tlan University, 52900 Ramat-Gan, Tsrael, (972-3)531-
8407; porately@cs.biu.ac.il.

Trailing pointers, consisting of a backward pointers from the current position to the beginning of
the list, can be easily maintained in O(1) time per forward step, and support back-steps in O(1)
time. However, the memory required for maintaining trailing pointers is ©(n), where n is the
distance from the beginning of the list to the farthest point reached so far. A simple time-memory
trade-off can be obtained by keeping a pointer every n/k forward steps. With memory of size ©(k),
each back-step can be done in ©(n/k) time. This provides a full generalization of the two previous
solutions, with ©(n) memory-time product.

A substantially better trade-off can be obtained, using what we call skeleton data structures. These
skeletons enable to obtain full back traversals in O(lml/ k) amortized time per back-step, using k
additional pointers [1]. However, if one wishes to support fully dynamic list traversal consisting
of an arbitrary sequence of forward and back steps, then managing the pointers positions becomes
challenging. For the further restriction that forward steps do not incur more than constant overhead
(independent of k), the problem becomes even more difficult.

The goal of this work is to support memory- and time-efficient back traversal in unidirectional lists,
without essentially increasing the time per forward traversal. In particular, under the constraint
that forward steps should remain constant, we would like to minimize the number of pointers kept
for the lists, the memory used by the algorithm, and the time per back-step, supporting an arbitrary
sequence of forward and back steps.

Of particular interest are situations in which the unidirectional list is already given, and we have
access to the list but no control over its implementation. The list may represent a data structure
implemented in computer memory or in a database, or it may reside on a separate computer system.
The list may also represent a computational process, where the objects in the list are configurations
in the computation and the next pointer represents a computational step. Supporting efficient back
traversal on the list enables effective program rollback, and requiring O(1) time per forward step
implies that forward execution of the program is not significantly affected.

To address such variety of scenarios more accurately, we may assume that the lists could be accessed
via a third party, denoted as the PSP (for Pointer Service Provider). The traversal algorithm
communicates to the PSP only instructions of type forward, fetch, free, and create, with pointers
identifications. The complexity metric accounts separately for the pointers kept at the PSP, which
will be represented throughout the paper as pebbles, and the data structure used by the traversal
algorithm. The forward steps requested from the PSP are counted separately, and are denoted as
list-steps.

1.1 Main results

The main result of this paper is an algorithm that supports efficient back traversal in a unidirectional
list, using small memory and with essentially no slowdown in forward steps: 1 + € amortized time
per forward step for arbitrary small constant € > 0, and O(1) time in the worst case. Using O(lgn)
memory, back traversals can be supported in O(lgn) time per back-step, where n is the distance
from the beginning of the list to farthest point reached so far. In fact, we show that a back traversal

of limited scope can be executed more effectively: O(lgi) time for the 7’th back-step, for any i < n,
using O(lgn) memory.

More generally, the following trade-offs are obtained: O(kn'/*) time per back-step, using k ad-
ditional pointers, or O(k) time per back-step, using O(kn!/¥) additional pointers; in both cases
supporting O(1) time per forward step (independent of k). Our results extend to general directed
graphs, with additional memory of lgd, bits for each node v along the backtrack path, where d,, is
the outdegree of node v.

For the PSP model, our main result is a list pebbling algorithm that uses lgn pebbles and O(lgn)
memory to support the i’th back-step in O(lgi) list-steps and O(lg) time, with € amortized over-
head per forward step, for arbitrary small constant ¢ > 0.

The crux of the list traversal algorithm is an efficient pebbling technique which moves pebbles on
virtual binary or t-ary trees that can only be traversed in a pre-order fashion. We introduce the
virtual pre-order tree data structure which enables managing the pebbles positions in a concise and
simple manner, and the recycling bin data structure that manages pebbles allocation.

1.2 Applications

Consider a program P running running in time 7. Then, using our list pebbling algorithm, the
program can be extended to a program P’ that supports rollback steps, where a rollback after step
i means that the program returns to the configuration it had after step ¢ — 1. Arbitrary ad-hoc
rollback steps can be added to the execution of the program P’ at a cost of increasing the memory
requirement by a factor of O(lg7T), and having the 7’th rollback step supported in O(lgi) time.
The overhead for the forward execution of the program can be kept an arbitrary small constant.

Allowing effective rollback steps may have interesting applications. For instance, a desired func-
tionality for debuggers is to allow pause and rollback during execution. Another implication is the
ability to take programs that simulate processes and allow running them backward in arbitrary
positions. Thus a program can be run with € overhead in its normal execution, and allow pausing
at arbitrary points, and running backward an arbitrary number of steps with logarithmic time
overhead per back-step. The memory required is keeping state configuration of lg7T" points, and
additional O(lg7T) memory. Often, debuggers and related applications avoid keeping full program
states by keeping only differences between the program states. If this is allowed, then a more
appropriate representation of the program would be a linked list in which every node represents a
sequence of program states, such that the accumulated size of the differences is in the order of a
single program state.

Our pebbling technique can be used to support backward computation of a hash-chain in time
O(kn'/*) using k hash values, or in time O(k) using O(kn'/*¥) hash values, for any 2 < k < lgn. A
hash-chain is obtained by repeatedly applying a one-way hash function, starting with a secret seed.
There are a number cryptographic applications, including password authentication [11], micro-
payments [16], forward-secure signatures [8, 10], and broadcast authentication protocol [14]. Our
results enable effective implementation with arbitrary memory size.

The list pebbling algorithm extends to directed trees and general directed graphs. Applications
include the effective implementation of the parent function (“..”) for XML trees, and effective
graph traversals with applications to “light-weight” Web crawling and garbage collection.

1.3 Related work

If it is allowed to change pointers in the list, then one can use the Schorr-Waite algorithm [17]. This
algorithm enables constant time back-step by simply utilizing the “next” pointers at the nodes from
the head of the list to the current position to hold pointers to the previous nodes. Constant size
auxiliary memory is sufficient to support this “in place” algorithm. The Schorr-Waite algorithm
also works for trees, dags, and general directed graphs.

Another solution for an in-place encoding which supports back traversal is based on the following
technique. For each node v, instead of keeping the pointer next(v), we keep the XOR of prev(v)
and next(v). As in the Schorr-Waite algorithm, only two auxiliary pointers are required — for the
current position and for the previous position. At any position v, moving forward and backward
can be done in constant time using the encoded information. This algorithm has the advantage
that the list encoding remains intact during traversal, and unlike for the Schorr-Waite algorithm,
multiple users can traverse the list. It can also be extended to trees, dags, and general directed
graphs with similar advantage.

Recall that both algorithms do not fit the requirement that the list (trees, digraphs) cannot be
altered. In particular, these algorithms cannot be used for the applications in which the list

represents a computation.

The Schorr-Waite algorithm [17] has numerous applications; see e.g., [19, 20, 3]. It would be inter-
esting to explore to what extent these applications could benefit from the non-intrusive nature of our
algorithm. There is an extensive literature on graph traversal with bounded memory but for other
problems than the one addressed in this paper; see, e.g., [7, 2]. Pebbling models were extensively
used for bounded space upper and lower bounds. See e.g., the seminal paper by Pippenger [15] and
more recent papers such as [2].

The closest work to ours is the recent paper by Ben-Amram and Petersen [1]. They present a clever
algorithm that, using memory of size k < lgn, supports back-step in O(knl/ k) time. However, in
their algorithm forward steps take O(k) time. Thus, their algorithm supports O(lgn) time per
back-step, using O(lgn) memory but with O(lgn) time per forward step, which is unsatisfactory
in our context. Ben-Amram and Petersen also prove a near-matching lower bound, implying that
to support back traversal in O(n'/¥) time per back-step it is required to have Q(k) pebbles. Our
algorithm supports similar trade-off for back-steps as the Ben-Amram Petersen algorithm, while
supporting simultaneously constant time per forward step. In addition, our algorithm extends to
support O(k) time per back-step, using memory of size O(kn!/¥), for every k < lgn,

Recently, and independently to our work, Jakobsson and Coppersmith [9, 4] proposed a so-called
fractal-hashing technique that enables backtracking hash-chains in O(lgn) amortized time using
O(lgn) memory. Thus, by keeping O(lgn) hash values along the hash-chain, their algorithms

enables, starting at the end of the chain, to get repeatedly the preceding hash value in O(lgn)
amortized time. Subsequently, Sella [18] showed how to generalize the fractal hashing scheme, to
work with k hash values, for any k < lgn, supporting back steps in O(knl/ k). These works are
only in the context of hash chains and do not deal with efficient forward traversal. Note also that
our pebbling algorithm enables a full memory-time trade-off for hash-chain execution; that is, both
O(k) memory and O(kn'/*) time per back step and vice versa. In addition, it is guaranteed that
the time per execution is bounded in the worst case.

The most challenging aspect of our algorithm is the proper management of the pointers positions
under the restriction that forward steps have very little effect on their movement, to achieve e-
overhead per forward step. This is obtained by using the virtual pre-order tree data structure
in conjunction with a so-called recycling-bin data structure and other techniques, to manage the
positions of the back-pointers in a concise and simple manner.

1.4 Outline

The rest of the paper is organized as follows. In Section 2 we describe the skeleton data structures
that provide some intuition about the pebbling techniques, and the virtual pre-order tree data
structure, which will be used by all our algorithms. In Section 3 we describe the full algorithm,
called the list pebbling algorithm, which obtains O(lgn) amortized time per back-step using O(lgn)
pebbles, while supporting O(1) time per forward step. The advanced list pebbling algorithm, is
described in Section 4. This algorithm supports O(lgn) time per back-step in the worst case, using
lgn pebbles, as well as supporting € overhead per forward step. An extension of the algorithm to
support full time-memory trade-off of O(k) vs. O(kn'/*) is described in Section 5. In Section 6
we describe the application for efficient reversal of program execution, and for efficient processing
of hash-chains. Extensions to trees and other graphs are given in Section 7, and we conclude in
Section 8. Earlier versions of this paper appear in [12, 13].

2 The skeleton and virtual pre-order tree data structures

In this section we illustrate the basic idea of the list pebbling algorithm, and demonstrate it through
a limited functionality of having a sequence of back-steps only.

We first describe in Section 2.1 algorithms based on skeleton data structures, of which the most
advanced supports a sequence of back-steps in O(lgn) amortized time per back-step, using lgn
pebbles. These data structures are similar in nature to the ones used by [1, 9, 4, 5].

A full algorithm must support an arbitrary sequence of forward and backward steps, and we will also
be interested in refinements, such as reducing to minimum the number of pebbles. Adapting the
skeleton data structures to support the full algorithm and its refinements may be quite complicated,
since controlling and handling the positions of the various pointers becomes a challenge. For the
further restriction that forward steps do not incur more than constant overhead (independent of k),
the problem becomes even more difficult and we are not aware of any previously known technique

to handle this.

To have control over the pointers positioning, we present in Section 2.2 the wvirtual pre-order tree
data structure, and show how it supports the sequence of back-steps similarly to the skeleton data
structure. In the next sections, we will see how the virtual pre-order tree data structure is used to
support the full algorithm as well as more advanced algorithms.

2.1 The skeleton data structure

In this subsection we illustrate simple skeleton data structures and demonstrate them through a
limited functionality of having a sequence of back-steps only.

As a motivating example, we outline first how to obtain O(y/n) amortized time per back-step, using
two additional pointers, p and p’. For simplicity, let us only describe how to implement a sequence
of back-traversals from position n to the beginning of the list. When positioned at node n, pointer
p' acts as a shadow pointer, and points to position n — /n. As long as the current position is
between pointer p’ and position n, a back-step is implemented by advancing pointer p, which acts
as an assisting pointer, from position p’, until next(p) becomes the current position. When the
current position becomes p’, we will update p’ to be n — 24/n by moving the assisting pointer p
forward n — 24/n steps starting from the beginning of the list. Each update occurs only after \/n
back steps are executed since the previous update. Therefore, the amortized cost per back-step
is smaller than y/n. It is straightforward to extend this into a back traversal all the way to the
beginning of the list.

An improved, O(nl/ 3) amortized time per back step can be obtained by having the shadow pointer

2/3 and adding a second shadow pointer p”, pointing initially to

p' positioned at location n — n
position n —n!/3. As long as the current position is between pointer p” and position n, a back-step
is implemented by advancing the assisting pointer p, from position p”, O(n'/?) steps until next(p)
becomes the current position. When the current position becomes p”, we will update p” to be

2/3 1/3

n — 2n'/3 by moving forward n?/? — 2nl/3 steps starting from position p’ (after n'/3 steps each

taking O(n'/3) time). When the position of p” becomes p’ (after n%/® steps each taking O(n!/3)

2/3

time), we will update p' to be n — 2n%/3, by moving forward n — 2n?/3 steps starting from the

1/3

beginning of the list. This results with at most 3n'/° amortized time per back step.

Using a related technique, a full back-traversal can be implemented, in which each back-step takes
O(1) amortized time, using O(y/n) additional pointers. When positioned at node n, we keep v/n
shadow pointers at positions n —y/n+ 1 through n, as well as y/n pointers at positions n —i4/n, for
i=1,...,4/n—1. Aslong as the current position is between n —y/n+1 and n, each back-step takes
O(1) time. When the current position reaches position n — 4/n, the \/n shadow pointers are moved
to positions n — 2y/n + 1 through n — y/n, in \/n time, or O(1) amortized time per back-step.

These methods can be extended to more generally support full back traversals in O(kn'/*) amortized
time per back-step, using k additional pointers, or in O(k) amortized time per back-step, using
O(kn'/*) additional pointers.

The skeleton data structure, described next, supports a sequence of back-steps only in O(lgn)
amortized time per back-step, using lgn pebbles.

Let n be the current position and assume that n is a power of 2. We maintain lgn pointers between
the current position and the beginning of the list, where the i’th pointer is at distance 2° from the
current position, ¢ =0,1,...,lgn. Denote this as the skeleton data structure of size n.

A sequence of back traversals from position n to the position of the i’th pointer is done as follows:

1. Have a sequence of back traversals from position n to the position of the i — 1%¢ pointer, using
the skeleton data structure.

2. Build a skeleton data structure of size 2°~! between the positions of the 7’th and i — 1%
pointers, using the pointers freed in step 1. (See Figure 1).

3. Have a sequence of back traversals from the position of the i — 1% pointer to the position of
the 7’th pointer, using the skeleton data structure between these points.

Steps 1 and 3 are recursive applications of the algorithm for problems of size 2¢-!. Step 2 is
implemented in a single sequence 2°~' forward steps. The time required to have a sequence of
back-steps from position n to the position of the i’th pointer is therefore T'(i) = 2T'(i — 1) + 2°71,
T(1) = O(1), implying T (i) = O(i2¢), and an amortized O(lgd) time for the d’th back-step.

Figure 1: The skeleton data structure

2.2 The virtual pre-order tree data structure

The reader is reminded (see Figure 2) that in a pre-order traversal, the successor of an internal
node in the tree is always its left child; the successor of a leaf that is a left child is its right sibling;
and the successor of a leaf that is a right child is defined as the right sibling of the nearest ancestor
that is a left child. An alternative description is as follows: consider the largest sub-tree of which
this leaf is the right-most leaf, and let u be the root of that sub-tree. Then the successor is the
right-sibling of u. Consequently, the backward traversal on the tree will be defined as follows. The
successor of a node that is a left child is its parent. The successor of a node v that is a right child
is the rightmost leaf of the left sub-tree of v’s parent.

The virtual pre-order tree data structure consists of (1) an implicit binary tree, whose nodes cor-
respond to the nodes of the linked list, in a pre-order fashion, and (2) an explicit sub-tree of the
implicit tree, whose nodes are pebbled. For the basic algorithm, the pebbled sub-tree consists of
the path from the root to the current position.

©) o ot o
i+1 \® i+1 i
A i
/ /
/ /
/ /
i-1

Figure 2: Preorder traversal

Each pebble represents a pointer; i.e., pebbled nodes can be accessed in constant time. We defer
to later sections the issues of how to maintain the pebbles, and how to navigate within the implicit
tree, without actually keeping it.

Figure 3: A pebbled path from the root to current position i

2.3 Back traversal using the virtual pre-order tree data structure

Starting at node n, a back-traversal can be executed while maintaining lgn pebbles with O(lgn)
amortized time per back-step, as follows.

If node 7 is a left child, then node ¢ — 1 is the parent of 4, and the path from the root to node 7 — 1
is already pebbled. Therefore, doing the backtrack step as well as updating the data structure are
trivial.

If node 7 is a right child, then node 7 — 1 is the rightmost leaf in the sub-tree, T”, whose root is the
left sibling of node i. In this case the path from the root of 7" to node i — 1 (consisting of going
down T" through right children only), is yet to be pebbled. The challenge is that getting into these
nodes requires a full traversal of 1".

Let T be the sub-tree whose root is node 4, and let ¢ be the size of T.. Note that the size of T' is
also t. Thus, moving from node 7 to node i — 1, as well as pebbling the path from the root of T” to
node 7 — 1 takes t steps. We will charge this cost to the sequence of all backtrack steps within 7',
i.e., starting from the rightmost leaf in 7" and getting to its root (node 7).

The total cost of all backtrack steps is C' = Y, t(v), where v is a right child and ¢(v) is the size of
nlgn
2
per back-step. In fact, it is not difficult to show that for every prefix of size n’ the amortized time

the subtree rooted at v. It is easy to verify that C' <

, resulting with amortized O(lgn) time

per back-step is O(lgn’).

3 The list pebbling algorithm

In this section we describe the list pebbling algorithm, which supports an arbitrary sequence of
forward and back steps. Each forward step takes O(1) time, where each back-step takes O(lgn)
amortized time, using O(Ign) pebbles. We will first present the basic algorithm which uses O(lg? n)
pebbles, then describe the pebbling algorithm which uses O(lgn) pebbles without considerations
such as pebble maintenance, and finally describe a full implementation using a so-called recycling
bin data structure.

The list pebbling algorithm is an extension of the algorithm described in Section 2.3. It uses a
new set of pebbles, denoted as green pebbles. The pebbles used as described in Section 2 are now
called blue pebbles. The purpose of the green pebbles is to be kept as placeholders behind the blue
pebbles, as those are moved to new nodes in forward traversal. Thus, getting back into a position
for which a green pebble is still in place takes O(1) time.

3.1 The basic list pebbling algorithm

Define a left-subpath (right-subpath) as a path consisting of nodes that are all left children (right
children). Consider the (blue-pebbled) path p from the root to node i. We say that v is a left-child
of p if it has a right sibling that is in p (that is, v is not in p, it is a left child, and its parent is in p
but not the node i). As we move forward, green pebbles are placed on right-subpaths that begin at
left children of p (see Figure 4). Since p consists of at most 1gn nodes, the number of green pebbles
is at most Ig? n.

When moving backward, green pebbles will become blue, and as a result, their left subpaths will
not be pebbled. Re-pebbling these sub-paths will be done when needed. When moving forward,
if the current position is an internal node, then p is extended with a new node, and a new blue
pebble is created. No change occurs with the green pebbles. If the current position is a leaf, then
the pebbles at the entire right-subpath ending with that leaf are converted from blue to green.
Consequently, all the green sub-paths that are connected to this right-subpath are un-pebbled.
That is, their pebbles are released and can be used for new blue pebbles.

Figure 4: Green subpaths (dashed lines)

We consider three types of back-steps:
(i) Current position is a left child: The predecessor is the parent, which is on p, and hence pebbled.

Moving takes O(1) time; current position is to be un-pebbled.

(i) Current position is a right child, and a green sub-path is connected to its parent: Move to the
leaf of the green sub-path in O(1) time, convert the pebbles on this sub-path to blue, and un-pebble
the current position.

(iii) Current position is a right child, and its parent’s sub-path is not pebbled: Reconstruct the
green pebbles on the right sub-path connected to its parent v, and act as in the second case. This
reconstruction is obtained by executing forward traversal of the left sub-tree of v. We amortize
this cost against the sequence of back-steps starting at the right sibling of v and ending at the
current position. This sequence includes all nodes in the right sub-tree of v. Hence, each back-step
is charged with one reconstruction step in this sub-tree.

Claim 3.1 FEach back step can be charged at most lgn times.

Proof. Consider a back step from a node u. The claim follows from the fact that such back-step
can only be charged once for each complete sub-tree that u belongs to. .

We can conclude:

Theorem 3.2 The basic list pebbling algorithm supports O(lgn) amortized list-steps per back-step,
one list-step per forward step, using O(lg?n) pebbles.

3.2 The list pebbling algorithm with O(lgn) pebbles

The basic list pebbling algorithm is improved by the reducing the number of green pebbles on most
of the green paths. Let v be a left child of p and let v/ be the right sibling of v. Denote v to be
the last left child of p if the left subpath starting at v’ ends at the current position; let the right
subpath starting at the last left child be the last right subpath. Then, if v is not the last left child
of p, the number of pebbled nodes in the right subpath starting at v is at all time at most the
length of the left subpath in p, starting at v' (see Figure 5). If v is the last left child of p, the entire
right subpath starting at v can be pebbled. We denote the (green) right subpath starting at v as
the mirror subpath of the (blue) left subpath starting at v’. Nodes in the mirror subpath and the
corresponding left subpath are said to be mirrored according to their order in the subpaths. The
following clearly holds:

Claim 3.3 The number of green pebbles is at most 1gn.

A sequence of forward steps and corresponding blue path and green path of each position is depicted
in Figure 8

When moving forward, there are two cases:

(1) Current position is an internal node: as before, p is extended with a new node, and a new blue
pebble is created. No change occurs with the green pebbles (the mirror subpath begins at the last
left child of p).

10

{’,,
\\\
ggk \/

I
<§?>

Figure 5: Using lgn pebbles

(2) Current position i is a leaf that is on a right subpath starting at v (which could be i, if i is a left
child): we pebble (blue) the new position, which is the right sibling of v, and the pebbles at the
entire right subpath ending at ¢ are converted from blue to green. Consequently, (1) all the green
sub-paths that are connected to the right subpath starting at v are un-pebbled; and (2) the left
subpath in p which ended at v now ends at the parent of v, so the mirror (green) node to v should
now be un-pebbled. The released pebbles can be reused for new blue pebbles.

Moving backward is similar to the basic algorithm. There are three types of back-steps.

(1) Current position is a left child: predecessor is the parent, which is on p, and hence pebbled.
Moving takes O(1) time; current position is to be un-pebbled. No change occurs with green pebbles,
since the last right subpath is unchanged.

(2) Current position is a right child, and the (green) subpath connected to its parent is entirely
pebbled: Move to the leaf of the green subpath in O(1) time, convert the pebbles on this subpath
to blue, and un-pebble the current position. Since the new blue subpath is a left subpath, it does
not have a mirror green subpath. However, if the subpath begins at v, then the left subpath in p
ending at v is not extended, and its mirror green right subpath should be extended as well. This
extension is deferred to the time the current position will become the end of this right subpath,
addressed next.

(3) Current position is a right child, and the (green) subpath connected to its parent is only partially
pebbled: Reconstruct the green pebbles on the right subpath connected to its parent v, and act as
in the second case. This reconstruction is obtained by executing forward traversal of the sub-tree
T starting at v, where v is the last pebbled node on the last right subpath. We amortize this
cost against the back traversal starting at the right child of the mirror node of v and ending at
the current position. This sequence includes back-steps to all nodes in the left sub-tree T, of the
mirror of v. This amortization is valid since the right child of v was un-pebbled in a forward step
in which the new position was the right child of the mirror of v. Since the size of T} is twice the
size of Ty, each back-step is charged with at most two reconstruction steps.

As in Claim 3.1, we have that each back step can be charged at most lgn times, resulting with:

Theorem 3.4 The list pebbling algorithm supports full traversal in at most lgn amortized list-steps
per back-step, one list-step per forward step, using 21gn pebbles.

11

3.3 A low-overhead, run-time sensitive implementation

Using a more careful analysis and easy refinement of the list pebbling algorithm we can show the
following.

Theorem 3.5 The list pebbling algorithm supports O(lgi) amortized time per back-step, e amor-
tized time overhead per forward step, using O(lgn) pebbles, where i is the distance from the current
position to the farthest point traversed so far, and € is an arbitrary small constant.

Proof. Let T be the smallest tree that includes the farthest point f traversed so far and the current
position . When traversing within 7', no change occurs in nodes outside of T. The sequence of
back-steps from f to 4 consists of two sub-sequences: from f to r + 1, which is in the right subtree
T, of T, and from r to 7, which is in the left subtree T} of T'. Note that r is the rightmost leaf in
Ty, and r 4+ 1 is the root of T,.. Similar to Claim 3.1, note that each sub-step occurs at a node that
is in at most lg¢ subtrees, and therefore each back-step can be charged at most 1g4 times.

To obtain e overhead per forward step, we use the following simple method, which is applicable
to all list traversal algorithms. Suppose that the overhead per forward step is bounded by some
constant c¢. Then, we partition the list into blocks, each consisting of a sublist of ¢/e nodes. We
now apply our algorithm to a new list whose nodes are the blocks. The overhead per forward step
is now at most ¢ per block, and hence at most ¢/(c/€) = € per node. The penalty in executing the
algorithm for blocks rather than nodes is that each forward traversal in the new list now translates
to c/e list steps, so the overhead per back-step is now multiplied by c¢/e. "

3.4 Full algorithm implementation using the Recycling Bin data structure

The allocation of pebbles is handled by an auxiliary data structure, denoted as the recycling bin
data structure, or RB. The RB data structure supports the following operations:

Put pebble: put a released pebble in the RB for future use; this occurs in the simple back-step, in
which the current position is a left child, and therefore its predecessor is its parent. (Back-step
Case 1.)

Get pebble: get a pebble from the RB; this occurs in a simple forward step, in which the successor
of the node of the current position is its left child. (Forward-step Case 1.)

Put list: put a released list of pebbles - given by a pair of pointers to its head and to its tail — in
the RB for future use; this occurs in the non-simple forward step, in which the pebbles placed on
a full right path should be released. (Forward-step Case 2.)

Get list: get the most recent list of pebbles that was put in the RB and is still there (i.e., it was not
yet requested by a get list operation); this occurs in a non-simple back-step, in which the current
position is a right child, and therefore its predecessor is a rightmost leaf, and it is necessary to
reconstruct the right path from the left sibling of the current position to its rightmost leaf. It is
easy to verify that the list that is to be reconstructed is indeed the last list to be released and put
in the RB. (Back-step Cases 2 or 3.)

12

The RB data structure consists of a bag of pebbles, and a set of lists consisting of pebbles and
organized in a double-ended queue of lists. The bag can be implemented as, e.g., a stack. For each
list, we keep a pointer to its header and a pointer to its tail, and the pairs of pointers are kept in
doubly linked list, sorted by the order in which they were inserted to RB. Initially, the bag includes
21lgn pebbles and the lists queue is empty. Based on Theorem 3.4, the 21gn pebbles will suffice
for all operations.

In addition, the recycling bin data structure will monitor the traversal, and in each forward step
from a leaf, it will release the green pebbles that are not necessary based on the algorithm described
above, and place them in the bag. In particular, if the forward step originates at a left leaf node
v (except for the leftmost leaf in the tree), then the released green pebble is the one placed at the
node mirror to v. This is the last node at the most recent green path placed at the RB. If the
forward step originates at a right leaf node v, then there are two released green pebbles. (If the left
sibling of v is the leftmost leaf in the tree then the second one does not apply.) The first one is one
placed on the left sibling of v. The second one is the one placed on the mirror node of u, where u
is the root of the largest subtree for which v is the leftmost leaf. Thus, the second released green
pebble is the last in the most recent green path at the RB (except for the list of length 1 which is
removed first).

The operations are implemented as follows:

Put pebble: Adding a pebble to the bag of pebbles (e.g., stack) is trivial; it takes O(1) time.

Put list: a new list is added to the tail of the queue of lists in RB, to become the last list in the
queue, and My is set to 0. This takes O(1) time.

Get pebble: Return a pebble from the bag. The analysis above guarantees that upon invocation of
get pebble, there is always at least one pebble in the bag. Get list: Return the last list in the queue
and remove it from RB. If pebbles were removed from this list, then it should be reconstructed
prior to returning it. This can be done in O(2M¢) time, where For each list £ we keep a counter
My is the number of pebbles removed from list £, as follows. Starting with the node v of the last
pebble currently in the list, take 2" forward steps, and whenever reaching a node on the right
path starting at node v place there a pebble obtained from RB using the get pebble operation.
Note that this is Back-step Case 3, and according to the analysis and claim the amortized cost per
back-step is O(lgn) time.

Claim 3.6 The priority queue can be implemented to support delmin operation in O(1) time per
retrieval.

Proof. We rely on the fact that the sequence of counters M, in order defined by the queue of
lists is of a non-increasing sequence. Indeed, initially all M, are equal (all 0). Inductively, the
monotonicity is preserved since when a pebble is removed from a list, the M, that is incremented is
for a list £ that is the farthest list having this counter. When a list is added, it has a counter of 0,
and it is at the beginning of the queue. A removal of the list clearly cannot affect the monotonicity.
Based on this property, the PQ is implemented as follows. All lists with the same counter M are
kept in a sublist (sorted by their rank), for each value of the counter M we keep a pointer to the

13

farthest list, and these pointers are linked in increasing order of respective M. Recall that the lists
are organized in a queue of a doubly linked list. To support delmin operation, we take a pebble
from the list according to the first pointer, move this list to the next sub-list, and move this pointer
to one list closer. .

We can conclude:

Theorem 3.7 The list pebbling algorithm using the recycling bin data structure supports O(lgn)
amortize time per back-step, O(1) time per forward step, using O(lgn) pebbles.

Proof. The theorem follows from the fact that the order in which pebbles are removed and put
in the lists, as implemented in the recycling bin data structure, is the same as in the list pebbling
algorithm described in Section 3.2. .

4 The advanced list pebbling algorithm

The advanced list pebbling algorithm presented in this section supports back-steps in O(lgn) time
per step in the worst case. We present in Section 4.1 the refined pebbling technique, and we describe
in Section 4.2 the traversal synopsis implementation.

4.1 The advanced pebbling technique

Ensuring O(lgn) list steps per back-step in the worst case is obtained by processing the rebuilt
of the missing green paths along the sequence of back traversal, using a new set of red pebbles.
For each green path, there is one red pebble whose function is to progressively move forward from
the deepest pebbled node in the path, to reach the next node to be pebbled. By synchronizing
the progression of the red pebbles with the back-steps, we can guarantee that green paths will be
appropriately pebbled whenever needed.

We manage to reduce the total number of pebbles to lgn. Blue pebbles are saved by relying on
recursive application of the list pebbling algorithm, and green pebbles are saved by delaying their
creation without affecting the back-step time. The algorithm that realizes the following theorem is
described in Section 4.1.1.

Theorem 4.1 The list pebbling algorithm can be implemented to support O(lgi) list-steps in the

worst-case per back-step, one list-step per forward step, using 1gn pebbles, where i is the distance
from the current position to the farthest point traversed so far.

4.1.1 Back traversal in at most lgn steps per back-step, using 21gn pebbles

As in the basic list pebbling algorithm we will use the blue pebbles placed on the path from the
root to current position ¢, as well as an additional set of at most lgn green pebbles that will be

14

placed in advance and be converted to blue pebbles at the appropriate time. Additionally, we will
use a new set of at most lgn red pebbles that will serve to get to the positions of the green pebbles.

For illustration purpose, the dynamics of pebbles looks as follows: At all time, there are up to lgn
red pebbles that each advance one step per back-traversal; their exact number equals the number
of right sub-trees that include the current position. Green pebbles are created when red pebbles
reach certain locations, at some point each green pebble becomes a blue pebble, and blue pebbles
are dismissed.

When a node 7 is a right child, then there should be a green path from #’th left sibling to node 7 — 1
(which is the rightmost leaf in the tree rooted at that sibling). We start placing the green pebbles
on this path well in advance, according the following strategy. Let 1" be the sub-tree of node 7, and
let 7" be the sub-tree of its left sibling. As we enter via a back step into 7' (that is, moving into
the rightmost leaf of T'), and start back traversing within 7, we also start forward traversing, using
a red pebble, the sub-tree 7" at the same rate. Whenever encountering a node in 7" that is on
the path from the root of 7" to i — 1, we can place there a green pebble. When the back traversal
reaches node i, the forward traversal in 7" ends and we have all green pebbles in place. In the next
back-step, moving from node 7 to node 7 — 1, the green pebbles in T” will be transformed into blue
pebbles.

Since every node is in at most lgn sub-trees, we have at most lgn such processes occurring in
parallel, and can be implemented in a dove-tailing fashion in Ign steps. Thus, the process consists
of using up to lgn red pebbles, and traversing each of them one step forward for every back-step,
resulting with an overhead of at most lgn steps per back-step.

Bounding the number of pebbles to 3lgn

Since for each blue pebble there can be at most one green path associated with it (the one starting
at its left sibling), and since each green path is of length at most lgn, this approach requires at
most lg? n green pebbles. Next we show that the above strategy can be implemented using at most
lgn green pebbles. We will inspect more carefully the nodes on the tree that obtain green pebbles
at every given step, and show that the total number of green pebbles that are placed preemptively
(in the various sub-trees) is at most lgn.

Lemma 4.2 Using the above implementation, at every point in the execution the total number of
green pebbles in the tree is at most 1gn.

Proof. Recall that we have defined a left-subpath (right-subpath) as a path consisting of nodes
that are all left children (right children). Further, considering the (blue-pebbled) path p from the
root to node i, we say that v is a left-child of p if it has a right sibling that is in p (that is, v is not
in p, it is a left child, and its parent is in p but not the node 7).

Green pebbles are placed preemptively on right-subpaths that begin at left children of p. We claim
that the number of green pebbles placed preemptively on the right-subpath starting at a node

15

v, is at most the length of the mirror sub-path plus 1. (Recall that the mirror sub-path is the
left-subpath in p, starting at the right sibling v' of v). The lemma will follow immediately since
the sum of lengths of L left subpaths along p is at most lgn — L.

Consider some left-subpath of length k starting at a node v’, and ending at a node u. We show
inductively (on the length k) that at the right-subpath starting at v, the left sibling of v/, has at
most k + 1 pebbles. The base, k = 0 follows from the fact that the traversal did not yet enter into
the sub-tree of v/, and hence the only green pebble in the sub-tree of v is on v itself. To prove the
induction step, consider the case that the left-subpath is augmented by a new node u+ 1 (left child
of node u). The number of back-steps taken since adding u to the path till this point is at most
S(u + 1), the size of the sub-tree whose root is u + 1, since the traversal was taken over the right
sub-tree of u. The traversal necessary from placing the k’th pebble to placing the k + 15! pebble on
the right-subpath starting at v can be verified to be S(u+1). The claim follows from the induction
hypothesis. =

The lemma implies that at most 31gn pebbles are sufficient.

Using at most 21gn pebbles

To implement the algorithm using only 2 1g n pebbles, we will not keep blue pebbles on left-subpaths
in p, except for their first nodes. It is easy to see that every node on a left subpath of length k
starting at a node v’ can be reached in at most k steps, by accessing v’ and moving forward.
Additionally, for every right subpath starting a node v (which is a left child of p) we will not keep
the green pebble on v, since it can be reached in one step from p. It is easy to verify that the total
number of blue and green pebbles is at most 1gn.

The last modification can add at most lgn steps to each back-step, assuring an implementation
that uses 21gn pebbles and at most 21gn steps for every back-step. In fact, a closer analysis shows
that the number of steps per back-step is at most Ign in the worst case. First, observe that the
number of red pebbles is the number of right sub-trees to which the current position belongs (this
is also the number of blue pebbles). For a node whose left subpath is of length &, the number of red
pebbles could be at most (Ign — k). Hence, the total number of steps for moving the red pebbles,
as well as reaching a node is at most lgn.

(Note: there is an additional delay in the beginning of a traversal of a red pebble. To reach a node
v that is a left child of p, it first requires starting at the beginning of the left sub-path ending at
the right sibling of v. This delay can be overcome during the traversal of the red pebble.)

A drawback of this modification is that back-query is not supported in constant time. Further, the
lack of pebbles within a blue left sub-path would imply more expensive implementation of shrinking
the data structure, discussed below.

We show next that this problem can be overcome by maintaining recursively a data structure over
the blue left sub-path, as follows.

16

Supporting back-query in constant time

This is done by considering each left-subpath as a linked list, and implementing backward steps
along a left-subpaths by using the above algorithm recursively. For such implementation, a left-
subpath of length k requires lg k pebbles. We show that such pebbles are available without increas-
ing the total number of pebbles.

Claim 4.3 Consider some left-subpath of length k starting at a node v', and ending at a node u.
The number of green pebbles placed preemptively on the right-subpath starting at v, the left sibling
of V', is at most k — Igk.

Proof. The left-subpath starting at v’ ends at node u = (v' + k). The back traversal executed
while the left-subpath in p starting at v’ grows from 0 to length k begins at the rightmost leaf in
the sub-tree of v', and ends at the right sibling of u. The length of this back-traversal is hence
S(v') — S(u) — k. While conducting this back traversal, the green pebbles were placed along a
forward traversal starting at the parent of v'. The number of nodes in the right-subpath starting
at v, the left sibling of v, is indeed k — 1gk. .

4.1.2 Using at most lgn pebbles

We impose a delay in the creation of the red pebbles. Specifically, red pebbles will be created at
a node only when reaching the sub-tree of the left child of its right sibling (if such right sibling
exists). The red pebble at the root of 7" will be created when reaching the sub-tree of the left child
of the root of T.

Observe that (1) at every step, the number of red pebbles is the number of left-paths; (2) for each
right-path of green pebbles, the number of green pebbles will be reduced by one. Since the number
of green right-paths equals the number of left-paths, the total number of pebbles is at most Ign.

We still need to guarantee that when reaching the root of 7', the path from the root of 7" to its
right leaf is already pebbled (by green pebbles). To compensate for the delay in creating the red
pebble, once created the red pebbles are to be moved in double pace. That is, for every back-step

each of the red pebbles is to be moved two forward steps. To see that the time per step is still
Ign

bounded by lgn, note that the number of red pebbles is bounded by -%~, the maximum possible

number of left paths.

4.1.3 Forward traversal in O(1) time and no additional list-steps

When implementing forward traversal, blue pebbles will be updated to always be in their designated
positions. Green and red pebbles will be eliminated as necessary, so as to maintain that the blue
pebbles use a total of lgn pebbles. Thus, no additional list-steps are needed in order to maintain
the pebbles in their appropriate positions, during forward steps. The change in pebble positions

17

is obtained by recording new positions as they are visited during the forward traversal. The only
overhead is incurred by maintaining the data structures necessary to identify the appropriate pebble
locations, namely the recycling-bin data structure and the virtual pre-order tree data structure.

The implementation of the forward traversal is essentially rolling back the back traversal described
above, with the following modifications. A red pebble that is to be moved backward is only moved
virtually and will in fact remain in place (a counter can be added to explicitly represent the virtual
location). The rolling back of a step in which a green pebble is created is implemented by removing
the green pebble and moving the red pebble that created it into its position. Otherwise, rolling
back a step in which a red pebble is created is removing the red pebble; rolling back a step in which
a blue pebble is eliminated is by creating the blue pebble; rolling back a step in which a green
pebble becomes blue is by having the blue pebble becoming green.

Since for every step only one new blue pebble can be created, we can eliminate only one pebble
(green or red) per step. Thus, occasionally we will take a lazy approach in rolling back and
deferring some elimination to other steps. This results with the cost of two operations per forward
step (creation of a blue pebble and one elimination). Additional cost per step is the change of blue
pebbles into green pebbles. This is implemented in a lazy fashion as well - one change per step.

The correctness of this implementation follows from the previous discussion. The total cost per
forward step is (a small) constant in the worst case, and can be also bounded by 1 + € amortized
cost per forward step, as will be shown below.

4.1.4 Back traversal in O(lgi) for the i’th back-step

It is desirable that when executing a small number of back-steps, their cost would be constant.
More generally, we would like the cost of a back-step to be a function of the number of back-steps
executed. That is, that the i’th back-step costs O(lgi), rather than O(lgn). When starting back-
steps after a sequence of n forward steps, where n is a power of 2, using the above algorithm, then
in fact we do already obtain a cost of at most lgi per back-step. Indeed, the cost is proportional to
the number of red-pebbles and this number is at most lgs for the i’th back-step, since the largest
tree affected when traversing ¢ steps backward is of size at most 2i. However, using the above
algorithm for arbitrary n, starting back traversal after moving forward n steps could cost ©(lgn)
per back-step.

We modify the implementation of back-step so as to obtain cost of O(lgi) regardless of the point
in which the back traversal begins, by creating red pebbles mostly in a tree whose size is at most
43. Creation of red pebbles in most of the higher nodes is delayed to future back-steps.

Claim 4.4 Consider the smallest sub-tree T that includes both nodes representing positions n and
n—1, and let 0 < j < 4. (Note that this tree could be of size up to 2n even for very small i). Then,
the number of red-pebbles required for the node representing n — j within the tree is at most IgTZ%—l.

18

Proof. Since the tree T is the smallest that includes the sequence of nodes representing positions
n—7j,0 < j <1, then the right child of the root of this tree represents a node n — 5’ in the sequence,
for some 0 < j' < 4. We consider separately the two parts of the sequence.

The suffix of the sequence, n —j' —1,...,n —1, begins at the right leaf of the left sub-tree of T' (the

situation is similar to back-traversal from a position n that is power of 2), and is fully contained

Igi+1
2

additional red pebble is required since the root of T” is on a right path from the left child of the
root of T

in a sub-tree T" of size at most 2:. Within 7", the number of red pebbles is at most , and no

The prefix of the sequence, n,...,n— j', consists of two sub-sequences, one on a left path p starting
at the right child of the root of T, and the other fully contained in a sub-tree T" whose root is on
p, and whose size is at most 2i. One pebble is required for p, and within 7", the number of red
pebbles is at most l—g%, totaling at most l—g%—kl. "

The algorithm is as follows. Let R be the smallest right sub-tree that fully contains the tree T
(as a sub-tree) from the claim. Then, at every back-step only red pebbles within R are created
or moved. Each pebble except for the highest pebble is moved two steps per every back-step, as
before. The highest pebble is moved at up to double pace, that is up to 4 steps for every back-step.
The double pace covers the delay this pebble has had, when it was not in the tree R (when back
traversing within the right sub-tree of R). Creation or move of red-pebbles outside R is delayed
until a later stage.

i From the claim it follows that the number of red-pebbles touched at every back-step is at most
l—gZQLI—I-Z. Each pebble, except for the highest pebble, is moved two steps for every back-step;
the highest pebble is moved at most 4 steps for every back-step. The total number of steps per
back-step is therefore at most 1gi 4 7.

It remains to show that the delay of high pebbles is properly compensated by the double pace
approach. It suffices to show that the lowest delayed red pebble is in place when first needed.
Let L be the sub-tree whose root is the left sibling of the root of R. The size of L is at least 1,
and once entering L, the lowest delayed red pebble starts moving in double pace. Therefore, when
finishing the traversal through L, the green pebble created by that delayed pebble would already
be in place.

4.1.5 Super-nodes for ¢ overhead in forward steps

The overhead in forward step was shown to be O(1) in the worst case. We show how to reduce the
amortized time overhead per forward step to €, for arbitrary small € > 0. Let ¢ > 0 be a constant
so that each forward step takes at most ¢ time. Given a list L of length n, we define a virtual list
L' over L, as follows (see Figure 6). Each node in L' is a super-node, representing a group of ¢/¢”
consecutive nodes in L, where €’ < € will be defined below. We keep a list traversal synopsis over
L', so that whenever a pebble is allocated to a super-node in L', we will instead allocate the pebble
to the first node of L within that super-node.

19

A forward step in L' from a super-node v’ to a subsequent super-node u' occurs only when there is
a forward step in L from the last node in v’ to the first node in u'. Since the time per forward step
in L' is at most ¢, the amortized time per forward step in L is at most € 4+ ¢/(c/e") =€ + €' = ¢
where €’ is the overhead per step due to managing the super-nodes, and €’ defined as € — ¢'.

A backward step in L can be of two types. If the back-step is between two nodes belonging to
the same super-node, then it is executed by moving forward at most c/€” = (1/¢) steps from the
beginning of the shared super-node; no back-step occurs in L' in this case. If the back-step is
between two nodes belonging to a different super-nodes, then a back-step in L' is executed, and
the required node is reached by moving forward O(1/¢) steps from the beginning of its super-node.
Executing a back-step in L' involves a sequence of forward list-steps in L'; each such list-step is
executed by having c/¢’ forward steps in L’. Hence, the time per back-step is now multiplied by a

factor of O(1/e).

Figure 6: Obtaining e overhead by using super-nodes

4.2 Traversal Synopsis implementation

A full implementation of the advanced list pebbling algorithm requires identification of the positions
of red pebbles, with the constraint that the tree on which they move is only virtual.

Theorem 4.5 The list pebbling algorithm can be implemented on a RAM to support O(lgi) time
in the worst-case per back-step, where © is the distance from the current position to the farthest
point traversed so far. Forward steps are supported in O(1) time in the worst case, 1+ € amortized
time per forward step, and no additional list-steps, using lgn pebbles. The memory used is at most
1.5(1gn) words of lgn + O(1glgn) bits each.

Proof. A straightforward implementation of the advanced pebbling algorithm described in Sec-
tion 4.1 requires a full tree representation. As we aim to small space data structure, this tree will
only be virtual and we’ll show how to implement with logarithmic size data structures.

The data structure, dubbed the pebble tree, consists of a binary tree, which is induced by the
sub-tree of the full binary tree described above. At every point of time, the pebble tree consists
of nodes positioned with blue or green pebbles, and additional leaves representing the red pebbles.
These leaves are the right children of the nodes with the corresponding green pebbles.

Each node in the tree has three pointers: to its left child, to its right child, and to its parent. Each
node in the tree had a record with the following information: the node’s position in the tree (Ign
bits), pointer id (lglgn bits), and delay for nodes representing red pebbles (lgn bits), which is used
in the forward step.

20

Additionally, we keep an array, which keeps pointers to the nodes representing the red pebbles in
the pebble tree. Finally, we keep two pointers, to the nodes representing the current position (the
node representing the last blue pebble), and to the node representing the last green pebble of a full
green path (that is, a node which is a leaf in the full tree).

The pebble tree consists of at most lgn nodes. The number of red nodes is at most l—gQﬂ, and hence
this is the size of the array. Representing the pebble tree structure and all pointers involved requires
O(lglgn) bits per pointer. Each node requires lgn bits per position, and each red node requires
additional 1gn bits for the delay field.

In total we have at most lgn words of size lgn + O(lglgn), of which at most %lgn words require
additional words of size lgn, and an array consisting of lgn words of size O(lglgn).

Resulting with total of 1.51gn(lgn + O(lglgn)) bits. =

4.3 Growing the virtual tree for an unbounded sequence

Suppose that we have a list traversal synopsis on a virtual pre-order tree T' of n nodes. When
moving forward on an unbounded list from node n to node n + 1, the tree T" can no longer be used
for the list traversal synopsis. Instead, a (virtual) tree 7" of size 2n + 1 is to be used. Note that
the blue path of node n in T' consists of the right path in 7. Our objective is to obtain the blue
path of n +1 in T".

We note that T is identical to the left sub-tree T" of T, and it is easy to see that the pre-order
numbering of each node in T” is one more than the pre-order numbering of the corresponding node
in T. Thus, node n + 1 is the rightmost leaf of 7", and the blue path of n+ 1 in T consists of the
root of T" along with the right path of 7. By moving each blue pebble to its next position, it is
brought in T"” to the position that corresponds to its position in 7', hence the entire blue path of
n + 1 is obtained, except for the root of 7T'.

Thus, the blue path for node n + 1 in T” can be obtained by moving each blue pebble to its next
position, and adding a new blue pebble to the root of 7". The amortized cost of computing the
new blue path is Ign/n, and such update can be prepared in advance in a straightforward manner,
so as to keep the time per forward step O(1) in the worst case.

Reducing the number of pebbles during back traversal The number of pebbles can also
be kept at all time O(lgn), where n is the current position, even if at some point in the past the
virtual tree grew to arbitrary size N > n. Indeed, the blue path consists of a left path of some
length n1, and some blue path within a subtree S of length at most 2ns, so that ny + no = n. As
in the advanced algorithm using lgn pebbles, the left blue path can be substituted with a recursive
instance of a list traversal synopsis of size O(lgn1). Since the list traversal synopsis of the subtree
S is of size O(lgn2), we have a total of O(lgn) pebbles.

21

5 Obtaining a full time-memory trade-off

In order to support a full memory-time trade-off, we extend the virtual pre-order tree data structure
from a binary tree into a kn'/k-ary tree (see Figure 7). The same virtual kn'/*-ary tree serves both
the case of having O(k) pebbles with O(kn!/*) time, and the case of having O(kn!/*) pebbles and
O(k) time, but with different placements of pebbles. It consists of a virtual pre-order tree data

1/k. As for the binary tree, in both cases we maintain a blue

structure of depth k£ and degree n
pebble path from the root to the current position (of length at most k). The difference is in the

placement of the green pebbles.

For the case of O(k) pebbles and O(kn'/*) time per back-step, we have the green paths begin only
at the nearest left sibling of each node with a blue pebble. As in the binary case, they consist of
right sub-paths and their lengths is according to the mirroring property. As in the binary case,
the total number of green pebbles is at most the total number of blue pebbles, which is at most
k. Hence, we have at most 2k pebbles in the tree. The time per back-step is dominated by the
time it takes to reconstruct a new green path. Consider a back step from a root v of a sub-tree
T. Constructing the green path that starts at the parent of v involves forward traversal through

1/k gub-trees identical to T. As in the binary case, the construction time is amortized

at most n
against the sequence of back-steps from the right-most leaf of T' till the root of 7. Since each node
is in at most k different trees, and hence each back-step is amortized against at most k£ such green
path constructions, the amortized time per back step is O(knl/ k). Red pebbles can be used as
in the binary case to enable worst-case performance, increasing the total number of pebbles to at
most 3k. Similar techniques to the binary case can be used to reduce the number of pebbles to at

most k. Forward steps take O(1) each as before.

Figure 7: The knl/k-ary virtual pre-order tree, supporting k vs. kn'/k trade-off.

For the full trade-off in which the number of pebbles is O(knl/ k) and the time per back-step is
O(k), we use the same virtual tree of depth k. We place blue and green pebbles as before, but in
addition we place green pebbles at all left siblings of each node with a blue or green pebble. The

1/k times the number of pebbles in the previous case, that is at most

number of pebbles is at most n
2kn'/k. The amortized time per back-step here is O(k). Indeed, the same amortization argument
of the previous case applies here, except that constructions of green paths only involve forward
traversal of one sub-tree. Worst case performance is again obtained using red pebbles, and O(1)

time per forward step as well as reducing the number of pebbles is obtained as before.

22

6 Reversal of program execution

A unidirectional linked list can represent the execution of programs. Program states can be repre-
sented as nodes in a list, and a program step, or a sequence of steps, are represented by a directed
link between the nodes representing the appropriate program states. Since typically program states
cannot be easily reversed, the list is in general unidirectional.

Consider a linked list the represents a particular program. Moving from a node in the list back
to its preceding node is equivalent to reversing the step represented by the link. Executing a back
traversal on the linked list is hence equivalent to rolling back the program. Let the sequence of
program states in a forward execution be sg, s1,...,s7. A rollback of a program of some state s; is
changing its state to the preceding state s;_;. A rollback step from state s; is said to be the i’th
rollback step if state s; ;1 is the farthest state that the program has reached so far.

First, we show how to efficiently support back traversal with negligible overhead to forward steps
in programs for which the program states can be represented using a small amount of memory, S.
Note that S may be considerably smaller than the memory used by the program, and the size
required to encode the entire configuration state of the program. An application for such case
is described below in Section 6.2; additional applications are described in [6]. For simplicity, we
assume that two consecutive program states are separated by a sequence of £ program steps. The
following theorem follows directly from Theorem 4.5, by using the super-node approach with ¢
nodes in each super-node, and noting that a list step which leaves a state copy, involves copying
the state information in O(S) time.

Theorem 6.1 Let P be a program, whose state information can be represented using memory of
size S, and whose running time is at most T. Then, at the cost of recording the input used by
the program, and increasing the memory by an additive factor of O(S1g(T/f)), the program can
be extended to support arbitrary rollback steps as follows. The i’th rollback step takes O(S1gi + £)
time in the worst case, while forward steps take O(S) time in the worst case, and O(S/L) amortized
time per step.

Next, we show how to roll-back efficiently an arbitrary program, for which the state information
can be as large as the entire memory used by the program.

6.1 Program rollback with delta encoding

Program rollback techniques have important applications, including debuggers and backward simu-
lations. Traditional methods of supporting rollback are based on check-pointing particular program
states. However, it is customary to also utilize the fact that changes in a program state during a
single program step is substantially smaller than the size of the program state. Indeed, rather than
just recording program states, one can record the differences needed in program states in order
to convert them into their preceding states, often called delta-encoding. This results with better
memory utilization, at the cost of additional overhead per forward step.

23

A transition from a program state to the next state, either in a single step or through a sequence
of steps, may involve several instructions. A transition that takes ¢ instructions generates a delta
of size A = O(t). Hence, the time to record the delta at each step is proportional to the time of
the step itself. For simplicity, we assume that all program steps take the same time ¢{. Suppose
that the delta-encoding is smaller than the program state by a factor of ¢; that is, £ = S/t. Then,
after £ steps the accumulated size of delta-encoding is about the size of a single program state. The
rollback method of Theorem 6.1 can be enhanced with the delta-encoding method, by utilizing an
extension of the super-node technique described above. Each super-node consists of £ nodes in the
original list. Additionally, the last £ steps are fully kept using delta-encoding, adding at most the
size of a single program state.

Forward steps are implemented as before, except that the oldest step kept in delta-encoding is re-
moved, and the delta-encoding of the new step is added. The number of forward steps implemented
to support the i’th back-step is O(£1g(i/£)/£), which is O(lg(i/£)) in the worst case. By delaying
the maintenance of list traversal synopsis, each of the first £ back-steps can be implemented in O(1)
time, using the available delta-encoding. Still, for any ¢ > £, the sequence of 7 back-steps will take
O(ilg(i/¢)) in the worst case. The theorem below assumes that the information of the program
state is S = O(M), where M is the memory size of the program. Thus, it makes no assumption
about state encoding, and applies to any program. We denote the cost of a step to be the overhead
incurred over the cost of a single forward step.

Theorem 6.2 (Rollback Theorem) Let P be a program, using memory of size M and time T
Let A be the memory size of the delta-encoding in a single step, and £ be greater than M /A. Then,
at the cost of recording the input used by the program, and increasing the memory by a factor of
O(lg(T/2)) to O(M 1g(T/€) + LA), the program can be extended to support arbitrary rollback steps
as follows. The cost of the i’th back-step is O(lg(i/£)) in the worst case, while the time cost of each
forward step is O(1) in the worst case, and 1+ € amortized.

Note that for the selection of £ = M/A, the delta-encoding enables reduced cost for back, with a

constant increase in memory overhead.

6.2 Hash chains

Let h be a one-way cryptographic function. A hash chain for h is a sequence of hash values
Vg, V1, - - - , Un, Obtained by repeatedly applying h, starting with a secret random seed s. In particular,
vg = 8, and for all i > 0, v; = h(v;—1).

When the seed s is known, then the entire chain can be easily computed. However, for a party that
knows v; but does not know any v; for j < 4, the task of computing v; 1 is intractable. On the
other hand, having given v;_1, it can easily verify that v; = h(v;—1). Hash chains are attractive in
their abilities to provide a low-cost, long sequence of such verification steps, where each verification
involves a back step along the list representing the hash-chain. Thus, the application of a hash
chain is quite similar to a full program rollback, except that rather than keeping program states,
it is sufficient to keep hash values, along with the hash function.

24

Our list-traversal synopsis algorithm provides efficient processing of hash-chains. By keeping k hash
values, it enables to get each preceding hash value in O(kn'/¥) time in the worst case. By keeping
kn'/k hash values, the time per preceding hash value is O(k) in the worst case. As a particular
case, by keeping lgn hash values, the time to obtain a preceding hash value is O(lgn).

The cryptographic applications of hash chain include password authentication [11], micro-payments [16],
forward-secure signatures [8, 10], and broadcast authentication protocol [14]. Such applications and
others can benefit from efficient hash-chain processing, especially in memory-challenged platforms
such as smart-cards.

7 'Traversals of Trees and other graphs

We discuss implementations for other linked structures. For every structure (tree, dag, graph), a
(forward) traversal defines a linked list, which we call traversal list, from the starting point (“root”)
to the current position. This traversal list consists of the sequence of nodes in order of traversal
(possibly with repetitions in case of a general graph). A back-step from a node in the traversal list
is always defined as getting to the preceding node in the traversal list.

Since the back-step is always implemented by first going to a certain pebble and then moving
forward from the pebble, having in-degree larger than one has no affect on the algorithm. We
describe the traversal for directed trees. Extensions to general directed graphs is straightforward.

Assume that we are given a directed tree, in which edges are directed from nodes to their children.
A (forward) traversal on the tree is to move from a node to one of its children. A back-step from a
given node is moving to its parent. Without additional information, a back-step can only be done
by starting at the root and following the footsteps of the forward traversal (this can only be done
under certain assumption to be discussed later). This requires only 2 pebbles, but requires time
proportional to the depth of the current position.

Our objective is to support effective back-steps as well as back-queries, using small space. As for
the case of list, a trivial support for back traversal is to add a back edge for every edge. A more
effective approach is to add trailing back pointers as we go (that is, when positioned at node i we
have a back path from i to the root).

Our solution for a directed list extends quite naturally to a directed tree. We consider two types
of trees.

Ezplicit: When positioned at a node v, then given the identity of a node u that is a descendant of
v, it is possible to determine in constant time which of the children of u is an ancestor of v.
Implicit: Trees that are not explicit. When positioned at a node v, if v has r children, then lgr
bits can be used to identify each child in constant time (e.g., by taking the ranks in a lexicographic
order of their names).

Note that the trivial solution for (expensive) back-steps using only 2 pebbles only works for an
explicit tree. For an implicit tree, a simple correction of the algorithm is to maintain, for every
node along the path from the root to the current position, the identifying information regarding

25

which child should be traversed next. For a node v, the number of bits required for this identifying
information is R(v) = >2,, is an ancestor of v 1&@d(u), where d(u) is the number of children of u. For
a binary tree, R(v) is simply the depth of v.

Traversals of explicit trees.

As we traverse forward in the tree, we maintain a data structure corresponding to the list defined
by the traversal. Specifically, if p is the path from the root to the current position, then the current
data structure corresponds to a traversal along p. In the implementation of a back-step or of a
back query, when moving forward from a pebble the identity of the child to which we need to move
forward is determined by the property of explicit trees.

The only possible complication that one could anticipate is when having a sequence of back-steps,
followed by moving forward along a different path. For the implementation that guarantees lgn
cost per back-step, the data structure after returning to a node is similar to what it would be
when arriving at the node in the first time, except for possibly pebbles that were added during the
doubling phase, and are now redundant.

For the implementation that guarantees 1g ¢ cost for the i'th back-step, the situation is a bit subtler,
since the delay while backtracking should be accounted for. Fortunately, the delay only affects
pebbles that are quite close to the root, and are not affected by the backtrack sequence.

Traversals of implicit trees.

The algorithms for explicit trees works also for implicit trees, except that we need to resolve the
identity issue as discussed above. By maintaining this information, using R(v) additional bits when
positioned at node v, we can indeed implement the algorithm described for explicit trees.

Comment: Any hierarchical structure that identifies nodes by their logical path is typically of
explicit type. For instance: a file descriptor or a URL description. The “dot-dot” operation is in
fact going up a tree, and the explicit algorithm discussed above enables effective support of this
operation even for implementations that only use unidirectional links.

8 Conclusions

We presented efficient pebbling techniques, based on a novel virtual pre-order tree data structure,
that enable compact and efficient list traversal synopses. These synopses support effective back-
traversals on unidirectional lists, trees, and graphs with negligible slowdown in forward steps. In
addition to straightforward applications to arbitrary traversals on unidirectional linked structures,
we derive a general method for supporting efficient roll-back in arbitrary programs, with small
memory overhead and virtually no effect on their forward steps. Other applications include memory-
and time-efficient implementations of hash-chains, with full time-space trade-off.

In a recent work, the algorithms were implemented and tested, and their theoretical bounds were
shown to reflect their actual performance [6]. The implementation used the notion of the PSP
model as described in the introduction, having the same implementation of list traversal synopsis

26

Figure 8: The list traversal synopses in 9 steps of forward traversal from the beginning of the list
(left to right, top to bottom). Nodes in bold face are blue pebbled, and bold edges constitute the
blue paths. Fragmented nodes are green pebbled, and fragmented edges constitute green paths.

used for a variety of applications. An implemented case study of the program roll-back, based on
Theorem 6.1, can be found at http://infolab.cs.tau.ac.il/Pebbling/simulator.html.

Acknowledgment. We thank Martin Dietzfelbinger for helpful comments.

References

[1] A. M. Ben-Amram and H. Petersen. Backing up in singly linked lists. In ACM Symposium on
Theory of Computing, pages 780-786, 1999.

[2] M. A. Bender, A. Fernandez, D. Ron, A. Sahai, and S. P. Vadhan. The power of a pebble:
Exploring and mapping directed graphs. In ACM Symposium on Theory of Computing, pages
269-278, 1998.

[3] Y. C. Chung, S.-M. Moon, K. Ebcioglu, and D. Sahlin. Reducing sweep time for a nearly empty
heap. In 27th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM Press, 2000.

[4] D. Coppersmith and M. Jakobsson. Almost optimal hash sequence traversal. In Fifth Confer-
ence on Financial Cryptography, 2002.

[5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over sliding
windows. In Proc. of the 13th annual ACM-SIAM symposium on Discrete algorithms, pages
635-644, 2002.

M. Furman, Y. Matias, and E. Porat. The List Traversal Synopses (LTS) system, 2004.
Manuscript.

D. S. Hirschberg and S. S. Seiden. A bounded-space tree traversal algorithm. Information
Processing Letters, 47(4):215-219, 1993.

G. Itkis and L. Reyzin. Gene itkis and leonid reyzin and verifying. In CRYPTO, pages 332-354,
2001.

M. Jakobsson. Fractal hash sequence representation and traversal. In IEEE International
Symposium on Information Theory, 2002.

A. Kozlov and L. Reyzin. Forward-secure signatures with fast key update. In Third Conference
on Security in Communication Networks, pages 241-256, 2002.

L. Lamport. Password authentification with insecure communication. In Communications of
the ACM 24(11), pages 770-772, 1981.

Y. Matias and E. Porat. Efficient pebbling for list traversal synopses. Technical report, Tel
Aviv University, 2002.

Y. Matias and E. Porat. Efficient pebbling for list traversal synopses. In International Collo-
quium on Automata, Languages and Programming, pages 918-928, 2003.

A. Perrig. The biba one-time signature and broadcast authentication protocol. In ACM
Conference on Computer and Communications Security, pages 28-37, 2001.

N. Pippenger. Advances in pebbling. In International Colloguium on Automata, Languages
and Programming, pages 407-417, 1982.

R. L. Rivest and A. Shamir. Payword and micromint: Two simple micropayment schemes. In
Security Protocols Workshop, pages 69-87, 1996.

H. Schorr and W. M. Waite. An efficient machineindependent procedure for garbage collection
in various list structures. Communications of the ACM, 10(8):501-506, Aug. 1967.

Y. Sella. On the computation-storage trade-offs of hash chain traversal,. In Financial Cryp-
tography, 2003.

J. Sobel and D. P. Friedman. Recycling continuations. In ACM SIGPLAN International
Conference on Functional Programming, volume 34(1), pages 251-260, 1999.

D. Walker and J. G. Morrisett. Alias types for recursive data structures. In Types in Compi-
lation, pages 177-206, 2000.

28

