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1. INTRODUCTION

Most database management systems (DBMSs) maintain a variety of statistics on the con-
tents of the database relations in order to estimate various quantities, such as selectivities
within cost-based query optimizers. These statistics are typically used to approximate the
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distribution of data in the attributes of various database relations. It has been established
that the validity of the optimizer’s decisions may be critically affected by the quality of
these approximations [Christodoulakis 1984; Ioannidis and Christodoulakis 1991]. This
is becoming particularly evident in the context of increasingly complex queries (e.g., data
analysis queries).

The most common technique used in practice for selectivity estimation is maintaining
histograms on the frequency distribution of an attribute. A histogram groups attribute val-
ues into “buckets” (subsets) and approximates true attribute values and their frequencies
based on summary statistics maintained in each bucket [Kooi 1980]. For most real-world
databases, there exist histograms that produce low-error estimates while occupying reason-
ably small space (of the order of 1K bytes in a catalog) [Poosala 1997]. Histograms are
used in IBM DB2, Informix, Ingres, Oracle, Microsoft SQL Server, Sybase, and Teradata.
They are also being used in other areas, e.g., parallel join load balancing [Poosala and
Ioannidis 1996] to provide various estimates.

Histograms are usuallyprecomputed on the underlying data and used without much
additional overhead inside the query optimizer. A drawback of using precomputed his-
tograms is that they may get outdated when the data in the database is modified, and hence
introduce significant errors in estimations. On the other hand, it is clearly impractical to
compute a new histogram after every update to the database. Fortunately, it is not neces-
sary to keep the histograms perfectly up-to-date at all times, because they are used only
to providereasonably accurate estimates (typically within 1–10%). Instead, one needs
appropriate schedules and algorithms for propagating updates to histograms, so that the
database performance is not affected.

Despite the popularity of histograms, issues related to their maintenance have only re-
cently started receiving attention. Most of the work on histograms so far has focused
on proper bucketizations of values in order to enhance the accuracy of histograms, and as-
sumed that the database is not being modified. In our earlier work, we have introduced sev-
eral classes of histograms that offer high accuracy for various estimation problems [Poosala
et al. 1996]. We have also provided efficient sampling-based methods to construct various
histograms, but ignored the problem of maintaining histograms. In a more general con-
text, we can view histograms as materialized views, but they are different in two aspects.
First, during utilization, they are typically maintained in main memory, which implies
more constraints on space. Second, they need to be maintained only approximately, and
can therefore be considered ascached approximate materialized views. We are not aware
of any prior work on approximate materialized views.

The most common approach used to date for histogram updates, which is followed in
nearly all commercial systems, is to recompute histograms periodically (e.g., every night
or on demand). This approach has two disadvantages. First, any significant updates to the
data between two recomputations could cause poor estimations in the optimizer. Second,
recomputing a histogram from scratch by scanning the entire relation is computationally
expensive for large relations.

In this paper, we present fast and effective procedures for maintaining two histogram
classes used extensively in database management systems:equi-depth histograms (which
are used in most DBMSs) andCompressed histograms (used in DB2). There are three key
novel components to our approach:

(1) We introduce the notion of anapproximate histogram that is maintained in the pres-
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ence of database updates, and which provides bounds on its maximum deviation from the
true histogram.

(2) We develop a split and merge technique for quickly adjusting histogram buckets in
response to data updates.

(3) We introduce the notion of a “backing sample”, a random sample of the data that
is kept up-to-date in the presence of database updates. We demonstrate important advan-
tages gained by using a backing sample when updating histograms, and present algorithms
for its maintenance. We observe that the backing sample can be used in any application
that requires uniform random samples of the current data in the database. For example,
instead of dynamically computing samples at usage-time (which is a drawback of several
sampling-based techniques), one can precompute the samples and use our techniques to
maintain them efficiently1.

The main advantages of our techniques are as follows:

— Our approach leads to approximate histograms that are close to the actual histogram
belonging to the same class, with high probability, regardless of the data distribution.

— Our algorithms handle all forms of updates to the database (insert, delete, andmodify
operations). They are most efficient in insert-intensive environments or in data warehous-
ing environments that house transactional information for sliding time windows.

— Our algorithms process the sequence of database updates; they almost never access
the relation on disk (the only exception is when the size of the relation has shrunk dramat-
ically due to deleting, say, half the tuples). For most insert operations, our algorithms do
not access the backing sample. The sample nevertheless remains up to date at all times.

We conducted an extensive set of experiments studying our techniques and comparing
them with the traditional approaches based on recomputation. The experiments confirm
the theoretical findings and show that with a small amount of additional storage and CPU
resources, our techniques maintain histograms nearly up-to-date at all times.

Recent work. Since the completion of our work discussed in this paper, there have been
a number of important developments in the area of histogram maintenance and related
topics. First, there has been some commercial acceptance of using sampling to speed up
histogram recomputation. For example, when SQL Server recomputes a histogram, it first
extracts a random sample from the relation and then computes the histogram from the
sample (see [Chaudhuri et al. 1998]). Thus the extracted random sample serves the same
function as a backing sample, for the restricted purpose of computing a new histogram from
scratch. Sampling during recomputation has the advantage that there are no overheads
at database update time (versus the minimal overheads with backing samples). On the
other hand, as discussed in Section 3 and elsewhere in this paper, there are a number of
advantages to having a precomputed and maintained backing sample, and we exploit these
advantages in our algorithms.

Second, asplit and merge approach has been used to incrementally maintain histograms
in response to feedback from the query execution engine about the actual selectivities of
range queries [Aboulnaga and Chaudhuri 1999]. Such histograms are calledself-tuning

�If a sampling-based algorithm requires a sample that may be larger than what is maintained, as can be the case
for adaptive sampling [Lipton et al. 1990], then some ad-hoc sampling may be unavoidable.
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histograms, because they automatically adapt to changes in the database without looking
at the updates and without recomputing from the database. Instead, the actual selectivity of
the executed range query is compared with the histogram estimate of that selectivity, and
the histogram bucket counts are adjusted by spreading any discrepancy over the buckets
that lie within the query range. Buckets with large counts are split. Buckets of near-equal
frequencies are merged. Since a backing sample (or any equivalent means) is not used,
there are no bounds proved for the maximum deviation of a self-tuning histogram from the
true histogram. On the other hand, experimental results reported by Aboulnaga and Chaud-
huri [1999] showed the technique performs well for multi-dimensional data distributions
with low-to-moderate skew. More recently, Bruno et al. [2001] applied a similar feedback-
based technique to multi-dimensional histograms. A key feature of their approach is its
flexible partitioning of the multi-dimensional space into buckets. Unlike the techniques
presented in our paper, neither of these approaches use the contents of the data in a direct
manner.

Finally, there have been a number of recent papers on approximate histograms, their
maintenance, and their use in query result size estimation and in providing fast approximate
answers to queries (e.g., [Blohsfeld et al. 1999; Deshpande et al. 2001; Gilbert et al. 2002;
Gilbert et al. 2002; Greenwald and Khanna 2001; Gunopulos et al. 2000; Guha et al. 2001;
Ioannidis and Poosala 1999; Jagadish et al. 1998; Konig and Weikum 1999; Matias et al.
1998; 2000; Poosala and Ioannidis 1997]). Moreover, the notion of a backing sample has
been extended to the general notion of precomputed (and maintained) sampling-baseddata
synopses, which have been shown to be effective for providing fast approximate answers
to queries (c.f. [Acharya et al. 2000; Acharya et al. 1999; Chaudhuri et al. 2001; Ganti
et al. 2000; Gibbons 2001; Gibbons and Matias 1998]).

Outline of the paper. In Section 2, we discuss histograms, approximate histograms, and
histogram maintenance. Backing samples and their maintenance are described in Section 3.
Sections 4 and 5 present our algorithms for incremental maintenance of approximate equi-
depth histograms and Compressed histograms, respectively. Our experimental evaluation
is in Section 6, followed by conclusions in Section 7. A number of the proofs are left to
the appendix.

2. HISTOGRAMS AND THEIR MAINTENANCE

The domain � of an attribute� is the set of all possible values of� and thevalue set
� (� �) for a relation� is the set of values of� that are present in�. Let � � �� � �
� � � � ����, where�� � �� when� � � and ��� is the cardinality of the set� . The
frequency �� of �� is the number of tuples in� whose value for attribute� is � �. Thedata
distribution of� (in �) is the set of pairs� � ����� ���� ���� ���� � � � � ������ ������.

A histogram on attribute� is constructed by partitioning the data distribution� into 	
(� �) mutually disjoint subsets calledbuckets and approximating the values and frequen-
cies in each bucket in some common fashion. Typically, a bucket is assumed to contain
either all
 values in� between the smallest and largest values in that bucket (the bucket’s
range), or just� � 
 equi-distant values in the range, where� is the number of distinct
values in the bucket. The former is known as thecontinuous value assumption [Selinger
et al. 1979], and the latter is known as theuniform spread assumption [Poosala et al. 1996].
Let thebucket frequency �� be the number of tuples in� whose value for attribute� is in
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bucket�.2 The frequencies for values in a bucket� are approximated by their averages;
i.e., by either��

 or ��
�.

Differentclasses of histograms can be obtained by using different rules for partitioning
values into buckets. In this paper, we focus on two important classes of histograms, namely
theequi-depth andCompressed(V,F) (simply calledCompressed in this paper) classes. In
anequi-depth (or equi-height) histogram, contiguous ranges of attribute values are grouped
into buckets such that the number of tuples,��, in each bucket� is the same. In aCom-
pressed(V,F) histogram [Poosala et al. 1996], the� highest frequencies are stored sepa-
rately in� singleton buckets; the rest are partitioned as in an equi-depth histogram. In our
target Compressed histogram, the value of� adapts to the data distribution to ensure that no
singleton bucket can fit within an equi-depth bucket and yet no single value spans an equi-
depth bucket. We have shown in our earlier work [Poosala et al. 1996] that Compressed
histograms are very effective in approximating distributions of low or high skew.

Equi-depth histograms are used in one form or another in nearly all commercial systems,
except DB2 which uses the more accurate Compressed histograms.

Histogram storage and usage. For both equi-depth and Compressed histograms, we
store for each bucket� the largest value in the bucket,��maxval, and a count,��count,
that equals or approximates�� . If � is a singleton bucket, then its range is the single
value��maxval. Otherwise, its range is from the� ��maxval of its preceding bucket (or the
minimum value in the domain�, if � is the first bucket) to��maxval, excluding the value
of each singleton bucket within this range (if any).

When using the histograms to estimate range selectivities, we use the exact range in-
formation provided by singleton buckets and apply the continuous value assumption for
equi-depth buckets. For equi-depth buckets, the uniform-spread assumption could be used
instead, but it requires knowing the number of distinct values in each bucket, which is
challenging to maintain (even approximately) under updates both to the database and to
the histogram bucket boundaries.

2.1 Approximate histograms

An approximate class� histogram	� on an attribute� for a relation� is a histogram that
may deviate from the actual class� histogram	 as� is updated. This deviation occurs
because we cannot afford to recompute	 each time� is updated. As� is modified,	 �

may deviate from	 in two ways:

(1) Class Error: first, 	� may no longer be the correct class� histogram for�, e.g., it
may not have the same bucket boundaries as	.

(2) Distribution Error: second,	� may contain inaccurate information about� , e.g., it
may not have the same bucket counts as	.

The quality of an approximate histogram can be evaluated according to various error met-
rics defined based on the class and distribution errors.

�For any value� that is the right endpoint of ranges for� � * buckets,��� ����� � � � � ������, there is
ambiguity as to how to divide its frequency,�� , in the entire relation among���

� �����
� � � � � �����

. In this
paper, we select the following resolution to this ambiguity. If�� � +� � *,��	, we assign��	 of �� to each
bucket�� , 
 - � . *� � � � � � . � � *, with � for both endpoints, so that���

- ��	. The remainder of�� is
assigned to���

; none is assigned to�����
. If �� � +� � *,��	, we assign���

- *, �����
- /, and, for


 - �. *� � � � � �. � � *, ���
- +�� � *,�+� � *,.
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6 � Phillip B. Gibbons et al.

The �counterror metric. As an example, consider the following distribution error metric,
relevant to many histogram classes, which reflects the accuracy of the counts associated
with each bucket. When� is modified, but the histogram is not, then there may be buckets
� with ��count 
� ��; the difference between�� and��count is the approximation error
for �. We consider the error metric,�count, defined as follows:

�count�
	

�

���� �

	

��
���

����
����count�� � (1)

where� is the number of tuples in� and	 is the number of buckets. This is the stan-
dard deviation of the bucket counts from the actual number of elements in each bucket,
normalized with respect to the mean bucket count (�
	).

2.2 Incremental histogram maintenance

The approach followed for maintenance in nearly all commercial systems is to recompute
histograms periodically (e.g., every night), regardless of the number of updates performed
on the database. This approach has two disadvantages. First, any significant updates to the
data since the last recomputation could result in poor estimations by the optimizer. Second,
because the histograms are recomputed from scratch by discarding the old histograms, the
recomputation phase for the entire database can be computationally very intensive and may
have to be performed when the system is lightly loaded or off-line.3

Instead, we propose anincremental technique, which maintains approximate histograms
within specified errors bounds at all times with high probability and never accesses the
underlying relations for this purpose. There are two components to our incremental ap-
proach: (i) maintaining a backing sample, and (ii) a framework for maintaining an approx-
imate histogram that performs a few program instructions in response to each update to
the database,4 and detects when the histogram is in need of an adjustment of one or more
of its bucket boundaries. Such adjustments make use of the backing sample. There is a
fundamental distinction between the backing sample and the histogram it supports: the his-
togram is accessed far more frequently than the sample and uses less memory, and hence
it can be stored in main memory while the sample is likely stored on disk. Figure 1 shows
typical sizes of various entities relevant to our discussion.

Incremental histogram maintenance was previously studied in [Gibbons and Matias
1998], for the important case of a high-biased histogram, which is a Compressed his-
togram with	�� buckets devoted to the	�� most frequent values, and 1 bucket devoted
to all the remaining values. This algorithm did not use the approach described above —
for example, no backing sample was maintained or used.

In the next section, we describe how the backing sample is maintained in the context of
our approach.

�To help alleviate this latter problem, some commercial systems such as SQL Server recompute (approximate)
histograms by first sampling the data and then computing a histogram on the sampled data (as discussed in
Section 1).
�To further reduce the overhead of our approach, the few program instructions can be performed only for a
random sample of the database updates (as discussed in Section 6.2).
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       Main Memory (1GB)      RELATION (20GB)

BACKING SAMPLE
       (100KB)

  Disk (100 GB)

HISTOGRAM 
      (2KB)

Fig. 1. Typical sizes of various entities

3. BACKING SAMPLE

A backing sample is a uniform random sample of the tuples in a relation that is kept up-
to-date in the presence of updates to the relation. For each tuple, the sample contains the
unique row id and one or more attribute values.

We argue that maintaining a backing sample is useful for histogram computation, selec-
tivity estimation, etc. In most sampling-based estimation techniques, whenever a sample
of size� is needed, either the entire relation is scanned to extract the sample, or several
random disk blocks are read. In the latter case, the tuples in a disk block may be highly
correlated, and hence to obtain a truly random sample,� disk blocks must be read. In
contrast, a backing sample can be stored in consecutive disk blocks, and can therefore be
scanned by reading sequential disk blocks. Moreover, for each tuple in the sample, only
the unique row id and the attribute(s) of interest are retained. Thus the entire sample can be
stored in only a small number of disk blocks, for even faster retrieval. Finally, an indexing
structure for the sample can be created, maintained and stored; the index enables quick
access to sample values within any desired range.

At any given time, the backing sample for a relation� needs to be equivalent to a random
sample of the same size that would be extracted from� at that time. Thus the sample must
be updated to reflect any updates to�, but without the overheads of such costly extractions.
In this section, we present techniques for maintaining a provably random backing sample
of � based on the sequence of updates to�, while accessing� very infrequently (� is
accessed only when an update sequence deletes about half the tuples in�).

Let � be a backing sample maintained for a relation�. We first consider insertions to
�. Our technique for maintaining� as a simple random sample in the presence of inserts
is based on theReservoir Sampling techniques due to Vitter [Vitter 1985]. Typically, in
DBMSs, the reservoir sampling algorithm is used to obtain a sample of the data during a
single scan of the relation withouta priori knowledge about the number of tuples in the
relation. The particular version described here (called Algorithm X in Vitter’s paper), is
as follows: The algorithm proceeds by inserting the first� tuples into a “reservoir.” Then
a random number of records are skipped, and the next tuple replaces a randomly selected
tuple in the reservoir. Another random number of records are then skipped, and so forth,
until the last record has been scanned. The distribution function of the length of each
random skip depends explicitly on the number of tuples scanned so far, and is chosen such
that each tuple in the relation is equally likely to be in the reservoir after the last tuple has
been scanned. By treating the tuple being inserted in the relation as the next tuple in the
scan of the relation, we essentially obtain a sample of the data in the presence of insertions.

ACM Transactions on Database Systems, Vol. V, No. N, Month 2002.
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Extensions to handle modify and delete operations. We extend Vitter’s algorithm to han-
dle modify and delete operations, as follows. Modify operations are handled by updating
the value field, if the tuple is in the sample. Delete operations are handled by removing the
tuple from the sample, if it is in the sample. However, such deletions decrease the size of
the sample from the target size�, and moreover, it is not known how to use subsequent in-
sertions to obtain a provably random sample of size� once the sample has dropped below
�. Instead, we maintain a sample whose size is initially a prespecified upper bound� , and
allow for it to decrease as a result of deletions of sample items down to a prespecified lower
bound�. If the sample size drops below�, we rescan the relation to re-populate the ran-
dom sample. In the appendix, we show that such rescans are expected to be infrequent for
large relations, and moreover, for databases with infrequent deletions, no such rescans are
expected. Even in the worst case where deletions are frequent, the cost of any rescans can
be amortized against the cost of the (expected) large number of deletions required before a
rescan becomes necessary.

Our algorithm, denotedMaintainBackingSample, is depicted in Figure 2. For each
tuple selected for the backing sample�, we store its (unique) row id and the value(s) of
all attribute(s) of interest to any applications that will use the backing sample (e.g., for
histograms, we store the value of the attribute on which the histogram is to be computed).
For simplicity, we have shown in this figure only the case of a single attribute,� , of
interest, and we have not shown any of the performance optimizations described below.
The algorithm maintains the property that� is a uniform random sample of a relation�
such that�������� �� � ��� � � .

THEOREM 3.1. Algorithm MaintainBackingSample maintains a uniform random sam-
ple of relation �.

The proof appears in the appendix.

Optimizations. There are several techniques that can be applied to lower the overheads
of the algorithm. First, a hash table of the row ids of the tuples in� can be used to
speed up the test of whether or not an id is in�. Second, if the primary source of delete
operations is to delete from� all tuples before a certain date, as in the case of many data
warehousing environments that maintain a sliding window of the most recent transactional
data on disk, then such deletes can be processed in one step by simply removing all tuples
in � that are before the target date. Third, and perhaps most importantly, we observe that
the algorithm maintains a random sample independent of the order of the updates to the
database. Thus we can “rearrange” the order to suit our needs, until an up-to-date sample
is required by the application using the sample. We can use lazy processing of modify and
delete operations, whereby such operations are simply placed in a buffer to be processed
as a batch whenever the buffer becomes full or an up-to-date sample is needed. Likewise,
we can postpone the processing of modify and delete operations until the next insert that
is selected for�. Specifically, instead of flipping a biased coin for each insert, we select
a random number of inserts to skip, according to the criterion of Vitter’s Algorithm�
(this criterion is statistically equivalent to flipping the biased coin each insert). At that
insert, we first process all modify and delete operations that have occurred since the last
selected insert, then we have the new insert replace a randomly selected tuple in�. Another
random number of inserts are then skipped, and so forth. Note that postponing the modify
and delete operations is important, since it reduces the problem to the insert-only case, and
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MaintainBackingSample()

// � is the backing sample,� is the relation,
 is the attribute of interest.
// � and� are prespecified lower and upper bounds for the size of the sample.

After an insert of a tuple � with ���� - �� and ��
 - � into �:
if ���. * - ��� � � then

� := � . �+��� �,�;
else with probability������� do begin

select a tuple+���� ��, in � uniformly at random;
� := � . �+��� �,� � �+���� ��,�;

end;

After a modify to a tuple � with ���� - �� in �:
if the modify changes��
 then do begin

if �� is in � then
update the value field for tuple�� in �;

end;

After a delete of a tuple � with ���� - �� from �:
if �� is in � then do begin

remove the tuple�� from�;

// This next conditional is expected to be true only when a constant
// fraction of the database updates are delete operations.
if ��� � �	�+���� �, then do begin

// Discard� and rescan� to compute a new�.
� := �;
rescan�, and for each tuple, apply the above procedure for inserts into�;

end;
end;

Fig. 2. An algorithm for maintaining a backing sample of a relation under updates to the database

hence the criterion of Algorithm� can be applied to determine how many inserts to skip.
With these optimizations, insert and modify operations to attributes not of interest are

processed with minimal overhead, whereas delete and modify operations to attributes of
interest may require larger overhead (due to the batch processing of testing whether the id
is in the sample). Thus the algorithm is best suited for insert-mostly databases or for the
data warehousing environments discussed above.

4. FAST MAINTENANCE OF APPROXIMATE EQUI-DEPTH HISTOGRAMS

In this section, we demonstrate our approach for incremental histogram maintenance by
considering a specific, important histogram: the equi-depth histogram. First, we present an
algorithm for maintaining an approximate equi-depth histogram in the presence of inser-
tions to the database; this algorithm has provable guarantees on its accuracy. Next, we show
how heuristics can be used to modify the algorithm in order to minimize the overheads. Fi-
nally, we show how to extend both algorithms to handle modify and delete operations to
the database. We assume throughout that a backing sample,�, is being maintained using
the algorithm of Figure 2.

The standard algorithm for constructing an (exact) equi-depth histogram first sorts the
tuples in the relation by attribute value, and then selects tuples
� ��
	�, for � � �� � � � � 	.
However, for large relations, this algorithm is quite slow because the sorting may involve
multiple I/O scans of the relation.
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EquiDepthSampleCompute();

// � is the sample to be used to compute the histogram, sorted on the attribute value
.
// � is the total number of tuples in�.
// 	 is the desired number of buckets.

For � := * to 	 do begin
� := the	� 
 ����	�’th tuple in�;
���maxval :=��
;
���count :=	� 
��	� � 	+�� *, 
��	�;

end;

return+
�
��� ��� � � � � ��

�
,

Fig. 3. Procedure for computing an approximate equi-depth histogram from a random sample

An approximate equi-depth histogram approximates the exact histogram by relaxing the
requirement on the number of tuples in a bucket and/or the accuracy of the counts. Such
histograms can be evaluated based on how close the buckets are to�
	 tuples and how
close the counts are to the actual number of tuples in their respective buckets.

A class error metric for equi-depth histograms. Consider an approximate equi-depth
histogram with	 buckets for a relation of� tuples. We consider an error metric,� ed, that
reflects the extent to which the histogram’s bucket boundaries succeed in evenly dividing
the tuples in the relation:

�ed �
	

�

���� �

	

��
���

�
���

� �
	

��

� (2)

This is the standard deviation of the buckets’ sizes from the mean bucket size, normalized
with respect to the mean bucket size.

Computing approximate equi-depth histograms from a random sample. Given a random
sample, an approximate equi-depth histogram can be computed by constructing an equi-
depth histogram on the sample but setting the bucket counts to be�
	 ([Poosala et al.
1996]). This algorithm, denotedEquiDepthSampleCompute, is depicted in Figure 3.

Section 4.1 presents an incremental algorithm that occasionally uses EquiDepthSample-
Compute. The accuracy of the approximate histogram maintained by the incremental al-
gorithm depends on the accuracy resulting from this procedure, which is stated in the
following theorem5. The statement of the theorem is in terms of a sample size
. To
ensure such a sample size for the backing sample we maintain, we set� to be at least
 in
MaintainBackingSample.

THEOREM 4.1. Let 	 � �. Let 
 � �� 	�� 	�	, for some � � 
. Let � be a random
sample of size 
 of values drawn uniformly from a set of size � � 
�, either with or
without replacement. Let � � �� 	�� 	�����. Then EquiDepthSampleCompute computes
an approximate equi-depth histogram such that with probability at least � � 	 ��

�
���� �

�����, �ed � �count� �.

�Even though the computation of approximate histograms from a random sample of a fixed relation� has been
considered in the past, we are not aware of a similar analysis.
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EquiDepthSimple()

// � is the relation,
 is the attribute of interest.
// � is the ordered set of	 buckets in the current histogram.
// � is the current upper bound threshold on a bucket count.
// � � �* is a tunable performance parameter.

After an insert of a tuple � with ��
 - � into �:
Determine the bucket� 
 � whose interval contains�;
��count :=��count. *;

if ��count- � then do begin
� := EquiDepthSampleCompute(); // (See Figure 3).
� := �+0 . �, 
 ����	�;

end;

Fig. 4. An algorithm for maintaining an approximate equi-depth histogram under insertions to the database

The proof is given in the appendix.

4.1 Maintaining equi-depth histograms using a backing sample

Given our backing sample, we can compute an approximate equi-depth histogram at any
time, using EquiDepthSampleCompute. To maintain approximate histograms in the pres-
ence of database updates, one could invoke this procedure whenever the backing sample is
modified. However, the overheads of this approach may be too large, and we would like
instead to have a procedure that can maintain the histogram while only occasionally going
to the backing sample to perform a full recomputation.

To this end, we devise an algorithm that monitors the accuracy of the histogram, and
performs (partial) recomputation only when the approximation error exceeds a prespecified
tolerance parameter. Figure 4 depicts the new algorithm, denotedEquiDepthSimple.

The algorithm proceeds in a series of phases. At each phase we maintain a threshold
� � ��� � ��� �
	�, where� � is the number of tuples in the relation� at the beginning
of the phase, and� � �� is a tunable performance parameter. The threshold is set at the
beginning of each phase. The number of tuples in any given bucket is maintained below
the threshold� . (Recall that the ideal target number for a bucket size would be���
	.) As
new tuples are added to the relation, we increment the counts of the appropriate buckets.
When a count exceeds the threshold� , the entire equi-depth histogram is recomputed from
the backing sample using EquiDepthSampleCompute, and a new phase is started.

Performance analysis. We first consider the accuracy of the above algorithm, and show
that with very high probability it is guaranteed to be a good approximation for the equi-
depth histogram. The following theorem shows that the error parameter� count remains
unchanged, whereas the error parameter�ed may grow by an additive factor of at most
��� ��, the tolerance parameter. The statement of the theorem is in terms of a sample size

.

THEOREM 4.2. Let 	 � �. Let
 � �� 	�� 	�	, for some � � 
. Consider EquiDepth-
Simple applied to a sequence of � � 
� inserts of tuples into an initially empty re-
lation. Let � be a random sample of size 
 of tuples drawn uniformly from the re-
lation, either with or without replacement. Let � � �� 	�� 	�����. Then EquiDepth-
Simple computes an approximate equi-depth histogram such that with probability at least
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Fig. 5. Split and merge operation during equi-depth histogram maintenance

�� 	��
�
���� � ��
�� � �������, �ed � �� �� � �� and �count� �.

The proof appears in the appendix.
We now consider the performance of the algorithm in terms of its computational over-

head. Consider the cost of the calls to EquiDepthSimple. It is dominated by the cost of
reading from disk a relation of size���, in order to extract the	 sample quantiles. This
procedure is called at the beginning of each phase. It is easy to see that if the relation
size is� at the beginning of the phase, then the number of insertions before the phase
ends is at least�� � ���
	. Also the relation size at the end of the phase is at least
�� � �� � ��
	�� . These observations can be used to prove the following lemma, which
bounds the total number of calls to EquiDepthSampleCompute as a function of the final
relation size and the tolerance parameter�.

LEMMA 4.3. Let � � �� ��� ��
	. If a total of� tuples are inserted in all, then the
number of calls to EquiDepthSampleCompute is at most ����	
������.

4.2 The split&merge algorithm

In this section we modify the previous algorithm in order to reduce the number of re-
computations from the sample, by trying to balance the buckets using a local, inexpensive
procedure, before resorting to EquiDepthSampleCompute. When a bucket count reaches
the threshold,� , we split the bucket in half instead of recomputing the entire histogram
from the backing sample. In order to maintain the number of buckets,	, fixed, we merge
two adjacent buckets whose total count does not exceed� , if such a pair of buckets can
be found. Only when a merge is not possible do we recompute from the backing sam-
ple. As before, we define aphase to be the sequence of operations between consecutive
recomputations. Figure 6 depicts our new algorithm, denotedEquiDepthSplitMerge.

The operation of merging two adjacent buckets is quite simple; it merely involves adding
the counts of the two buckets and disposing of the boundary (quantile) between them. The
splitting of a bucket is less straightforward; an approximate median value in the bucket is
selected to serve as the bucket boundary between the two new buckets, using the backing
sample. In particular, we select the median value among all tuples in the backing sample
that fall within the bucket being split. To minimize disk accesses when determining the
median value in a bucket, we keep the backing sample organized on disk according to
histogram bucket. (Note that we visit the backing sample each time we split or merge, so
we can readily maintain this organization). The split and merge operation is illustrated in
Figure 5. Note that split and merge can occur only for� � �.
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EquiDepthSplitMerge()

// � is the relation,
 is the attribute of interest.
// � is the ordered set of	 buckets in the current histogram.
// � is the current threshold for splitting a bucket.
// � � �* is a tunable performance parameter.

After an insert of a tuple � with ��
 - � into �:
Determine the bucket� 
 � whose interval contains�;
��count :=��count. *;

if ��count- � then do begin
if � buckets�� and���� such that���count.�����count� � then do begin

// Merge buckets�� and����.
�����count :=���count.�����count;

// Split bucket� using the backing sample; use�� for the first half of�’s tuples.
� := median value among all tuples in� associated with bucket�.
���maxval :=�;
���count :=	��0�;
��count :=���0�;
Reshuffle equi-depth buckets in� back into sorted order;

end;

else do begin
// No buckets suitable for merging, so recompute the histogram from�.
� := EquiDepthSampleCompute(); // (See Figure 3).
� := �+0 . �, 
 ����	�;

end;
end;

Fig. 6. The Split&Merge algorithm for maintaining an approximate equi-depth histogram under insertions

The tolerance parameter� determines how often a recomputation from the backing sam-
ple occurs. Consider the extreme case of� � ��. Here EquiDepthSplitMerge recomputes
the histogram with each database update, i.e., there are������ phases. Consider the other
extreme, of setting� � ���. Then the algorithm simply sticks to the original buckets, and
is therefore equivalent to the trivial algorithm which does not employ any balancing oper-
ation. Thus, the setting of the performance parameter� gives a spectrum of algorithms,
from the most efficient one which provides very poor accuracy performance, to the rela-
tively accurate algorithm which has a rather poor efficiency performance. By selecting a
suitable intermediate value for�, we can obtain an algorithm with good performance, both
in accuracy as well as in efficiency. For instance, setting� � �will result with an algorithm
whose imbalance factor is bounded by about 3 (since each phase begins with roughly���
	
tuples per bucket, by Theorem 4.2, and the threshold� for splitting a bucket is 3 times that
number), and the number of phases is��	
��� (as will be shown in Theorem 4.6 below).

The following lemma establishes a bound on the number of splits in a phase, as a func-
tion of �. We prove it for the range� � �, in which we are particularly interested.

LEMMA 4.4. Let � � �. The number of splits that occur in a phase is at most 	.

PROOF. Let a bucket be denoted asintact if it was involved in neither a bucket split
nor a bucket merge since the beginning of a phase. We claim that at every merge of two
adjacent buckets, at least one of these buckets must be intact. Indeed, note that a bucket
that has participated in a bucket split has a count of at least�
�. Further, note that a bucket
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Fig. 7. Merge and split operation during equi-depth histogram maintenance

that has participated in a bucket merge has a count of at least� � �
�� � �� � �
�, since
the bucket counts at the beginning of the phase were�
�� � ��, and� � �. The claim
follows from the observation that at least one of the merging buckets must have a count
smaller than�
�.

The claim implies that for every bucket merge, the number of intact buckets decreases
by at least one, and hence the total number of possible bucket merges in a phase is at most
	. The lemma now follows since each bucket split occurs after a bucket merge.

The number of phases is bounded as follows:

LEMMA 4.5. Let � � � � �
� if � � �, and otherwise let � � � � �� � ��
	. If a
total of� tuples are inserted in all, then the number of calls to EquiDepthSampleCompute
is at most ����	
������.

The proof appears in the appendix.
We can now conclude:

THEOREM 4.6. Consider EquiDepthSplitMerge with 	 buckets and performance pa-
rameter �� � � � � applied to a sequence of � inserts. Then the total number of phases
is at most 	
��� , and the total number of splits is at most 	 	
��� , where � � � � �
�
if � � �, and otherwise � � � � �� � ��
	.

4.3 Extensions to handle modify and delete operations

Consider first the EquiDepthSimple algorithm. To handle deletions to the database, we
extend it as follows. Deletions can decrease the number of elements in a bucket relative
to other buckets, so we use an additional threshold,� �, that serves as a lower bound on
the count in a bucket. At the start of each phase, we set�� � 
���
�	�� � �����, where
�� � �� is a tunable parameter. We also set� as before. Consider a deletion of a tuple�
with ��� � � from�. Let� be the bucket in the histogram	 whose interval contains�.
We decrement��count, and if now��count� �� then we recompute	 from the backing
sample, and update both� and��.

For modify operations, we observe that if the modify does not change the value of at-
tribute� , or if it changes the value of� such that the old value is in the same bucket as
the new value, then	 remains unchanged. Else, we update	 by treating the modify as a
delete followed by an insert.

Note that the presence of delete and modify operations does not affect the accuracy of
the histogram computed from the backing sample. Moreover, the upper and lower thresh-
olds control the imbalance among buckets during a phase, so the histograms remain quite
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accurate. On the other hand, the number of phases can be quite large in the worst case. By
repeatedly inserting items into the same bucket until� is reached, and then deleting these
same items, we can force the algorithm to perform many recomputations from the backing
sample. However, if the sequence of updates to a relation� is such that��� increases at a
steady rate, then the number of recomputes can be bounded by a constant factor times the
bound given in Lemma 4.3, where the constant depends on the rate of increase.

Now consider the EquiDepthSplitMerge algorithm. The extensions to handle delete
operations are identical to those outlined above, with the following additions to handle the
split and merge operations, as illustrated in Figure 7. If��count� � �, we merge� with
one of its adjacent buckets and then split the bucket� � with the largest count, as long as
���count� ���� � ��. (Note that�� might be the newly merged bucket.) If no such� �

exists, then we recompute	 from the backing sample. Modify operations are handled as
outlined above.

Figure 8 depicts the full split&merge algorithm, denotedEquiDepthSplitMerge2, for
maintaining an approximate equi-depth histogram under insert, delete, and modify opera-
tions.

5. FAST MAINTENANCE OF APPROXIMATE COMPRESSED HISTOGRAMS

In this section, we consider another important histogram type, theCompressed(�� � ) his-
togram. We first present a “split&merge” algorithm for maintaining a Compressed his-
togram in the presence of database insertions, and then show how to extend the algorithm
to handle database modify and delete operations. To simplify the presentation, we will
omit any explicit rounding of quotients to the next smaller or larger integer. We assume
throughout that a backing sample,�, is being maintained using MaintainBackingSample.

Definitions. Consider a relation of (a priori unknown) size� . In an equi-depth his-
togram, values with high frequencies can span a number of buckets; this is a waste of
buckets since the sequence of spanned buckets for a value can be replaced with a single
bucket with a single count. A Compressed histogram has a set of such singleton buckets
and an equi-depth histogram over values not in singleton buckets. Our target Compressed
histogram with	 buckets has	 � equi-depth buckets and	 � 	 � singleton “high-biased”
buckets, where� � 	 � � 	, such that the following requirements hold: (R1) each equi-
depth bucket has� �
	� tuples, where� � is the total number of tuples in equi-depth buck-
ets, (R2) no single value “spans” an equi-depth bucket, i.e., the set of bucket boundaries are
distinct, and conversely, (R3) the value in each singleton bucket has frequency� � �
	�.
Associated with each bucket� is a maximum value��maxval (either the singleton value
or the bucket boundary) and a count,��count.

An approximate Compressed histogram approximates the exact histogram by relaxing
one or more of the three requirements above and/or the accuracy of the counts.

Class error metrics. Consider an approximate Compressed histogram	 with equi-
depth buckets��� � � � � ��� and singleton buckets������ � � � � ��. Recall that�� is defined
to be the number of tuples in a bucket�. Let� � be the number of tuples in equi-depth

buckets, i.e.,� � �
���

��� ���
. We define two class error metrics,�ed and�hb (�ed is as
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EquiDepthSplitMerge2()

// � is the relation,
 is the attribute of interest.
// � is the ordered set of	 buckets in the current histogram.
// � (��) is the current upper bound (lower bound, resp.) threshold on a bucket count.
// � � �* and�� � �* are tunable performance parameters.

After an insert of a tuple � with ��
 - � into �:
Determine the bucket� 
 � whose interval contains�; ��count :=��count. *;

if ��count- � then do begin
if � buckets�� and���� such that���count. �����count� � then do begin

�����count :=���count. �����count; // Merge buckets�� and����.
� := median value among all tuples in� associated with bucket�. // Split bucket�.
���maxval :=�; ���count :=	��0�; ��count :=���0�;
Reshuffle equi-depth buckets in� back into sorted order;

end;

else do begin // No buckets suitable for merging, so recompute� from �.
� := EquiDepthSampleCompute(); // (See Figure 3).
� := �+0 . �, 
 ����	�; �� := 	+����	,�+0 . ��,�;

end;
end;

After a modify of a tuple � in �, with ��
 - � before the modify and ��
 - �� after the modify:
if � �- �� then do begin

Determine the buckets for� and��;
If � and�� belong to different buckets then do begin

Apply the procedure below for deleting� with ��
 - � from�;
Apply the procedure above for inserting� with ��
 - �� into�;

end;
end;

After a delete of a tuple � with ��
 - � from �:
Determine the bucket� 
 � whose interval contains�; ��count :=��count� *;

if ��count- �� then do begin // Merge bucket� with one of its adjacent buckets.
�� := an adjacent bucket to�;
���maxval :=���+��maxval� ���maxval,; ���count :=��count. ���count;

�� := a bucket such that�
 ' ���count� �� �count;
if ���count� 0+�� . *, then do begin // Split bucket��.

� := median value among all tuples in� associated with bucket��.
��maxval :=�; ��count :=	���count�0�; ���count :=����count�0�;
Reshuffle equi-depth buckets in� back into sorted order;

end;

else do begin // No bucket suitable for splitting, so recompute� from �.
� := EquiDepthSampleCompute(); // (See Figure 3).
� := �+0 . �, 
 ����	�; �� := 	+����	,�+0 . ��,�;

end;
end;

Fig. 8. The Split&Merge algorithm for maintaining an approximate equi-depth histogram under updates
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CompressedSampleCompute();

// � is the random sample of� used to compute the histogram.
// 	 is the desired number of buckets.

// Compute the scaling factor for the bucket counts, and initialize	� and��.
� := �������; 	� := 	; �� := ���;

For each value� in � compute��� , the frequency of� in �;
Let ��� ��� � � � � ���� be the	 � * most frequent values in nonincreasing order.

For � := * to 	 � * while ���� � ���	� do begin

// Create a singleton bucket for��.
��� �maxval :=��; ��� �count :=� 
 ��� ;
�� := �� � ��� ; 	� = 	� - 1;

end;

Let �� be the tuples in� whose values are not in singleton buckets, sorted by value;

// Create	� equi-depth buckets from��.
For � := * to 	� do begin

� := the value of tuple� 
���	� in ��;
���maxval :=�; ���count :=� 
���	�;

end;

return+
�
��� ��� � � � � ��

�
� � 
��� 	�,;

Fig. 9. Procedure for computing an approximate Compressed histogram from a random sample

defined in Section 4 but applied only to the equi-depth buckets):

�ed �
	�

� �

���� �

	�

���
���

�
���

� �
�

	�

��

(3)

�hb �
	�

� �
�
��	

				�� � � �

	�

				 (4)

where� is the set of values that violate requirement (R2) or (R3). This metric penalizes for
mistakes in the choice of high-biased buckets in proportion to how much the true frequen-
cies deviate from the target threshold,� �
	�, normalized with respect to this threshold.

Computing approximate Compressed histograms from a random sample. Given a ran-
dom sample, an approximate Compressed histogram can be computed by constructing a
Compressed histogram on the sample but scaling the bucket counts by the scaling factor
���
���. This algorithm, denotedCompressedSampleCompute, is depicted in Figure 9.
This is a new algorithm for computing an approximate version of our target Compressed
histogram, and can be used as well to compute our exact target Compressed histogram by
taking� to be all of�.

Note that if the counts in the sample� accurately reflect the counts in the set�, then
the condition���� � 
�
	� of the first loop addresses Requirement (R3). The size of the
error�hb will depend on how accurately� ��� represents��� , as well as the magnitude of
the residual sample size
�. The latter is the number of items left in the sample after
removing all copies of items�� , � � �. The accuracy directly depends on
 �
	�, and
for good accuracy we should aim at having
 �
	� � �, for a suitable choice of�. For
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example,� � � ensures good accuracy with reasonably high confidence. Problems arise
with highly skewed data. For example, if a single value were sufficiently popular such that
all the remaining values together were only a fraction� � �

� of the entire relation, and the
backing sample size was such that��� � ��	� ��
�, then after the first iteration, we have


�

	�
�


�

	 � �
� ����
	 � �

� � �

This implies that having a backing sample that is sufficiently large to satisfy Requirement
(R3) for highly-skewed data will be very wasteful for more uniform data.

A possible solution is to replace the random sample with aconcise sample, as defined
in [Gibbons and Matias 1998]. A concise sample represents multiple sample items hav-
ing the same value� as a single pair��� �����, where���� is the number of sample items
with value� (tuple IDs are not retained). Thus each value in the sample uses only con-
stant space, regardless of its popularity. This enables a larger uniform sample to be stored
within the given space bound, and in particular, the frequency� ��� in a concise sample is
essentially indifferent to the popularity of other values� � , � 
� �. As a result we can set the
space bound for� such that� will be sufficient but not wasteful across all distributions,
regardless of skew.

5.1 A split&merge algorithm for Compressed histograms

In this section, we show how the approach in EquiDepthSplitMerge can be extended to
handle Compressed histograms.

On an insertion of a tuple with value� into the relation, the (singleton or equi-depth)
bucket,�, for � is determined, and the count is incremented. If� is an equi-depth bucket,
then as in EquiDepthSplitMerge, we check to see if its count now equals the threshold� for
splitting a bucket, and if it does, we update the bucket boundaries. The steps for updating
the Compressed histogram are similar to those in EquiDepthSplitMerge, but must address
several additional concerns:

(1) New values added to the relation may be skewed, so that values that did not warrant
singleton buckets before may now belong in singleton buckets.

(2) The threshold for singleton buckets grows with� �, the number of tuples in equi-depth
buckets. Thus values rightfully in singleton buckets for smaller� � may no longer
belong in singleton buckets as� � increases.

(3) Because of concerns 1 and 2 above, the number of equi-depth buckets,	 �, grows and
shrinks, and hence we must adjust the equi-depth buckets accordingly.

(4) Likewise, the number of tuples in equi-depth buckets grows and shrinks dramatically
as sets of tuples are removed from and added to singleton buckets. The ideal is to
maintain� �
	� tuples per equi-depth bucket, but both� � and	� are growing and
shrinking.

Briefly and informally, our algorithm addresses each of these four concerns as follows. To
address concern 1, we use the fact that a large number of updates to the same value� will
suitably increase the count of the equi-depth bucket containing� so as to cause a bucket
split. Whenever a bucket is split, if doing so creates adjacent bucket boundaries with the
same value�, then we know to create a new singleton bucket for�. To address concern 2,
we allow singleton buckets with relatively small counts to be merged back into the equi-
depth buckets. As for concerns 3 and 4, we use our procedures for splitting and merging
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buckets to grow and shrink the number of buckets, while maintaining approximate equi-
depth buckets, until we recompute the histogram. The imbalance between the equi-depth
buckets is controlled by the thresholds� and�� (which depend on the tunable performance
parameters� and��, as in EquiDepthSplitMerge). When we convert an equi-depth bucket
into a singleton bucket or vice-versa, we ensure that at the time, the bucket is within a con-
stant factor of the average number of tuples in an equi-depth bucket (sometimes additional
splits and merges are required). Thus the average is roughly maintained as such equi-depth
buckets are added or subtracted.

Figure 10 depicts the new algorithm, denotedCompressedSplitMerge.
The requirements for when a bucket can be split or when two buckets can be merged

are more involved than in EquiDepthSplitMerge: A bucket� is a candidate split bucket
if it is an equi-depth bucket with��count� ���� � �� or a singleton bucket such that
�
�� � �� � ��count� ���� � ��. A pair of buckets,�� and�� , is acandidate merge
pair if (1) either they are adjacent equi-depth buckets or they are a singleton bucket and the
equi-depth bucket in which its singleton value belongs, and (2)� ��count��� �count� � .
When there are more than one candidate split bucket (candidate merge pair), the algorithm
selects the one with the largest (smallest combined, resp.) bucket count.

LEMMA 5.1. Algorithm CompressedSplitMerge maintains the following invariants. (1)
For all buckets �, ��count� ��. (2) For all equi-depth buckets �, ��count� � . (3) All
bucket boundaries (��maxval) are distinct. (4) Any value � belongs to either one singleton
bucket, one equi-depth bucket or two adjacent equi-depth buckets (in the latter case, any
subsequent inserts or deletes are targeted to the first of the two adjacent buckets).

Thus the set of equi-depth buckets have counts that are within a factor of�
� � � �� �
���� � ���, which is a small constant independent of���.

5.2 Extensions to handle modify and delete operations

We now discuss how to extend CompressedSplitMerge to handle deletions to the database.
Deletions can decrease the number of tuples in a bucket relative to other buckets, resulting
in a singleton bucket that should be converted to an equi-depth bucket or vice-versa. A
deletion can also drop a bucket count to the lower threshold� �.

Consider a deletion of a tuple� with ��� � � from �. Let � be the bucket in the
histogram	 whose interval contains�. We decrement��count, and if��count� � �, we
do the following. If� is part of some candidate merge pair, we merge the pair with the
smallest combined count and then split the candidate split bucket� � with the largest count.
(Note that�� might be the newly merged bucket.) If no such� � exists, then we recompute
	 from the backing sample. Likewise, if� is not part of some candidate merge pair, we
recompute	 from the backing sample. As in the insertion-only case, the conversion of
buckets from singleton to equi-depth and vice-versa is primarily handled by detecting the
need for such conversions when splitting or merging buckets.

For modify operations, we observe as before that if the modify does not change the value
of attribute� , or it changes the value of� such that the old value is in the same bucket as
the new value, then	 remains unchanged. Else, we update	 by treating the modify as a
delete followed by an insert.

The invariants in Lemma 5.1 hold for the version of the algorithm that incorporates these
extensions for modify and delete operations.
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CompressedSplitMerge()

// � is the relation,� is the attribute of interest,� is the backing sample.
// � is the set of	� � * equi-depth buckets (sorted by value) and
// 	 � 	� singleton buckets in the current histogram.
// � is the current threshold for splitting an equi-depth bucket.
// �� is the current threshold for merging a bucket.
// � � �* and�� � �* are tunable performance parameters.

After an insert of a tuple � with ��� - � into �:
Determine the bucket� 
 � for �;
��count :=��count. *;

if � is an equi-depth bucket and��count- � then
SplitBucket(�);

SplitBucket(�) // This procedure either splits� or recomputes� from�.

� := median value among all tuples in� associated with bucket�.
Let�� be the bucket preceding� among the equi-depth buckets.

if � �- ���maxval and� �- ��maxval then
if � buckets�� and�� that are a candidate merge pair then do begin

�� �count :=���count. �� �count; // Merge�� into�� .
���maxval :=�; ���count :=��0; ��count :=��0; // Split�.

end;
else do begin // No suitable merge pair, so recompute� from �.

+�� 1� �� 	�, := CompressedSampleCompute(); // (see Figure 9).
� := +0 . �, 
 1� ��	�; �� := 1� ��++0 . ��,	

�,; // Update thresholds.
end;

else if� - ���maxval then do begin
// Create a singleton bucket for the value�.
��count :=���count.��count� ��� 
 �������; // First use� for � ��� ��.
���maxval :=�; ���count :=��� 
 �������; // Then use�� for �.

if ��count� � then // The merged bucket (without�) is too big.
SplitBucket(B);

else if��count� �� then do begin // The merged bucket (without�) is too small.
if � buckets�� and�� that are a candidate merge pair such that� - ��
or� - �� and� bucket�	 that is a candidate split bucket then

�� �count :=���count. �� �count; SplitBucket(�	 ); // Merge and split.
else do begin

+�� 1� �� 	�, := CompressedSampleCompute(); // (see Figure 9).
� := +0 . �, 
 1� ��	�; �� := 1� ��++0 . ��,	

�,; // Update thresholds.
end;

end;

else if� - ��maxval then
// This case is similar to the previous case, focusing on� and the bucket after it.

Fig. 10. An algorithm for maintaining an approximate Compressed histogram under insertions
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6. EXPERIMENTAL EVALUATION

In this section, we experimentally study the effectiveness of our histogram maintenance
techniques and their efficiency. First, we describe the experiment testbed.

Database. We model the base data already in the database independently from the up-
date data. Both are modeled using an extensive set of Zipfian [Zipf 1949] data distribu-
tions. The� value was varied from� to 
 to vary the skew (� � � corresponds to the
uniform distribution). The number of tuples (� ) in the relation was���� to start with and
the number of distinct values ( ) was varied from��� to ����. Since the exact attribute
values do not affect the relative quality of our techniques, we chose the integer value do-
main. Finally, the frequencies were mapped to the values in differentorders – decreasing
(decr), increasing (incr), and random (random) – thereby generating a large collection of
data distributions. We refer to a Zipf distribution with the parameter� and order! as the
��"���� !� distribution.

Histograms. The equi-depth and Compressed histograms consisted of�� buckets and
were computed from a sample of���� tuples, which was also the size of the backing
sample.

Updates. We used three classes of updates, described below, based on the mix of insert,
delete, and modify operations. In each case, the update data was taken from a Zipf distri-
bution. By varying the� parameter, we can vary the skew in the updates. The number of
updates was increased up to
��� (four times the relation size).

(1) Insert: The first class of updates consists of just insert operations. Since our algorithms
are most efficient for such an environment, they are studied in most detail.

(2) Warehouse: This class contains an alternating sequence of a set of inserts followed
by a set of deletes. This pattern is common in data warehouses keeping transactional
information during sliding time windows (loading fresh data and discarding very old
data, when loaded close to capacity).

(3) Mixed: This class contains a uniform mixture of insert, delete, and modify operations
occurring in random order.

Unless otherwise specified, experimental results are for theInsert class of updates.

Techniques. We studied several variants of old and new techniques which are described
below in terms of their operations for a single insert (operations for delete are similar in
principle).

(1) Fixed-Histogram: The sum of frequencies in each bucket is incremented by�
� so

that the total sum of the frequencies increases by�. This is essentially the technique in use
in nearly all systems prior to our work, in that they update the number of tuples but do not
update the histogram.

(2) Periodic-Sample-Compute: This (expensive) technique requires recomputing the
histogram from the backing sample after each insertion into the sample, while the total
sum of frequencies is incremented as in the above technique.

(3) SplitMerge: This is the class of techniques corresponding to the algorithms proposed
in this paper.
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(4) No-Recompute: This technique differs from SplitMerge by not performing the re-
computations and simply increasing the split threshold when a merge can not be performed.

(5) Fixed-Buckets: This technique differs from SplitMerge by not attempting to split
any bucket. But, unlike the Fixed-Histogram algorithm, the size of the bucket containing
the inserted value is correctly incremented.

Error metrics. The following error metrics are used:��
��
 (Eq. 1),��� (Eq. 2 and 3),
and��� (Eq. 4). In addition a new metric������ is defined, which captures the accuracy
of histograms in estimating the result sizes of range predicates (of the form� � #). The
query-set contains range predicates over all possible values in the joint value domain. For
each query, we find the error as a percentage of the result size.� ����� is defined as the
average of these errors over the query-set.

All our experiments were conducted five times to reduce the accidental effects of sam-
ples and had similar results in each instance. Hence, we present the results of one of the
runs.

6.1 Effects of recomputation and �

Figure 11 depicts the errors (���) of the equi-depth histogram obtained at the end of
���
insertions as a function of�, under the SplitMerge and No-Recompute techniques. The
base data distribution for this case wasuniform and the update distribution waszipf(2,decr).
It is clear that SplitMerge outperforms the technique without recomputations. Also, the er-
rors due to the techniques are lowest for low values of� and increase rapidly as� increases.
This is because for low values of�, the histogram is recomputed more often and the bucket
sizes do not exceed a low threshold, thus keeping the��� small.

On the other hand, small values of� result in a larger number of disk accesses (for the
backing sample). Figure 12 shows the effect of� on the number of recomputations. It
is clear that too small values of� result in a large number of recomputations. Based on
similar sets of experiments conducted over the entire set of data distributions, we concluded
that� � ��� is a reasonable value for limiting the number of computations as well as for
decreasing errors; we use this setting in all the remaining experiments.
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6.2 Update sampling

Nearly all the experiments in this paper were conducted by considering every insertion
in the database. In some update-intensive databases this could result in intolerable per-
formance degradation. Hence we propose uniformly sampling the updates with a certain
probability and modifying the histograms only for the sampled updates. In this experiment,
we study the effect of the update sampling probability on histogram performance. The base
and update distributions are chosen to bezipf(1,incr) andzipf(0.5, random) respectively,
and the histogram is Compressed. Figure 13 depicts the errors due to the SplitMerge tech-
nique for various sampling probabilities. The x-axis represents the average number of
updates that are skipped and the y-axis represents the errors incurred by the histogram re-
sulting at the end of
��� inputs in estimating the result sizes of range queries (� �����).
It is clear from this figure that the accuracy depends on the number of updates sampled; as
long as not too many updates are skipped (say, at most��� in this experiment), the errors
are reasonably small.

6.3 Approximation of equi-depth histograms

We compare the effectiveness of various techniques in approximating equi-depth histograms
under insertions into the database. The results are presented foruniform base data and
zipf(2,incr) update data and are fairly consistent over most other combinations. Figures 14
through 16 depict various error measures as a function of the number of insertions. For this
experiment, the SplitMerge technique performed just� recomputations from the backing
sample while Periodic-Sample-Compute performed����.

It is clear from Figure 14 that the SplitMerge technique is nearly identical to the more
expensive Periodic-Sample-Compute technique in maintaining the histogram close to equi-
depth. The Periodic-Sample-Compute technique does not maintain a perfectly equi-depth
histogram because it is recomputed from the backing sample which may not reflect all the
insertions. The other two techniques clearly result in a very poor equi-depth histogram
because they do not perform any splits of the over-populated buckets. Figure 15 shows that
the SplitMerge and Fixed-Buckets techniques are very accurate in reflecting the accurate
counts, because their bucket sizes are correctly updated after every insertion. For the other
two techniques, the size of a bucket is always equal to�
	, hence the� �
��
 and���
measures are identical. Finally, it is clear from Figure 16 that the SplitMerge technique

ACM Transactions on Database Systems, Vol. V, No. N, Month 2002.



24 � Phillip B. Gibbons et al.

0 100000 200000 300000 400000
Number of Updates

0.0

0.2

0.4

0.6

0.8

1.0

M
u_

co
un

t

Fixed-Histogram
Fixed-Buckets
Periodic-Sample-Comp.
SplitMerge

0 100000 200000 300000 400000
Number of Updates

0

10

20

30

40

R
an

ge
 S

iz
e 

E
st

im
at

io
n 

E
rr

or
s 

(M
u_

ra
ng

e)

Fixed-Histogram
Fixed-Buckets
Periodic-Sample-Comp.
SplitMerge

Fig. 15. ��
��� errors (equi-depth histograms) Fig. 16. �����
 errors (equi-depth histograms)

offers the best performance in estimating range query result sizes as well.

6.4 Approximation of Compressed histograms

We compare the effectiveness of various techniques in maintaining approximating Com-
pressed histograms. The base data distribution iszipf(1,incr) (a skewed distribution was
chosen so that the Compressed histogram will contain a few high-biased buckets) and the
update distribution iszipf(2,random), which introduces skew at different points in the re-
lation’s distribution. Figures 17 and 18 depict the��� and������ errors on the y-axes
respectively and the number of insertions on the x-axes. The results for the other two
metrics are similar to the equi-depth case and consistently demonstrate the accuracy of
the SplitMerge technique, hence are not presented. Once again, the SplitMerge technique
performed just� recomputations from the sample, while Periodic-Sample-Compute per-
formed���
 recomputations.

It can be seen from Figure 17 that the Periodic-Sample-Compute and SplitMerge tech-
niques result in almost zero errors in capturing the high frequency values in the updated
relation, even when these values were not frequent in the base relation. In the beginning,
the updates do not create a new high frequency value and all techniques perform well.
But once a new value becomes frequent, it is clear that the other two techniques fail to
characterize it as such and hence incur high errors.

Figure 18 shows that the errors in range size estimation follow the similar pattern as
the equi-depth case. Also, as expected from our earlier work [Poosala et al. 1996], the
Compressed histograms are observed to incur smaller errors than the equi-depth histograms
from Figure 16.

6.5 Effect of skew in the updates

High skew in the update data can alter the overall data distribution dramatically, and hence
requires effective histogram maintenance techniques. In Figure 19 we depict the perfor-
mance of various Compressed histograms resulting from the techniques at the end of
���
insertions to the database. The x-axis represents the� parameter values and the y-axis rep-
resents the errors in estimating range query result sizes (������). The Fixed-Histogram
technique fails very quickly because it assumes that the updates are uniform and hence
does not update the high-biased part correctly. It is clear from this figure that the Split-

ACM Transactions on Database Systems, Vol. V, No. N, Month 2002.



Fast Incremental Maintenance of Approximate Histograms � 25

0 100000 200000 300000 400000
Number of Updates

0.0

0.2

0.4

0.6

M
u_

hb
Fixed-Histogram
Fixed-Buckets
Periodic-Samp.-Comp.
SplitMerge

0 100000 200000 300000 400000
Number of Updates

0

10

20

30

40

R
an

ge
 S

iz
e 

E
st

im
at

io
n 

E
rr

or
s 

(M
u_

ra
ng

e)

Fixed-Histogram
Fixed-Buckets
Periodic-Sample-Comp.
SplitMerge

Fig. 17. ��� errors (Compressed histograms) Fig. 18.�����
 errors (Compressed histograms)

0.0 0.5 1.0 1.5 2.0
z-value of updates

0

20

40

60

80

100

R
an

ge
 S

iz
e 

E
st

im
at

io
n 

E
rr

or
s 

(M
u_

ra
ng

e)

Fixed-Histogram
Fixed-Buckets
Periodic-Sample-Comp.
SplitMerge

Fig. 19. Effect of skew in the updates

Merge technique performs consistently well for all levels of skew and is always better
than the other techniques, because it approximates the equi-depth part well using splits
and recomputations, and approximates the high-biased part well by dynamically detecting
high-frequency values.

6.6 Effect of update nature

The updates in all the experiments studied thus far consisted of inserts only (theInsert
update set). In this section we study the performance of various maintenance techniques in
the presence of delete and modify operations. The performance of Compressed histograms
maintained using various maintenance techniques is depicted in Figures 20 and 21 for the
Warehouse andMixed update sets respectively. These graphs show range size estimation
errors as a function of the number of updates. The same conclusions as in the previous
experiments were derived for other error metrics and for equi-depth histograms. Hence,
we do not present those results here.

Note that the Periodic-Sample-Compute and SplitMerge techniques successfully limit
the range size estimation errors to a small constant value in the presence of both kinds of
updates. On the other hand, depending on the fluctuating relation size, the errors due to
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Fig. 20. Errors under Warehouse updates Fig. 21. Errors under Mixed updates

Fixed-Buckets increase and decrease, but overall they increase because the approximate
histogram deviates too far from the actual data distribution. The performance of Fixed-
Buckets differs from the experiments on Insert data because the insert, delete, and modify
streams are skewed at different attribute values and hence vary the data distribution dras-
tically and require significant bucket changes in order to capture it accurately. As in the
earlier experiments, Fixed-Histogram performs poorly because it fails to capture the vary-
ing shape of the distribution.

6.7 Practicality considerations

In this section we discuss the costs of using our histogram maintenance techniques in a
DBMS. Our techniques require the following resources:

CPU. For most updates the only CPU-intensive operation one needs to perform is in-
crementing the bucket count. This is further reduced by sampling the updates. Complete
recomputations of histograms from the backing sample are more expensive (on the order
of tens of milliseconds [Poosala et al. 1996]), but happen rarely (twice during a five-fold
increase in the size of a database). Also, since histograms are no longer read-only data
structures, one now needs some form of concurrency control mechanism for accessing
them. We suggest using inexpensive latches for updating the histograms and allowing
inconsistent reads (which is often fine in an estimation application).

I/O. For inserts, the backing sample on the disk is accessed only during splits, sample
updates, and recomputations. In the last case, the entire backing sample has to be accessed,
which may require fetching a small number of disk pages, but this is very rare. As shown
in our theorems, one needs a very large number of inserts in order to perform a split, hence
the split costs are also quite negligible. Similarly, for a large relation, the backing sample
is also updated very rarely. On the other hand, our techniques for arbitrary delete and
modify operations require accessing the backing sample on every sampled update, which
may make the techniques expensive in some environments. For delete operations in a data
warehouse environment, which house transactional information for sliding time windows,
the techniques are I/O effective.

Space. Our techniques do not require any additional data in memory other than what is
already present in a histogram. On the other hand, they need disk space (on the order of
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1–10 pages) for the backing sample. In comparison with typical relation and disk sizes,
this is clearly negligible (note Figure 1 for an illustration).

Overall, the above argues qualitatively that the resource requirements of the mainte-
nance algorithms are negligibly small in most situations. Further quantitative studies in
real database systems are needed in order to measure the overheads occurring in practice.

7. CONCLUSIONS

This paper proposed a novel approach for maintaining histograms and samples up-to-date
in the presence of updates to the database. This is critical for various DBMS components
(primarily query optimizers) that rely on estimates requiring information about the current
data. Algorithms were proposed for the widely used equi-depth histograms and the highly
accurate class of Compressed histograms. We introduced the following innovations:

—The notion of abacking sample, with its advantages over previous approaches to obtain-
ing samples, and techniques for its maintenance.

—The idea of maintaining histograms incrementally by making use of the backing sample.
The backing sample can be much larger than the histogram and reside on the disk; it is
accessed very rarely in support of the histogram, which is typically in main memory.

—Split and merge techniques on histogram buckets, which drastically reduce accesses to
the disk for the backing sample.

Next, we conducted a large set of experiments to demonstrate the effectiveness of our
algorithms in maintaining histograms. Our conclusions are as follows:

—The new techniques are very effective in approximating equi-depth and Compressed
histograms. They are equally effective for relations orders of magnitude larger. In fact,
as the relation size grows, the relative overhead of maintaining a backing sample with
equal accuracy becomes even smaller.

—Very few recomputations from the backing sample are incurred for a large number of
updates, proving that our split&merge techniques are quite effective in minimizing the
overheads due to recomputation.

—The experiments clearly show that histograms maintained using these techniques remain
highly effective in result size estimation, unlike the previous approaches.

The CPU, I/O and storage requirements for these techniques are negligible for insert-
mostly databases and for data warehousing environments.

Based on our results, we recommend that these techniques be used in most DBMSs, for
effective incremental maintenance of approximate histograms.

APPENDIX

A. PROOFS FROM SECTION 3

In this section, we prove the correctness of MaintainBackingSample, as well as various
properties about the algorithm. An important assumption we use is that the sequence of
database operations is independent of the random choices made by our algorithm.

Let $ be a set of size� . A sample of size� � � (without replacement) from$ is a
subset of size� of the elements in$. There are



�
�

�
possible samples of$ of size�. A

random sample of size� is a sample of$ selected with probability�



�
�

�
.
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Our algorithm treats database insertions as in Vitter’s algorithm [Vitter 1985], so we will
use the following fact shown in [Vitter 1985], restated using the terminology of this paper:

OBSERVATION A.1. Let $ be a set of size � , and let ! be an element not in $. Let $�
be a random sample of size � of $, and let % be an element selected uniformly at random
from $�. Let $� be constructed as follows:

$� �

�
$� � �!� � �%� with probability �

�����

$� otherwise

Then $� is a random sample of size � of $ � �!�.

Next consider deletions. For an element just deleted from the relation�, if the element
is in the backing sample,�, our algorithm deletes it from�, else it leaves� unchanged.
Lemma A.2 establishes that this maintains the property that$ is a random sample.

LEMMA A.2. Let $ be a set of size &, and let ' be an element in $. Let $� be a random
sample of size ( of $. Then if ' is not in $� then $� � $� � �'� � $� is a random sample
of size ( of $��'�. Else if ' is in $� then $� � $���'� is a random sample of size (��
of $ � �'�.

PROOF. In the former case (' is not in$�), there are



��
�

�
possible samples of size(

of $ that do not contain', each of which is equally likely to be selected for$ �. Since
$� � $�, there is a 1-1 correspondence between samples$� not containing' and samples
$�. Thus, for any$�, ���$� selected� � ���$� selected� select a sample without'� �
���$� selected�
��� select a sample without'�, which equals

�

����

����� �
����

�
�


��
�

� �
In the latter case (' is in $�), there are





�

� � 

��� � �



��
���
�

possible samples size(
of $ that contain', each of which is equally likely to be selected for$ �. There is a 1-1
correspondence between samples$� containing' and samples$�. Thus, for any$�, the
probability$� is selected is�





��
���
�
.

We now proceed to prove Theorem 3.1.

PROOF OFTHEOREM 3.1. Consider a sequence of insert, modify and delete operations
for an initially empty relation�. Let $ be the sample resulting from applying Maintain-
BackingSample to the sequence, with a given� and� , � � � � � . We first prove the
claim that the ids in$ are a random sample of the ids in�.

The proof is by induction on the length,�, of the sequence. For a sequence of length
�, let�� be the set of ids in� resulting from applying the updates in the sequence to an
initially empty relation�, and let$� be the set of ids in$ resulting from applying the
algorithm in response to the sequence.

For the base case� � �, the first update must be an insert for some�). This id is added
to $, so$� � ��)� is a random sample of�� � ��)�.

Assume the claim is true for� � �, and consider an arbitrary sequence,* ���, of length
���. The sequence*��� consists of a sequence*� of length� followed by a single update
operation (either an insert, a modify or a delete). Let�� and$� be defined according to
*�.
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First, consider the case where the�����st update is an insert of a new element�). Thus
���� � �� � ��)�. If �$�� � � � ������ � � then�$�� � ���� and both sets contain
the same ids. By the algorithm,$��� � $� � ��)�, and the claim holds by the inductive
assumption. Else the claim holds by the inductive assumption and Observation A.1.

Second, consider the case where the�� � ��st update is a modify of one or more of the
values of an element�) in ��. By the algorithm,���� � �� and$��� � $�, so the claim
holds by the inductive assumption.

Third, consider the case where the�� � ��st update is a delete of an element�) in � �.
If �) 
� $�, then the claim holds by the inductive assumption and Lemma A.2. If�) � $ �,
then also by the inductive assumption and Lemma A.2, the ids in$ � � ��)� are a random
sample of the ids in����. If the algorithm scans����, then consider some sequence,* �,
of ������ � � inserts, one insert for each element in����. By the inductive assumption
applied to*�, the ids in$��� are a random sample of the ids in����.

Since in all three cases, the claim holds for an arbitrary*���, the claim is maintained for
all sequences of length���, and hence by induction holds for all finite length sequences.

Finally, consider the relation� after an arbitrary sequence of update operations and a
sample$ generated by the algorithm. Since the set of ids in$ is a random sample of the set
of ids in�, and the updates are independent of the random choices made by the algorithm,
then for any attribute� of �, the set�� �



���� �)�� of values is a random sample of

the set�� �


���� �)�� of values. The theorem follows.

MaintainBackingSample maintains a backing sample,�, such that�������� �� � ��� �
� , where� and� are prespecified upper and lower bounds. It populates� up to �
elements and then a series of� � � � � deletes of sample elements are needed in order
to force the algorithm to rescan the relation� in order to re-populate�. The next lemma
shows that rescans are expected to be infrequent for large relations.

LEMMA A.3. Consider an initial relation � and a backing sample, �, for � of size � .
Consider any sequence of updates to � and let�� � � be a lower bound on the size of �
after each such update. (There is no upper bound imposed on ���.) Then at most 1 rescan
is expected every���� � �� ��
� updates.

PROOF. Initially, ��� � � , so a series of� � � � � deletes of sample elements are
needed in order to force a rescan of�. At any time, the probability that an�) selected
for deletion is in� is ���
��� (since


�����
�����

�



���
���
�
� ���
���). Since�$�
��� � �
��,

the expected number of deletions needed is at least���� � � � ��
� . After the rescan,
��� � � , and the argument can be repeated.

As an example, consider a relation of size� � ��� and� � �
� � �. Then in order to
force a rescan, we must delete half of the relation. Moreover, in such cases, the number of
tuples to be rescanned is�
�, which can be amortized against the�
� deletions needed
to force the rescan.

B. PROOFS FROM SECTION 4

To simplify the presentation of the proofs that follow, we will ignore the use of floors and
ceilings in the algorithms.

PROOF OFTHEOREM 4.1. Since each bucket count is set to�
	, �ed � �count for this
algorithm. We assume without loss of generality that all values are distinct; this can be
accomplished by appending to each original value a unique label.
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The probability that sampling with replacement will pick
 distinct elements is

��� � ���� � �� � � � �� �
� ��

��
�
�
� �

�

��
�
�
�� 


�

��
� �� 


�

�
�

Since
 � ����, the probability is at least� � �
� ���. Thus we will ignore the dif-
ference between sampling with and without replacement by considering whichever one is
more suited to the analysis, and compensate by subtracting� ���� from the probability of
obtaining the stated bounds. (This can be argued formally using conditioned events.)

By Lemma 7.1 in [Reif and Valiant 1987], for each bucket� �,

��

�
���

�
��

��
�



	

�� �
�

�
�

	

��
� �� ��

� 	�	
	�

�
� �

which is greater than��	�
�
�. Thus���

is within the above range for all�with probability
at least�� 	��

�
����. This implies that, with the same probability,

�ed � 	

�

���� �

	

��
���

�
�

	

�



	

�� �
�

��

�

�



	

�� �
�

�

The theorem follows.

PROOF OFTHEOREM 4.2. Consider some phase in the EquiDepthSimple algorithm, at
which the relation is of size� . At the beginning of the phase, let� � be the size of
the relation, and let��count and��ed be the errors�count and�ed, respectively. Let+� �

�� 	��
�
���� � �� ������, and let+ � �� 	��

�
���� � ��
�� � �������. Since during

a phase� � � ��� � ��, we have+ � +�. By Theorem 4.1,��ed � ��count � � with
probability at least+�, and hence at least+.

During a phase, a value inserted to bucket� � increments both���
and���count. There-

fore, by the definition of�count (Eq. 1), its value does not change during a phase, and hence
at any time during the phase�count � �

�
count � � with probability+. It remains to bound

�ed.
Let � ���

and���count� be the values of���
and���count, respectively, at the beginning

of the phase. Let��
� � �

�
��
�� �
	, and let�� � ���

��
	. We claim that��� ���
�� �

�� � ��� �
	. Note that��� ���
�� � �������

� � ���
� �
	 �� �
	�. The claim follows

since���
� � ���

� ���count����count� � � � ���count� � �� � ��� �
	 �� �
	, and
� �� � � 	����count����count��.

By the claim,

��
� � ���

� � �� � ��� �
	�� � ��
�
�
� ���

��� � ���
�
	 � ��� � ��� �
	�� �

Note that
��

����
�
� �

��
�������

�� �
	� � �. Hence, substituting for��
� in the definition

of �ed (Eq. 2) we obtain

�ed �
	

�

���� �

	

�
��
�

��
�
� �

��
���

��� � ��� �
	��
�
� ��ed�

	

�
������ �
	 � ��ed������ �

The theorem follows.
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PROOF OFLEMMA 4.5. Let� � be the total number of elements at the beginning of a
phase&. Note that the sum of the bucket counts at the start of phase& is � �. Each new
element increases this sum by one, and both splitting and merging have no effect on this
sum. Thus throughout phase&, the sum of the bucket counts is always exactly the number
of elements.

Consider first the case that� � �. Recall that a phase ends when there is no pair of
adjacent buckets�� and���� such that���count������count� � . Therefore, summing
over the pairs,������� ���� for � � �� �� � � � � 	
� we obtain that the sum of the bucket
counts (and hence the total number of elements) at the end of phase& is at least�	
�� �� �
	
� � �� � �� �� �
	 � �� � �
��� �.

For the case�� � � � � we note that a bucket can get to be of size� only after getting
������ �
	 new elements. Therefore, the total number of elements at the end of the phase
is at least�� � �� � ��
	�� �.

Thus in either case, the number of phases after� inserts is at most	
��� . The lemma
follows because the number of phases is also upper bounded by the number of inserts.
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