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Abstract

Let P be a set of n points in R3. The 2-center problem for P is to find two con-
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1 Introduction

1.1 Background

Let P = {p1, . . . , pn} be a set of n points in R3. The 2-center problem for P is to find
two congruent balls of minimum radius whose union covers P . This is a special case of
the general p-center problem in Rd, which calls for covering a set P of n points in Rd by p
congruent balls of minimum radius. If p is part of the input, the problem is known to be
NP-complete [29] even for d = 2, so the complexity of algorithms for solving the p-center
problem, for any fixed p, is expected to increase more than polynomially in p. Agarwal
and Procopiuc showed that the p-center problem in Rd can be solved in nO(p1−1/d) time [2],
improving upon a naive nO(p)-solution. At the other extreme end, the 1-center problem
(also known as the smallest enclosing ball problem) is known to be an LP-Type problem,
and can thus be solved in O(n) randomized expected time in any fixed dimension, and
also in deterministic linear time [15, 27, 28]. Faster approximate solutions to the general
p-center problem have also been proposed [2, 4, 5].

If d is not fixed, the 2-center problem in Rd is NP-Complete [30]. The 2-center prob-
lem in R2 has a relatively rich history, mostly in the past two decades. Hershberger and
Suri [23] showed that the decision problem of determining whether P can be covered by
two disks of a given radius r can be solved in O(n2 log n) time. This has led to sev-
eral nearly-quadratic algorithms [3, 20, 24] that solve the optimization problem, the best
of which, due to Jaromczyk and Kowaluk [24], runs in O(n2 log n) deterministic time.
Sharir [34] considerably improved these bounds and obtained a deterministic algorithm
with O(n log9 n) running time. His algorithm combines several geometric techniques,
including parametric searching, searching in monotone matrices, and dynamic mainte-
nance of planar configurations. Chan [12] (following an improvement by Eppstein [21])
improved the running time to O(n log2 n log2 log n).

The only earlier work on the 2-center problem in R3 we are aware of is by Agar-
wal et al. [1], which presents an algorithm with O(n3+ε) running time, for any ε > 0. It
uses a rather complicated data structure for dynamically maintaining upper and lower
envelopes of bivariate functions.

1.2 Our results

We present two randomized algorithms for the 2-center problem in R3. We first present
an algorithm whose expected running time is O(n3 log5 n). It is conceptually a natural
generalization of the earlier algorithms for the planar 2-center problem [3, 20, 24]; its
implementation however is considerably more involved. The second algorithm runs in
O((n2 log5 n)/(1− r∗/r0)3) expected time, where r∗ is the common radius of the 2-center
balls and r0 is the radius of the smallest enclosing ball of P . This is based on some of
the ideas in Sharir’s planar algorithm [34], but requires several new techniques. As in the
previous algorithms, we first present algorithms for the decision problem: given r > 0,
determine whether P can be covered by two balls of radius r. We then combine it with
an adaptation of Chan’s randomized optimization technique [11] to obtain a solution
for the optimization problem. In both cases, the asymptotic expected running time of
the optimization algorithm is the same as that of the decision procedure (which itself is
deterministic).

The paper is organized as follows. Section 2 briefly sketches our two solutions. Sec-
tion 3 presents the near-cubic algorithm, and Section 4 presents the improved algorithm.
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A key ingredient of both algorithms is a dynamic procedure for testing whether the in-
tersection of a collection of balls in R3 is nonempty. We present the somewhat technical
details of this procedure in Section 5, and conclude in Section 6 with a few open problems.

2 Sketches of the Solutions

2.1 The near-cubic algorithm

To solve the decision problem, in the less efficient but conceptually simpler manner, we
use a standard point-plane duality, and replace each point p ∈ P by a dual plane p∗,
and each plane h by a dual point h∗, such that the above-below relations between points
and planes are preserved. We note that if P can be covered by two balls B1, B2 (not
necessarily congruent), then there exists a plane h (containing the circle ∂B1 ∩ ∂B2, if
they intersect at all, or separating B1 and B2 otherwise) separating P into two subsets
P1, P2, such that P1 ⊂ B1 and P2 ⊂ B2. We therefore construct the arrangement A of
the set {p∗ | p ∈ P} of dual planes. It has O(n3) cells, and each cell τ has the property
that, for any point w ∈ τ , its primal plane w∗ separates P into two subsets of points,
P+

τ and P−τ , which are the same for every w ∈ τ , and depend only on τ . We thus
perform a traversal of A, which proceeds from each visited cell to a neighbor cell. When
we visit a cell τ , we check whether the subsets P+

τ and P−τ can be covered by two balls
of radius r, respectively. To do so, we maintain dynamically the intersection of the sets
{Br(p) | p ∈ P+

τ }, {Br(p) | p ∈ P−τ }, where Br(p) is the ball of radius r centered at p, and
observe that (a) any point in the first (resp., second) intersection can serve as the center
of a ball of radius r which contains P+

τ (resp., P−τ ), and (b) no ball of radius r can cover
P+

τ (resp., P−τ ) if the corresponding intersection is empty. Moreover, when we cross from
a cell τ to a neighbor cell τ ′, P+

τ changes by the insertion or deletion of a single point,
and P−τ undergoes the opposite change, so each of the sets of balls {Br(p) | p ∈ P+

τ },
{Br(p) | p ∈ P−τ } changes by the deletion or insertion of a single ball. As we know the
sequence of updates in advance, maintaining dynamically the intersection of either of
these sets of balls can be done in an offline manner. Still, the actual implementation is
fairly complicated. It is performed using a variant of the multi-dimensional parametric
searching technique of Matoušek [26] (see also [10, 17, 31]). The same procedure is also
used by the second improved algorithm. For the sake of readability, we describe this
procedure towards the end of the paper, in Section 5.

The main algorithm uses a segment tree to represent the sets P+
τ (and another segment

tree for the sets P−τ ). Roughly, viewing the traversal of A as a sequence Σ of cells, each
ball Br(p) has a life-span (in P+

τ ), which is a union of contiguous maximal subsequences
of cells τ , in which p ∈ P+

τ , and a complementary life-span in P−τ . We store these
(connected portions of the) life-spans as segments in the segment tree. Each leaf of
the tree represents a cell τ of A, and the balls stored at the nodes on the path to the
leaf from the root are exactly those whose centers belong to the set P+

τ (or P−τ ). By
precomputing the intersection of the balls stored at each node of the tree, we can express
each of the intersections

⋂{Br(p) | p ∈ P+
τ } and

⋂{Br(p) | p ∈ P−τ }, for each cell τ , as
the intersection of a logarithmic number of precomputed intersections (see also [20]). We
show that such an intersection can be tested for emptiness in O(log5 n) time. This in turn
allows us to execute the decision procedure with a total cost of O(n3 log5 n). We then
return to the original optimization problem and apply a variant of Chan’s randomization
technique [11] to solve the optimization problem by a small number of calls to the decision
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problem, obtaining an overall algorithm with O(n3 log5 n) expected running time.1

2.2 The improved solution

The above algorithm runs in nearly cubic time because it has to traverse the entire
arrangement A, whose complexity is O(n3). In Section 4 we improve this bound by
traversing only portions of A, adapting some of the ideas in Sharir’s improved solution
for the planar problem [34]. Specifically, Sharir’s algorithm solves the decision problem
(for a given radius r) in three steps, treating separately three subcases, in which the
centers c1, c2 of the two covering balls are, respectively, far apart (|c1c2| > 3r), at medium
distance apart (r < |c1c2| ≤ 3r) and near each other (|c1c2| ≤ r). We base our solution
on the techniques used in the first two cases, which, for simplicity, we merge into a single
case (as done in [21] for the planar case), and extend it so that we only need to assume
that |c1c2| ≥ βr, for any fixed β > 0. In more detail, letting Br(p) denote the disk
of radius r centered at a point p, Sharir’s algorithm guesses a constant number of lines
l, one of which separates the centers c1, c2 of the respective solution disks D1, D2, so
that the set PL of the points to the left of l is contained in D1. We then compute the
intersection K(PL) =

⋂
p∈PL

Br(p), and intersect each ∂Br(p), for p ∈ PR = P \ PL (the
subset of points to the right of l), with ∂K(PL). It is easily seen that ∂K(PL) has linear
complexity and that each circle ∂Br(p), for p ∈ PR, intersects it at two points (at most).
This produces O(n) critical points (vertices and intersection points) on ∂K(PL) and O(n)
arcs in between. As argued in [34], it suffices to search these points and arcs for possible
locations of the center of D1 (and dynamically test whether the balls centered at the
uncovered points have nonempty intersection).

Generalizing this approach to R3, we need to guess a separating plane λ, to retrieve
the subset PL ⊆ P of points to the left of λ, to compute ∂K(PL) (which, fortunately, still
has only linear complexity), to intersect ∂Br(p), for each p ∈ PR, with ∂K(PL), and to
form the arrangement of the resulting intersection curves. Each cell of this arrangement
is a candidate for the location of the center of the left covering ball B1, and for each
placement in τ , B1 contains the same fixed subset of P (which depends only on τ).

However, the complexity of the resulting arrangement MK on ∂K(PL) might poten-
tially be cubic. We therefore compute only a portion M of MK , which suffices for our
purposes, and prove that its complexity is only O(n2). This is the main geometric insight
in the improved algorithm, and is highlighted in Lemma 4.1. We show that if there is a
solution then O(1/β3) guesses suffice to find a separating plane. This implies that the
running time of the improved decision procedure is O((1/β3)n2 log5 n). Thus, it is nearly
quadratic for any fixed value of β. We show that one can take β = 2(r0/r− 1), where r0
is the radius of the smallest enclosing ball of P .

To solve the optimization problem, we conduct a search on the optimal radius r∗,
using our decision procedure, starting from small values of r and going up, halving the
gap between r and r0 at each step2, until the first time we reach a value r > r∗. Then
we use a variant of Chan’s technique [11], combined with our decision procedure, to find
the exact value of r∗. The way the search is conducted guarantees that its cost does not

1The earlier algorithm in [1] follows the same general approach, but uses an even more com-
plicated, and slightly less efficient machinery for dynamic emptiness testing of the intersection
of congruent balls.

2We have to act in this manner to make sure that we do not call the decision procedure with
values of r which are too close to r0, thereby losing control over the running time.
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exceed the bound O((1/β3)n2 log5 n), for the separation parameter β = 2(r0/r
∗ − 1) for

r∗. Hence, we obtain a randomized algorithm that solves the 2-center problem for any
positive separation of c1 and c2, and runs in O((n2 log5 n)/(1− r∗/r0)3) expected time.

3 A Nearly Cubic Algorithm

3.1 The decision procedure

In this section we give details of the implementation of our less efficient solution, some
of which are also applicable for the improved solution. Recall from the description in
Section 2 that the decision procedure, on a given radius r, constructs two segment trees
T+, T−, on the life-spans of the balls Br(p), for p ∈ P (with respect to the tour of the
dual plane arrangement A). Each leaf is a cell τ of A, and the balls, whose centers belong
to P+

τ (resp., P−τ ), are those stored at nodes on the path from the root to τ in T+ (resp.,
T−).

For each node u of T+, let Su denote the intersection of all the balls (of radius r) stored
at u. We refer to each Su as a spherical polytope; see [6, 7, 8] for (unrelated) studies of
spherical polytopes. We compute each Su in O(|Su| log |Su|) deterministic time, using the
algorithm by Brönnimann et al. [9] (see also [16, 32] for alternative algorithms). Since
the arrangement A consists of O(n3) cells, standard properties of segment trees imply
that the two trees require O(n3 log n) storage and O(n3 log2 n) preproccessing time.

Clearly, the intersection K(P+
τ ) (resp., K(P−τ )) of the balls whose centers belong to

P+
τ (resp., P−τ ) is the intersection of all the spherical polytopes Su, over the nodes u on

the path from the root to τ in T+ (resp., T−).

Intersection of spherical polytopes. Let S = {S1, . . . , St} be the set of t = O(log n)
spherical polytopes stored at the nodes of a path from the root to a leaf of T+ or of T−,
where, as above, a spherical polytope is the intersection of a finite set of balls, all having
the common radius r. Each Si is the intersection of some ni balls, and

∑t
i=1 ni ≤ n. Our

current goal is to determine, in polylogarithmic time, whether the intersection K of the
spherical polytopes in S is nonempty. If this is the case for at least one path of T+ and
for the same path in T− then r∗ ≤ r, and otherwise r∗ > r. Moreover, if there exist a pair
of such paths for which both intersections have nonempty interior, then r∗ < r (because
we can then slightly shrink the balls and still get a nonempty intersection). If no such
pair of paths have this property, but there exist pairs with nonempty intersections (with
at least one of them being degenerate) then r∗ = r.

The algorithm for testing emptiness of K is technical and fairly involved. For the
sake of readability, we delegate its description to Section 5. It uses a variant of multi-
dimensional parametric searching which somewhat resembles similar techniques used in
[10, 17, 26, 31]. It is essentially independent of the rest of the algorithm (with some
exceptions, noted later). We summarize it in the following proposition.

Proposition 3.1. Let S be a collection of spherical polytopes, each defined as the inter-
section of at most n balls of a fixed radius r. Let N denote the sum, over the polytopes of
S, of the number of balls defining each polytope. After a preprocessing stage, which takes
O(N log n) time and uses O(N) storage, we can test whether any t ≤ log n polytopes
of S have a nonempty intersection in O(log5 n) time, and also determine whether the
intersection has nonempty interior.
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Hence, we check, for each cell τ , whether each of K(P+
τ ) and K(P−τ ) are nonempty

and non-degenerate. To this end, we go over each path of T+, and over the same path of
T−, and check, using the procedure described in Proposition 3.1, whether the spherical
polytopes along the tested paths (of T+ and of T−) have a nonempty intersection (and
whether these intersections have nonempty interiors). We stop when a solution for which
both K(P+

τ ) and K(P−τ ) are nonempty and non-degenerate is obtained, and report that
r∗ < r. Otherwise, we continue to test all cells τ . If at least one degenerate solution is
found (i.e., a solution where both K(P+

τ ), K(P−τ ) are nonempty, and at least one of them
has nonempty interior), we report that r∗ = r, and otherwise r∗ > r.

By proposition 3.1, the cost of this procedure is O(n3 log5 n). This subsumes the cost
of all the other steps, such as constructing the arrangement A and the segment trees
T+, T−. We therefore get a decision procedure which runs in O(n3 log5 n) (deterministic)
time.

3.2 Solving the optimization problem

We now combine our decision procedure with the randomized optimization technique of
Chan [11], to obtain an algorithm for the optimization problem, which runs in O(n3 log5 n)
expected time. Our application of Chan’s technique, described next, is somewhat non-
standard, because each recursive step has also to handle global data, which it inherits
from its ancestors.

Chan’s technique, in its “purely recursive” form, takes an optimization problem that
has to compute an optimum value w(P ) on an input set P . The technique replaces P
by several subsets P1, . . . , Ps, such that w(P ) = min{w(P1), . . . , w(Ps)}, and |Pi| ≤ α|P |
for each i (here α < 1 and s are constants). It then processes the subproblems Pi in
a random order, and computes min

i
w(Pi) by comparing each w(Pi) to the minimum w

collected so far, and by replacing w by w(Pi) if the latter is smaller.3 Comparisons are
performed by the decision procedure, and updates of w are computed recursively. The
crux of this technique is that the expected number of recursive calls (in a single recursive
step) is only O(log s), and this (combined with some additional enhancements, which we
omit here) suffices to make the expected cost of the whole procedure asymptotically the
same as the cost of the decision procedure, for any values of s and α. Technically, if the
cost D(n) of the decision procedure is Ω(nγ), where γ is some fixed positive constant, the
expected running time is O(D(n)) provided that

(ln s+ 1)αγ < 1. (1)

However, even when (1) does not hold “as is”, Chan’s technique enforces it by compressing
l levels of the recursion into a single level, for l sufficiently large, so its expected cost is
still O(D(n)). See [11] for details.

To apply Chan’s technique to our decision procedure, we pass to the dual space, where
each point p ∈ P is mapped to a plane p∗, as done in the decision procedure. We obtain
the set P ∗ = {p∗ | p ∈ P} of dual planes, and we consider its arrangement A = A(P ∗),
where each cell τ in A represents an equivalence class of planes in the original space,
which separate P into the same two subsets of points P+

τ , P
−
τ .

To decompose the optimization problem into subproblems, as required by Chan’s
technique, we construct a (1/%)-cutting of the dual space. We recall that, given a collec-
tion H of n hyperplanes in Rd and a parameter 1 ≤ % ≤ n, a (1/%)-cutting of A(H ) of

3So the value of w keeps shrinking.
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size q is a partition of space into q (possibly unbounded) openly disjoint d-dimensional
simplices ∆1, . . . ,∆q, such that the interior of each simplex ∆i is intersected by at most
n/% of the hyperplanes of H . See [25] for more details. We use the following well known
result [13, 14]:

Lemma 3.2. Given a set H of n hyperplanes in Rd, a (1/%)-cutting of A(H ) of size
O(%d) can be constructed in time O(n%d−1), for any % ≤ n.

Returning to our setup, we construct a (1/%)-cutting for A(P ∗), for a specific constant
value of %, that we will fix later, and obtain O(%3) simplices, such that the interior of
each of them is intersected by at most n/% planes of P ∗. Each simplex ∆i corresponds
to one subproblem and contains some (possibly only portions of) cells τ1, . . . , τk of the
arrangement A. We recall that each cell τj represents an equivalence class of planes which
separate P into two subsets of points P+

τj
and P−τj

. Hence, ∆i represents a collection of

such equivalence classes. All these subproblems have in common the sets (P ∗)+
∆i

, (P ∗)−∆i
,

consisting, respectively, of all the planes that pass fully above ∆i and those that pass
fully below ∆i. (These sets are dual to respective subsets P+

∆i
, P−∆i

of P , where P+
∆i

is
contained in all the sets P+

τj
, for the cells τj, that meet ∆i, and symmetrically for P−∆i

.)

Note that most of the dual planes belong to (P ∗)+
∆i
∪ (P ∗)−∆i

; the “undecided” planes are
those that cross the interior of ∆i, and their number is at most n/%. We denote the set
of these planes as (P ∗)0

∆i
(and the set of their primal points as P 0

∆i
).

To apply Chan’s technique, we construct two segment trees on the arrangement of
(P ∗)0

∆i
, as described in Section 3.1. Consider one of these segment trees, T+, that main-

tains the set of balls B+ = {Br(p) | p ∈ P+
τj
}. Each cell τj in ∆i is represented by a

leaf of T+. Each ball is represented as a collection of disjoint life-spans, with respect to
a fixed tour of the cells of A((P ∗)0

∆i
), which are stored as segments in T+, as described

earlier. In addition, we compute the intersection of the balls centered at the points of
P+

∆i
, in O(n log n) time, and store it at the root of T+. Note that, as we go down the

recursion, we keep adding planes to (P ∗)+
∆i

, that is, points to P+
∆i

, and the actual set
P+

∆i
of points dual to the planes above the current ∆i is the union of logarithmically

many subsets, each obtained at one of the ancestor levels of the recursion, including the
current step. However, we cannot inherit the precomputed intersections of the balls in
these subsets of P+

∆i
from the previous levels, since, as we go down the recursion, Chan’s

technique keeps ‘shrinking’ the radius of the balls. Hence, each time we have to solve a
decision subproblem, we compute the intersection of the balls centered at the points of
P+

∆i
(collected over all the higher levels of the recursion) from scratch. (See below for

details on the additional cost incurred by this step.) We build a second segment tree T−

that maintains the balls of B− = {Br(p) | p ∈ P−τj
}, in a fully analogous manner. The

running time so far (of the decision procedure) is O(n log n+m3 log2m), where m is the
number of planes in (P ∗)0

∆i
and n is the size of the initial input set P .

To solve the decision procedure for a given subproblem associated with a simplex
∆i, we test, by going over all the root-to-leaf paths in T+ and T−, whether there ex-
ists a cell τ (overlapping ∆i), for which the intersections of the spherical polytopes on
the two respective paths in T+ and T− are nonempty (and, if nonempty, whether they
both have nonempty interiors). The overall cost of this step, iterating over the O(m3)
cells of A((P ∗)0

∆i
) and applying the procedure from Section 3.1 for intersecting spherical

polytopes, is O(m3 log5 n).
When the recursion bottoms out, we have two subsets P+

∆i
, and P−∆i

of O(n) points,
and a constant number of points in P 0

∆i
. Hence, we try the constant number of possible
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separations of P 0
∆i

into an ordered pair of subsets P1 and P2, and, for each of these
separations, we compute the two smallest enclosing balls of the sets P+

∆i
∪P1 and P−∆i

∪P2

in linear time. If both P+
∆i
∪ P1 and P−∆i

∪ P2 can be covered by balls of radius r, for
at least one of the possible separations of P 0

∆i
into two subsets, then we have found a

solution for the 2-center problem. (Discriminating between r∗ = r or r∗ < r is done as
in Section 3.1.)

We now apply Chan’s technique to this decision procedure. Note that this application
is not standard because the recursive subproblems are not “pure”, as they also involve
the “global” parameter n. We therefore need to exercise some care in the analysis of the
expected performance of the technique.

Specifically, denote by T (m,n) an upper bound on the expected running time of the
algorithm, for preprocessing a recursive subproblem involving m points, where the initial
input consists of n points. Then T (m,n) satisfies the following recurrence.

T (m,n) ≤
{

ln(c%3)T (m/%, n) +O(m3 log5 n+ n log n), for m ≥ %,
O(n), for m < %,

(2)

where c is an appropriate absolute constant (so that c%3 bounds the number of cells of
the cutting), and % is chosen to be a sufficiently large constant so that (1) holds (with
s = c%3, α = 1/%, and γ = 3). It is fairly routine (and we omit the details) to show that
the recurrence (2) yields the overall bound O(n3 log5 n) on the expected cost of the initial
problem; i.e., T (n, n) = O(n3 log5 n). We thus obtain the following intermediate result.

Theorem 3.3. Let P be a set of n points in R3. A 2-center for P can be computed in
O(n3 log5 n) randomized expected time.

4 An Improved Algorithm

4.1 An improved decision procedure Γ

q2

q′2

B2

B1

q′1

c1

q1
c2

≥βr

Figure 1: The points q1, q
′
1, q2, q

′
2 prevent |c1c2| from getting smaller.

Consider the decision problem, where we are given a radius r and a parameter β > 0,
and have to determine whether P can be covered by two balls of radius r, such that the
distance between their centers c1, c2 is at least βr. (Details about supplying a good lower
bound for β will be given in Section 4.2.) By this we mean that there is no placement
of two balls of radius r, which cover P , such that the distance between their centers is
smaller than βr; see Figure 1.

This assumption is easily seen to imply the following property: Let C12 denote the
intersection circle of ∂B1 and ∂B2 (assuming that B1 ∩ B2 6= ∅). Then any hemisphere
ν of ∂B1, such that (a) the plane π through c1 delimiting ν is disjoint from C12, and (b)
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ν and C12 lie on different sides of π, must contain a point q of P , for otherwise we could
have brought B1 and B2 closer together by moving c1 in the normal direction of π, into
the halfspace containing c2 (and C12). See Figure 2.

π

c2
ν

B2

q

C12
B1

c1

Figure 2: The plane π passes through c1 and is disjoint from C12. The hemisphere ν delimited by
π, which lies on the side of π not containing C12, must contain a point q of P .

c2

B1 C12

v1

B2

c1

Figure 3: v1 is the leftmost point of the intersection circle C12.

Guessing orientations and separating planes. We choose a set D of canonical
orientations, so that the maximum angular deviation of any direction u from its closest
direction in D is an appropriate multiple α of β. The connection between α and β is
given by the following reasoning. Fix a direction v ∈ D so that the angle between the
orientation of c1c2 and v is at most α. Rotate the coordinate frame so that v becomes the
x-axis. As above, let C12 denote the intersection circle of ∂B1 and ∂B2 (assuming that
the balls intersect). Let v1 be the leftmost point of C12 (in the x-direction); see Figure 3.
If B1 and B2 are disjoint (which only happens when |c1c2| > 2r) we define v1 to be the
leftmost point of B2. To determine the value of α, we note that (in complete analogy
with Sharir’s algorithm in the plane [34]) our procedure will try to find a yz-parallel
plane, which separates c1 from v1. For this, we want to ensure that x(v1)−x(c1) > βr/4,
say, to leave enough room for guessing such a separating plane. Let θ denote the angle
�v1c1c2 (see Figure 4). Using the triangle inequality on angles, the angle between −−→c1v1

and the x-axis is at most θ + α, so x(v1) − x(c1) ≥ r cos(θ + α). Hence, to ensure the
above separation, we need to choose α, such that cos(θ + α) > β/4. Since |c1c2| ≥ βr,
we have cos θ ≥ β/2. Hence, it suffices to choose α, such that

α ≤ cos−1 β

4
− cos−1 β

2
= sin−1 β

2
− sin−1 β

4
= Θ(β).
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x(v1)

θ

x(c1)

B1

B2

c2
r

βr

v2

c1

v1

Figure 4: x(v1)− x(c1) ≥ r cos(θ + α).

With this constraint on α, the size of D is Θ (1/α2) = Θ (1/β2).
We draw O(1/β) yz-parallel planes, with horizontal separation of βr/4, starting at

the leftmost point of P (with respect to the guessed orientation). One of these planes
will separate v1 from c1. Thus, the total number of guesses that we make (an orientation
in D and a separating plane) is O(1/β3). The following description pertains to a correct
guess, in which the properties that we require are satisfied. (If all guesses fail, the decision
procedure has a negative answer.)

Reducing to a 2-dimensional search. By the property noted above, the left hemi-
sphere νλ0 of ∂B1, delimited by the yz-parallel plane λ0 through c1, must pass through
at least one point q of P (see Figure 5).

B1

c2

C12

λ

νλ0

B2

q v1

c1

λ0

Figure 5: The separating plane λ and its parallel copy λ0 through c1. The hemisphere νλ0 of ∂B1

to the left of λ0 must contain a point q of P .

Let PL denote the subset of points of P lying to the left of λ. Then PL must be fully
contained in B1 and contain q. We compute the intersection K(PL) =

⋂{Br(p) | p ∈ PL}
in O(n log n) time [9]. If K(PL) is empty, then PL cannot be covered by a ball of radius
r and we determine that the currently assumed configuration does not yield a positive
solution for the decision problem. Otherwise, since PL ⊆ B1, c1 must lie in K(PL).
Moreover, since q ∈ PL lies on the left portion of ∂B1, c1 must lie on the right portion
of the boundary of K(PL). Finally, since c1 lies to the left of λ, only the portion σL of
the right part of ∂K(PL) to the left of λ has to be considered. If K(PL) is disjoint from
λ then σL is just the right portion of ∂K(PL). Otherwise, σL has a “hole”, bounded
by ∂K(PL) ∩ λ, which is a convex piecewise-circular curve, being the boundary of the
intersection of the disks Br(p) ∩ λ, for p ∈ PL.

9



We partition σL into quadratically many cells, such that if we place the center c1 of
the left solution ball B1 in a cell τ , then, no matter where we place it within τ , B1 will
cover the same subset of points from P . To construct this partition, we intersect, for
each p ∈ PR = P \ PL, the sphere ∂Br(p) with σL and obtain a curve γp on σL; this
curve bounds the portion of the unique face of ∂K(PL ∪ {p}) within σL. Hence, within
K(PL), it is a closed connected curve (it may be disconnected within σL, though). Let
M denote the arrangement formed on σL by the curves γp, for p ∈ PR, and by the arcs of
σL. Apriori, M might have cubic complexity, if many of the O(n2) pairs of curves γa, γb,
for a, b ∈ PR, traverse a linear number of common faces of σL, and intersect each other
on many of these faces, in an overall linear number of points. Equivalently, the “danger”
is that the intersection circle Cab of a corresponding pair of spheres ∂Br(a), ∂Br(b), for
a, b ∈ PR, could intersect a linear number of faces of σL (and each of these intersections
is also an intersection point of γa and γb). See Figure 6.

Figure 6: In a general setup (different than ours), an intersection circle of two balls (the dotted
circle) may intersect a linear number of faces of ∂K(PL).

Complexity of M . Fortunately, in the assumed configuration, this cubic behavior is
impossible — Cab can meet only a constant number of faces of σL. Consequently, the
overall complexity of M is only quadratic. This crucial claim follows from the observation
that, for Cab to intersect many faces of σL, it must have many short arcs, each delimited
by two points on σL and lying outside K(PL). The main geometric insight, which rules
out this possibility, and leads to our improved algorithm, is given in the following lemma.

Lemma 4.1. Let λ be a yz-parallel plane, which separates v1 from c1. Let PL ⊆ P be the
subset of points of P to the left of λ, and let PR = P \PL. Let Cab denote the intersection
circle of ∂Br(a), ∂Br(b), for some pair of points a, b ∈ PR, and let q ∈ PL. If the arc
ω = Cab \ Br(q) is smaller than a semicircle of Cab, then at least one of its endpoints
must lie to the right of λ.

Proof. The situation and its analysis are depicted in Figure 7. To slightly simplify the
analysis, and without loss of generality, assume that r = 1. Let h be the plane passing
through a, b and q. Let cab denote the midpoint of ab, and let w denote the center of the
circumscribing circle Q of 4qab. Denote the distance |ab| by 2x, and the radius of Q by
y (so |wp1| = |wp2| = |wq| = y). Note that cab and w lie in h and that y ≥ x. Observe
that cab is the center of the intersection circle Cab of ∂Br(a) and ∂Br(b). See Figure 7(a).

The intersection points z, z′ of Cab and ∂Br(q) are the intersection points of the three
spheres ∂Br(a), ∂Br(b), and ∂Br(q). They lie on the line ` passing through w and
orthogonal to h, at equal distances

√
1− y2 from w. See Figure 7(b). (If y > 1 then
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b

q

y

y

a

x
cab

h

w

w
ω

`

z

z′p
1
−

y
2

cab

√ 1−
x
2

Cab

(a) (b)

Q
a

q

w′

b

cab
w

(c)

Figure 7: The setup in Lemma 4.1: (a) the setup within the plane h; (b) the setup within Cab; (c)
ww′ lies on the bisector of ab in the direction that gets away from q.

z and z′ do not exist, in which case Cab does not intersect ∂Br(q); in what follows we
assume that y ≤ 1.) Hence, within Cab, zz

′ is a chord of length 2
√

1− y2. In the assumed
setup, z and z′ delimit a short arc ω of Cab, which lies outside Br(q), so points on the arc
are (equally) closer to a and b than to q.

Hence, the projection of the arc ω onto h is a small interval ww′, which lies on the
bisector of ab in the direction that gets away from q; that is, it lies on the Voronoi edge
of ab in the diagram Vor({a, b, q}) within h. See Figure 7(c). Moreover, cab also lies on
the bisector, but it has to lie on the other side of w, or else the smaller arc ω would have
to lie inside Br(q). That is, cab has to be closer to q than to a and b. Since λ separates a
and b from q, it also separates cab from q. Moreover, the preceding arguments are easily
seen to imply that wq crosses ab (as in Figure 7(a)), which implies that λ also separates
q and w, so w has to lie to the right of λ. Since z and z′ lie on two sides of w on the line
`, at least one of them has to lie on the same side of λ as w (i.e., to the right of λ). This
completes the proof.

Let a, b ∈ PR and consider those arcs of Cab which lie outside K(PL) but their end-
points lie on σL. Clearly, all these arcs are pairwise disjoint. At most one such arc can be
larger than a semicircle. Let ω be an arc of this kind which is smaller than a semicircle,
and let q ∈ PL be such that one endpoint of ω lies on ∂Br(q). Then ω′ = Cab \ Br(q) is
contained in ω and therefore is also smaller than a semicircle. By Lemma 4.1, exactly one
endpoint of ω′ lies to the right of λ (the other endpoint lies on σL). Note that Cab cannot
have more than two such short arcs lying outside K(PL), since, due to the convexity
of Cab, only two arcs of Cab can have their two endpoints lying on opposite sides of λ.
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Hence the number of arcs of Cab under consideration is at most 3, implying that γa and
γb intersect at most three times, and thus the complexity of M is O(n2), as asserted.

Constructing and searching M . The next step of the algorithm is to compute M .
We have already constructed ∂K(PL), in O(n log n) time, and, in additional linear time,
we can compute its portion σL to the left of λ (we omit the straightforward details).
We compute the intersection curve γp of Br(p) and σL, for each p ∈ PR, in O(n log n)
time, by computing the intersection K(PL ∪{p}), and obtaining the curve which bounds
the portion of the unique face of ∂K(PL ∪ {p}) within σL. If necessary, we also split γp

into portions, such that each portion is contained in a different face of σL. The total
cost of computing all curves {γp | p ∈ PR}, and spreading them along the faces of σL, is
O(n2 log n). Then, for each face f of σL, we consider the portions of all the arcs γp, for
p ∈ PR, within f , and compute their arrangement (which is the portion of M which lies
in f). To this end, we use standard line-sweeping [19], to report all the intersections of n
curves in the plane in O((n+k) log n) time, where k = kf is the complexity of the resulting
arrangement on f . Hence, the total cost of computing the portion of M on all the faces
of σL is

∑
f∈σL

O((n+ kf ) log n) = O(n2 log n) +O(log n) ·∑f∈σL
kf = O(n2 log n), since

the complexity of M is O(n2).
We next perform a traversal of the cells of M in a manner similar to the one used

in Section 3, via a tour, which proceeds from each visited cell to an adjacent one. For
each cell τ that we visit, we place the center c1 of B1 in τ , and maintain dynamically the
subset P+

τ of points of P not covered by B1. (Here, unlike the algorithm of Section 3, the
complementary set P−τ is automatically covered by B1 and there is no need to test it.) As
before, when we move from one cell τ to an adjacent cell τ1, P

+
τ1

gains one point or loses
one point. This implies that this tour generates only O(n2) connected life-spans of the
points of P , where a life-span of a point p is a maximal connected interval of the tour,
in which p belongs to P+

τ . We can thus use a segment tree TM to store these life-spans,
as before. Each leaf u of TM represents a cell τ of M , and the balls not containing τ are
those with life-spans that are stored at the nodes on the path from the root to u. Since
M has a quadratic number of cells, TM has a total of O(n2) leaves. Arguing exactly as in
Section 3.1, we can compute TM in overall O(n2 log2 n) time, and the total storage used
by TM is O(n2 log n).

As in Section 3.1, we next test, for each leaf u of TM , whether the spherical polytopes
along the path from the root to u have non-empty intersection. We do this using the
parametric search technique described in Proposition 3.1, which takes O(log5 n) time for
each path, for a total of O(n2 log5 n). More precisely, as above, we also need to distinguish
between r = r∗ and r > r∗. We therefore stop only when both the intersection along
the path and the cell of σL corresponding to u are non-degenerate, and then report that
r∗ < r. Otherwise, we continue running the above procedure over all paths of TM , and
repeat it for each of the O(1/β3) combinations of an orientation v and a separating plane
λ. If we find at least one (degenerate4) solution, we report that r∗ = r, and otherwise
conclude that r∗ > r. Hence, the cost of handling Case 2, and thus also the overall cost
of the decision procedure, is O((1/β3)n2 log5 n).

4Note that
⋂{Br(p) | p ∈ P−τ } is non-degenerate if τ is a 2-face or an edge. If τ is a vertex we test for

degeneracy as in the procedure in Section 3.1. Determining whether
⋂{Br(p) | p ∈ P+

τ } is degenerate is
also performed using that procedure.
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4.2 Solving the optimization problem

We now combine the decision procedure Γ described in Section 4.1 with the randomized
optimization technique of Chan [11] (as briefly described in Section 3.2), to obtain a
solution for the optimization problem.

The decision procedure Γ, on a specified radius r, relies on an apriori knowledge of
a lower bound β for the separation ratio |c1c2|/r. To supply such a β, let r0 denote the
radius of the smallest enclosing ball of P , and observe that if there exist two balls B1, B2

of radius r covering P then the smallest ball B∗ enclosing B1 ∪ B2 must be at least as
large as the smallest enclosing ball of P , so its radius must be at least r0. Since this
radius is (1+β/2)r (see Figure 8), we have (1+β/2)r ≥ r0 or β ≥ 2(r0/r− 1). It follows
that the running time of the decision procedure Γ is

O

(
1

β3
n2 log5 n

)
= O

(
1

(1− r/r0)
3n

2 log5 n

)
.

rr

B∗

B2B1

c1 c2

βr

Figure 8: The smallest enclosing ball B∗ of B1 ∪B2.

Chan’s technique starts with a very big r (for all practical purposes we can start with
r = r0) and shrinks it as it iterates over the subproblems. Therefore, running Chan’s
technique in a straightforward manner, starting with r = r0, will make it potentially
very inefficient, because the initial executions of Γ, when r is still close to r0, may be
too expensive due to the large constant of proportionality (not to mention the run at r0
itself, which the algorithm cannot handle at all). We need to fine-tune Chan’s technique,
to ensure that we do not consider values of r which are too close to r0. To do so, we
consider the interval (0, r0) which contains r∗, and run an “exponential search” through
it, calling Γ with the values ri = r0 (1− 1/2i), for i = 1, 2, . . ., in order, until the first time
we reach a value r′ = ri ≥ r∗. Note that 1− r′/r0 = 1/2i and 1/2i < 1− r∗/r0 < 1/2i−1,
so our lower bound estimates for the separation ratio β at r′ and at r∗ differ by at most a
factor of 2, so the cost of running Γ at r′ is asymptotically the same as at r∗. Moreover,
since the (constants of proportionality in the) running time bounds on the executions of
Γ at r1, . . . , ri form a geometric sequence, the overall cost of the exponential search is also
asymptotically the same as the cost of running Γ at r∗. We then run Chan’s technique,
with r′ as the initial minimum radius obtained so far. Hence, from now on, each call to
Γ made by Chan’s technique will cost asymptotically no more than the cost of calling Γ
with r′ (which is asymptotically the same as calling Γ with r∗).
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Combining Chan’s technique with the decision procedure Γ. To apply Chan’s
technique with our decision procedure, we use the same cutting-based decomposition as
in Section 3.2. That is, we replace each point p ∈ P by its dual plane p∗ ∈ P ∗, and
construct a (1/%)-cutting of A(P ∗), for some sufficiently large constant parameter % > 0.
We then apply Chan’s technique to the resulting subproblems (where each subproblem
corresponds to a simplex ∆i of the cutting), using the improved decision procedure Γ
on each of them, and recursing into some of them, as required by the technique. As
in Section 3, the recursion and the application of the decision procedure are not “pure”,
because they need to consider also those planes that miss the current simplex. (Note that
in the problem decomposition we use, for simplicity, the full 3-dimensional arrangement
A(P ∗), of cubic size. This, however, does not affect the asymptotic running time, because
we have only a constant number of subproblems, and Chan’s technique recurses into only
an expected logarithmic number of them.) Given a radius r, we compute the lower

bound β = 2
(

r0

r
− 1

)
for the separation ratio |c1c2|

r
, where c1, c2 are the centers of the

two covering balls, as above. Consider the application of Γ to a subproblem represented
by a simplex ∆i of the cutting. The presence of “global” points (those dual to planes
passing above or below ∆i) forces us, as in Section 3.2, to modify the “pure” version of
Γ described above. We use the same notations as in Section 3.

λ

B1

hλ

B2

c2

π

v1

c1

Figure 9: hλ does not contain any point of P+
∆i

.

We again rotate the coordinate axes, in O (1/β2) ways (in the same manner as in
the “pure” decision procedure), and draw O(1/β) yz-parallel planes, such that, at the
correct orientation, one of these planes, λ, separates c1 from v1 (if there is a solution for
r). As in the pure case, we may assume that the x-span of P is at most 5r; a larger
span is handled earlier. We assume, without loss of generality, that P−∆i

⊆ B1, and that
P+

∆i
⊆ B2. Recall also that the points in the left halfspace hλ bounded by λ are all

contained in B1. Moreover, the plane π containing the intersection circle C12 is dual to a
point π∗, which has to separate (P ∗)+

∆i
from (P ∗)−∆i

. Hence, all the points of P+
∆i

have to
lie on the other side of π, and in B2, which is easily seen to imply that none of them can
lie in hλ. See Figure 9. We thus verify that P+

∆i
∩ hλ = ∅, aborting otherwise the guess

of λ. (Note that, in contrast, points of P−∆i
can also lie to the right of λ.)

We now have a subset PL ⊆ P 0
∆i

of O(m) points to the left of λ, which are assumed,
together with the points of P−∆i

, to be contained in B1. Note however that, for Lemma 4.1
to hold, we have to define σL only in terms of the points to the left of λ. Therefore, we
compute the surface σ′L = ∂K(PL ∪ (P−∆i

∩ hλ)) ∩ hλ and search on it for a placement
of the center c1 of B1. However, since the remaining points of P−∆i

are also assumed to
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belong to B1, we need to consider only the portion of σ′L inside
⋂{Br(p) | p ∈ P−∆i

\ hλ}.
Let σ′′L denote this portion. It is easy to compute σ′′L in O(n log n) time. It is easily
checked that c1 must lie on σ′′L (if there is a solution for the current situation). So far, the
cost of the decision procedure also depends (cheaply — see below) on the initial input
size n, but the saving in this setup comes from the fact that it suffices to intersect the
O(m) spheres ∂Br(p), for p ∈ P 0

∆i
\ hλ, with σ′′L to obtain the map M , since only the

points of P 0
∆i

are “undecided”. (The points of P+
∆i

are always placed in B2 as already
discussed.)

Note that σ′′L need not to be connected, so it may seem impossible to visit all the
cells of M in a single connected tour. Nevertheless, we will be able to do it, in a manner
detailed below. We thus build a segment tree TM to maintain the subset P ′(c1) of points
of P not covered by B1. We build and query TM as is done in Section 3.1, except for the
following modifications. First, note that the points of P+

∆i
are assumed to be contained in

B2. Thus, the points of P+
∆i

, that in the decision procedure were considered in buildingM ,
do not need to be considered as part of M now, rather it is enough to build the spherical
polytope

⋂{Br(p) | p ∈ P+
∆i
} and place it at the root of TM . Second, we claim that M is

of complexity O(mn). To see this, let C0 denote the set of curves {∂Br(p)∩σ′′L | p ∈ P 0
∆i
}.

Each pair of curves of C0 can intersect each other in only a constant number of points,
as proved in Section 4.1. Hence, the complexity of the arrangement of the O(m) curves
in C0, formed on σ′′L, is O(m2). However, σ′′L itself is of complexity O(n), and each edge
of σ′′L may intersect the curves of C0 at O(m) points. Hence, the complexity of the map
M is O(mn), but the number of its vertices that lie in the interior of the faces of M is
only O(m2).

To overcome the possible disconnectedness of σ′′L, we proceed as follows. We consider
the (connected) network of the O(n) edges of σ′L, and intersect each of these edges with
the m balls Br(p), for p ∈ P 0

∆i
. We construct a tour of this network, which visits O(mn)

arcs along the edges of σ′L, and append to this “master tour” separate tours of each face
of σ′′L. We get in this way a single grand tour of the cells of M (which also traverses
some superfluous arcs of σ′L \ σ′′L), of length O(mn), which has the incremental property
that we need: Moving from any cell or arc of the tour to a neighbor cell or arc incurs an
insertion or a deletion of a single point into/from P ′(c1).

Running time. For each cell of M we run the procedure described in Proposition 3.1
for determining whether the intersection of the corresponding spherical polytopes is
nonempty (and whether it has nonempty interior). Therefore, solving each subprob-
lem requires O(mn log5 n) time. The O(mn log n) time required to build M , and the
O(n log n) time required to construct the intersection of the balls in {Br(p) | p ∈ P+

∆i
},

are all subsumed in that cost. Repeating this for each of the O(1/β3) guesses of an ori-
entation and a separating plane, results in O

(
(1/β3)mn log5 n

)
rnning time. When the

recursion bottoms out, we handle it the same way as in Section 3.2.
Arguing similarly to the less efficient solution, we obtain the following recurrence

for the maximum expected cost T (m,n) of solving a recursive subproblem involving m
“local” points, where n is the number of initial input points in P .

T (m,n) ≤
{

ln(c%3)T (m/%, n) +O
(
(1/β3)mn log5 n

)
, for m ≥ %,

O(n), for m < %,
(3)

where c is an appropriate absolute constant (as in Section 3.2), % is the parameter of the
cutting, chosen to be a sufficiently large constant (to satisfy (1), as above, with γ = 2),
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and β = 2 (r0/r
′ − 1), where r′ is the value of r at which the initial exponential search is

terminated.
It can be shown rather easily (and we omit the details, as we did in the preceding sec-

tion), that the recurrence (3) yields the overall bound O
(
(1/β3)n2 log5 n

)
on the expected

cost of the initial problem; i.e.,

T (n, n) = O
(
(1/β3)n2 log5 n

)
.

We thus finally obtain our main result:

Theorem 4.2. Let P be a set of n points in R3. A 2-center for P can be computed in
O((n2 log5 n)/(1 − r∗/r0)3) randomized expected time, where r∗ is the radius of the balls
of the 2-center for P and r0 is the radius of the smallest enclosing ball of P .

5 Efficient Emptiness Detection of Intersection of

Spherical Polytopes

In this section we describe an efficient procedure for testing emptiness (and non-degeneracy)
of the intersection of spherical polytopes, as prescribed in Proposition 3.1. Let S be a
collection of spherical polytopes, each defined as the intersection of at most n balls of a
fixed radius r. Fix a spherical polytope S ∈ S. To simplify the forthcoming analysis,
we assume that the centers of the balls involved in the polytopes of S are in general
position, meaning that no five of them are co-spherical, and that there exists at most
one quadruple of centers lying on a common sphere of radius r. As is well known, each
ball b participating in the intersection S contributes at most one (connected) face to ∂S
(see [32]). The vertices and edges of S are the intersections of two or three bounding
spheres, respectively (at most one vertex might be incident to four spheres). Hence ∂S
is a planar (or, rather, spherical) map with at most |S| faces, which implies that the
complexity of ∂S is O(|S|).

We preprocess S into a point-location structure. We first partition ∂S into its upper
portion ∂S+ and lower portion ∂S−. We project vertically each of ∂S+ and ∂S− onto
the xy-plane and obtain two respective planar maps M+ and M− (see Figure 10). For
each face ζ of each map we store the ball b that created it; that is, ζ is the projection
of the (unique) face of ∂S that lies on ∂b. The xy-projection S∗ of S is equal to both
projections of ∂S+, ∂S−, and is bounded by a convex curve E∗ that is the concatenation
of the xy-projections of certain edges of S and of portions of horizontal equators of some
of its balls.

l

q
R2

S

M−

Figure 10: Projecting ∂Si
− vertically onto the xy-plane (left), and the point location structure for

the resulting map M−
i (right).
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We apply the standard point-location algorithm of Sarnak and Tarjan [33] to each
of the maps M+,M−. That is, we divide each planar map into slabs by parallel lines
(to the y-axis) through each of the endpoints (and locally x-extremal points) of the arcs
obtained by projecting the edges of ∂S, including the new equatorial arcs. Using the
persistent search structure of [33], the total storage is linear in |S| and the preprocessing
cost is O(|S| log |S|), where |S| is the number of balls forming S. To locate a point q0 in
M+ (or in M−), we first find the slab in the x-structure that contains q0, and then find
the two curves between which q0 lies in the y-structure.5

To determine whether q ∈ S∗, we locate the face ζ+ (resp., ζ−) of the map M+ (resp.,
M−) that contains q, as just described. Each of these faces can be a 2-face, an edge or a
vertex. We therefore retrieve a set B+ (resp., B−) of the one, two, or three or four balls
associated (respectively) with the 2-face, edge or vertex containing q. (We omit here the
easy construction of witness balls when the faces ζ+ and ζ− are not associated with any
ball, that is, q /∈ S∗.)

Let B denote the set B+ ∪ B−. We observe that q ∈ S∗ if and only if the z-vertical
line λq through q intersects S. Moreover, we have, by construction, λq ∩ S = λq ∩ (

⋂B).
Hence q ∈ S∗ if and only if s := λq ∩ (

⋂B) 6= ∅. Clearly, if we put N =
∑

S∈S |S|, then
the preprocessing stage takes a total of O(N log n) time and requires O(N) storage.

Next, let S1, . . . , St be t ≤ log n spherical polytopes of S, for which we want to deter-
mine whetherK =

⋂t
i=1 Si is nonempty (and, if so, whether it has nonempty interior). We

solve this problem by employing a technique similar to the multi-dimensional parametric
searching technique of Matoušek [26] (see also [1, 10, 17, 31]). We solve in succession the
following three subproblems, Π0(q), where q is a point in the xy-plane, Π1(l), where l is
a y-parallel line in the xy-plane, and Π2, over the entire xy-plane. In the latter problem
we wish to to determine whether the xy-projection K∗ of K is nonempty. During the
execution of the algorithm for solving Π2, we call recursively the algorithm for solving
Π1(l), for certain y-parallel lines l ⊂ R2, and we wish to determine whether K∗ meets l. If
so, then Π2 is solved directly (with a positive answer). Otherwise, we wish to determine
which side of l, within R2, can meet K∗ (since K∗ is convex, there can exist at most one
such side). The recursion bottoms out at certain points q ∈ l, on which we run Π0(q)
to determine whether K∗ contains q. If so, then Π1(l) is solved directly (with a positive
answer). Otherwise, we determine which side of q, within l, can meet K∗, and continue
the search accordingly.

Our solutions to the subproblems Πk, 0 ≤ k ≤ 2, are based on generic simulations of
the standard point-location machinery of Sarnak and Tarjan [33] mentioned above. In
each of the subproblems, if we find a point in f ∩ K∗, for the respective point, line, or
the entire xy-plane f , we know that K 6= ∅ and stop right away. If f ∩K∗ = ∅, we want
to “prove” it, by returning a small set of witness balls b1, . . . , by, where, for each j, bj is
one of the balls that participates in some spherical polytope Si (so bj ⊇ Si), so that their
intersection K0 =

⋂y
j=1 bj satisfies f ∩K∗

0 = ∅ (where, as above, K∗
0 is the xy-projection

of K0). If K0 = ∅ then K = ∅ too and we stop. Otherwise (when f is a line or a point),
K0 determines the side of f (within R2 if f is a line, or within the containing line l if f is a
point) that might meet K∗; the opposite side is asserted at this point to be disjoint from
K∗. We use this information to perform binary search (or, more precisely, parametric
search) to locate K∗ within the flat, from which we have recursed into f . The execution
of the algorithm for solving Π2 will therefore either find a point in K or determine that

5All these standard details are presented to make more precise the infrastructure used by the
higher-dimensional routines Π1 and Π2.
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K = ∅, because it has collected a small (as we will show, polylogarithmic) number of
witness balls, whose intersection, which has to contain K, is found to be empty.

Solving Π0(q) for a point q. Here we have a point q ∈ R2 and we wish to determine
whether q ∈ K∗. To do so, we locate q in each of the maps M+

i (the xy-projection of
∂S+

i ) and M−
i (the xy-projection of ∂S−i ), for each i = 1, . . . , t. If q lies outside the

projection of at least one polytope Si then q /∈ K∗, and we return the witness balls
that prove that q /∈ S∗i . Otherwise, as explained above, each point location returns a
set Bi of O(1) witness balls for Si. We compute the t line segments si = λq ∩ (

⋂Bi),
for each i = 1, . . . , t, where λq is, as above, the z-vertical line through q. We then have
K0 := λq ∩ K =

⋂t
i=1 si, so it suffices to compute this intersection (in O(t) time) and

test whether it is nonempty. If K0 is nonempty, then we have found a point q′ in K.
Otherwise, we return the set B0 =

⋃{Bi | 1 ≤ i ≤ t} of up to 5 log n balls as witness balls
for the higher-dimensional step (involving the y-parallel line containing q).

The time complexity for solving Π0(q) is O(log2 n), since it takes O(log n) time to
compute, for each of the O(log n) spherical polytopes Si, the intersection λq ∩ Si.

Solving Π1(l) for a line l. Here we have a y-parallel line l ⊂ R2 and we wish to
determine whether K∗ meets l. We first locate l in each of the planar maps M+

i and
M−

i of each Si, and find the slabs ψ+
i and ψ−i , which contain l (in some cases l is the

common bounding line of two adjacent slabs ψ′i and ψ′′i of M+
i or of M−

i , so we retrieve
both slabs). We then run a binary search through the y-structure of each of the obtained
slabs to find a point in K∗ ∩ l, if one exist. In each step of the search, within some fixed
slab ψ0, we consider an arc γ of the y-structure, and determine whether K∗ meets l above
or below γ (within R2), assuming K∗ ∩ l 6= ∅. To this end, we find the intersection point
q0 = l ∩ γ, and run the algorithm for solving Π0(q0) (see Figure 11). If q0 ∈ K∗, then
we have found a point q′ in K, and we immediately stop. Otherwise, we have a set B0

of up to 5 log n balls returned by the algorithm for solving Π0(q0). We test whether the
xy-projection K∗

0 of
⋂B0 intersects l. If K∗

0 ∩ l = ∅, then (due to the convexity of K) we
know which side of l (within R2) meets K∗, and we return B0 as a set of witness balls
for the higher-dimensional (planar) step. Otherwise (again due to the convexity of K),
we know which side of γ, within l, meets K∗, and we continue the search through the
y-structure of ψ0 on this side. We continue the search in this manner, until, for each Si,
we obtain an interval ξi of l between two consecutive arcs of the y-structure of ψ0, which
meetsK∗ (assumingK∗∩l 6= ∅). Let Ξ denote the collection of all these intervals. Clearly,
K∗ ∩ l ⊆ ⋂

Ξ. We find the lowest endpoint E− among the top endpoints of the intervals
in Ξ and the highest endpoint E+ among the bottom endpoints of the intervals in Ξ, and
test whether E− is above E+. If so, we consider the set B1 of up to 10 log n witness balls
returned by the algorithms for solving Π0(E

−) and Π0(E
+). If the xy-projection K∗

1 of⋂B1 intersects l, then K∗ meets l and we stop immediately, for we have found that K is
nonempty. Otherwise, we know which side of l (within R2) can meet K∗, and we return
B1 as a set of witness balls for the higher (planar) recursive level. If E− is not above
E+, then K∗ ∩ l = ∅ and we return B1 as a set of witness balls for the higher (planar)
recursive level as well.6

6With some care, the number of witness balls can be significantly reduced. We do not go into this
improvement, because handling the witness balls is an inexpensive step, whose cost is subsumed by the
cost of the other steps of the algorithm.
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l

ψ0

γ q0

Figure 11: The line l on which we run Π1(l). The point q0 on which we run Π0(q0) is the
intersection point of l with some arc γ.

A naive implementation of the above procedure takes O(log4 n) time, since for each of
the O(log n) spherical polytopes Si we run a binary search through the y-structure of at
most two slabs of each of the maps M+

i and M−
i , and in each of the binary search steps,

we run the algorithm for solving Π0(q0) for some point q0. The other substeps take less
time. However, we can improve the running time by implementing it in a parallel manner
and simulating the parallel version sequentially with a smaller number of calls to Π0.

We only parallelize the binary searches through the y-structure of each M+
i and M−

i ,
since the other substeps take less time. To this end, we use O(log n) processors, one for
each of the planar maps M+

i and M−
i , and we run in parallel the binary search through

the y-structure of each planar map using O(log n) parallel steps. In each parallel step we
need to “compare” O(log n) arcs with K∗ (one arc for each of the planar maps M+

i , M−
i ).

We therefore intersect each such arc with l and obtain a set Q of O(log n) intersection
points. We then run a binary search through the points of Q (to locate K∗) using Π0.
This determines the outcome of the comparisons of each of the arcs with K∗, and the
parallel execution can proceed to the next step. Applying this approach to each of the
O(log n) parallel steps results in an O(log3 n log log n)-time algorithm for solving Π1(l).
However, we can slightly improve this bound further using a simple variant of Cole’s
technique [18]. More precisely, in each parallel step we have a collection Q of O(log n)
weighted points, one for each map, which we need to compare with K∗. We select the
(weighted) median point q0 of Q and run Π0(q0). This determines the outcomes of the
comparisons between K∗ and each of the points in Q which lie to the opposite side of
q0 to the side containing K∗. Points in Q which lie in the same side of q0 as K∗, in
level j of the parallel implementation, are given weight 1/4j−1 and we try to resolve their
comparison to K∗ in the next step. An easy calculation (simpler than the one used by
Cole) shows that this method adds only O(log n) steps to the O(log n) parallel steps of
the searches, and now in each parallel step we perform only one call to Π0 (see [18] for
more details). Therefore, the total running time of Π1(l) is O(log3 n).

Solving Π2. We next consider the main problem Π2, where we want to determine
whether K∗ 6= ∅ (i.e., whether K 6= ∅). We use parametric searching, in which we run
the point location algorithm that we used for solving Π0, in the following generic manner.

In the first stage of the generic point location, we run a binary search through the
slabs of each of the planar maps M+

i and M−
i , for i = 1, . . . , t. In each step of the

search through any of the maps, we take a line l0 delimiting two consecutive slabs of the
map, and run the algorithm for solving Π1(l0), thereby deciding on which side of l0 to
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continue the search. At the end of this stage, unless we have already found a point in K
or determined that K is empty, we obtain a single slab in each map that contains K∗.
Let ψ denote the intersection of these slabs, which must therefore contain K∗ (unless K
is empty). The cost of this part of the procedure is O(log5 n).

In the next stage of the generic point location, we consider each map M+
i or M−

i

(for simplicity we refer to it just as Mi) separately, and run a binary search through
the y-structure of its slab ψi that contains ψ. In each step of the search we consider an
arc γ of the y-structure, and determine which side of γ (within the slab ψ), can meet
K∗, assuming that ψ ∩ K∗ 6= ∅; if γ ∩ K∗ 6= ∅ we will detect it and stop right away.
Before describing in detail how to resolve each comparison with an arc γ, we note that
this results in O(log n) comparisons of arcs γ to K∗ for each of the O(log n) planar maps
M+

i and M−
i . However, we can reduce the number of comparisons to O(log n) in total,

by simulating (sequentially) a parallel implementation of this step, as follows. There are
O(log n) parallel steps, and in each step we execute a single step of the binary search
in each of the maps M+

i ,M
−
i . In each parallel step we need to compare K∗ to a set G

of O(log n) arcs, one of each of the planar maps M+
i ,M

−
i . Consider the portion A′(G)

of the arrangement A(G) of the arcs in G which lies in ψ. Let L(G) denote the set of
O(log2 n) y-parallel lines which pass through the vertices of A′(G). We run a binary
search through the lines of L(G), using calls to the algorithm for Π1 to guide the search,
to locate K∗ amid these lines, in a total of O(log3 n log log n) running time. This step (if
it did not find a line crossing K∗) may trim ψ to a narrower slab ψ′ in which K∗ must
lie if K∗ 6= ∅. Put G′ = {γ ∩ ψ′ | γ ∈ G}, and observe that the arcs of G′ are pairwise
disjoint and form a sorted sequence in the y-direction. We then perform a binary search
through the arcs in G′, using O(log log n) comparisons to K∗. Each comparison is carried
out in O(log4 n) time, in a manner detailed below. Once the binary search is terminated,
we can determine the outcomes of the comparisons between K∗ and each of the arcs in
G′ and proceed to the next parallel step. Applying this approach to each of the O(log n)
parallel steps results in an O(log5 n log log n)-algorithm for solving Π2. We again use an
appropriate variant of Cole’s technique to improve the running time by a log log n factor,
in a manner similar to the one described in the solution of Π1.

To carry out a comparison between an arc γ ∈ G′ andK∗, we act under the assumption
that γ ∩K∗ 6= ∅, and try to locate a point of γ ∩K∗ in each of the other maps. Suppose,
to simplify the description, that we managed to locate the entire γ in a single face of
each of the other maps M+

j , M−
j . This yields a set B of O(t) balls, so that a point v ∈ γ

lies in K∗ if and only if it lies in the xy-projection K∗
0 of

⋂B. We then test whether
γ intersects K∗

0 . If so, we have found a point in K and stop right away. Suppose then
that K∗

0 ∩ γ = ∅. If K∗
0 ∩ ψ′ = ∅ then K must be empty, because we already know that

K∗ ⊂ ψ′. If K∗
0 ∩ ψ′ 6= ∅, then we know on which side of γ to continue the binary search

in (the portion within ψ′ of) ψi.
In general, though, γ might split between several cells of a map Mj, where Mj denotes,

as above, one of the maps M+
j or M−

j . This forces us to narrow the search to a subarc
of γ, in the following manner. We run a binary search through the y-structure of the
corresponding slab ψj of Mj, which contains ψ′, and repeat it for each of the maps Mj. In
each step of the search, we need to compare γ (or, more precisely, some point in γ ∩K∗)
with some arc δ of ψj, which we do as follows. If γ lies, within ψ′, completely on one side
of δ, we continue the binary search in ψj on that side of δ. If γ intersects δ, we pick an
intersection point v of γ and δ, pass a y-parallel line l0 ⊂ R2 through v, and run the non-
generic version of the algorithm to solve Π1(l0). (See Figure 12.) As before, if l0∩K∗ 6= ∅
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ψi

l0

vγ δ

ψj

Figure 12: Comparing γ∩K∗ with δ. The outcome of Π1(l0) determines (a) the side of δ in which
the search in ψj should continue, and (b) the portion of γ which can still meet K∗. The subslab ψ′

is drawn shaded.

we detect this and stop. Otherwise, we know which of the two portions of γ, delimited by
v, can intersect K∗. We repeat this step for each of the at most four intersection points
of γ and δ (observing that these are elliptic arcs), and obtain a connected portion γ′ of γ,
delimited by two consecutive intersection points, whose relative interior lies completely
above or below δ, so that γ ∩ K∗, if nonempty, lies in γ′. This allows us to resolve the
generic comparison with δ, and continue the binary search through ψj. (On the fly, each
comparison with a line l0 narrows ψ′ still further.)

To make this procedure more efficient, we perform the binary searches through the
slabs ψj in parallel, as follows. As before, we run in parallel the binary searches through
each of the slabs ψj using O(log n) parallel steps. In each parallel step we need to compare
a set D of O(log n) arcs to γ, one arc δ from each planar map Mj. We intersect each of
the arcs in D with γ and obtain a set Z of O(log n) intersection points. Let LZ denote
the set of the O(log n) y-parallel lines which pass through the points of Z. We run a
binary search through the lines of LZ , using calls to the algorithm for Π1 to guide the
search, in a total of O(log3 n log log n) running time. We obtain a connected portion γ′

of γ, delimited by two consecutive intersection points of Z, whose relative interior lies
completely above or below each δ ∈ D, so that γ∩K∗, if nonempty, lies in γ′. This allows
us to resolve each comparison between K∗ and an arc δ ∈ D, assuming that γ ∩K∗ 6= ∅,
and we continue the binary search through each Mj in the same manner.

We again use a variant of Cole’s technique [18] to slightly improve this bound further.
In each parallel step we have a collection Z of O(log n) weighted points, each of which is
an intersection point of γ with some arc δ from one of the planar maps Mj, and we need
to compare each of the points of Z with K∗. Let D denote the set of these active arcs.

Note that each arc δ participating in this step contributes (at most) four points to Z,
for a total of at most 4|D| points. We perform three steps of a (weighted) binary search on
the points of Z, where each step takes the weighted median z0 of an appropriate portion
of Z, and calls Π1(l0), where l0 is the vertical line through z0. These Π1-steps resolve the
comparisons with K∗ of all but 1/8 of the points of Z, that is, at most (1/8)·4|D| = |D|/2
points of Z are still unresolved.

In other words, after the three calls to the algorithm for solving Π1 (in the first parallel
step of the execution), we can determine the outcomes of the comparisons of at least half
of the arcs in D with K∗. We can then proceed in this manner and apply Cole’s technique
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(as before), by using only a constant number of calls to Π1 in each of the O(log n) parallel
steps of searching in all the maps. This reduces a log log n factor from the bound of the
running time, so it is only O(log5 n) time.

When these searches terminate, we end up with a 2-face in each Mj, in which γ ∩K∗

lies (if nonempty), and we reach the scenario described in a preceding paragraph. As
explained there, we can now either determine that K 6= ∅, or that K = ∅, or else we
know which side of γ, within ψi (or, rather, within ψ′) can contain K∗, and we continue
the binary search through ψi on that side.

When the binary search through ψi terminates, we have a 2-face ζi of Mi, where K∗

must lie, and we retrieve the ball bi corresponding to ζi. We repeat this step to each of
the maps M+

i and M−
i of each of the t spherical polytopes Si, and obtain a set B1 of

2t balls. In addition, the searches through the maps M+
i and M−

i may have trimmed
ψ′ to a narrower strip ψ′′, and have produced a set B2 of witness balls, so that the xy-
projection of their intersection lies inside ψ′′. B2 may consist of a total of O(t3 log2 n)
witness balls, as is easy to verify. In addition, the second-level searches produce an
additional collection B′2, consisting of balls corresponding to faces of the maps M+

j and
M−

j , in which the second-level searches have ended; their overall number is O(t2 log n).
Put K2 =

⋂
(B1 ∪ B2 ∪ B′2). Hence K 6= ∅ if and only if K2 6= ∅.

As already noted, the overall running time of the emptiness detection is O(log5 n).
So far, we have only determined whether K is empty or not. However, to enable

the decision procedure to discriminate between the cases r∗ = r and r∗ < r we need to
refine the algorithm, so that it can also determine whether K has nonempty interior (we
refer to an intersection K with this property as non-degenerate). To do so, we make the
following modifications to the algorithm described above. Each step in the emptiness
testing procedure which detects that K 6= ∅ obtains a specific point w that belongs to K.
Moreover, w belongs to the intersectionK1 of polylogarithmically many witness balls, and
does not lie on the boundary of any other ball. This is because each of the procedures
Π0,Π1, or Π2 locates the xy-projection w∗ of w (which, for Π1 and Π2 is a generic,
unknown point in K) in each of the maps M+

i ,M
−
i , i = 1, . . . , t, and the collection of the

witness balls gathered during the various steps of the searches contains all the balls that
participate in the corresponding spherical polytopes Si on whose boundary w can lie.
Thus, when we terminate with a point w ∈ K, we find, among the polylogarithmically
many witness balls, the at most four balls whose boundaries contain w (recall our general
position assumption), and test whether their intersection is the singleton {w}. It is easily
checked that this is equivalent to the condition that K is degenerate.

This completes the description of the algorithm, and concludes the proof of Proposi-
tion 3.1.

6 Discussion and Open Problems.

In this paper we presented two algorithms for computing the 2-center of a set of points in
R3. The first algorithm takes near-cubic time, and the second one takes near-quadratic
time provided that the two centers are not too close to each other. Note that our second
algorithm may be slightly revised, so that it receives, in addition to P , a parameter ε > 0
as input, and returns a solution for the 2-center problem for P , if ε ≤ 1− r∗

r0
. To this end,

we run the exponential search until we reach a value of r with 1 − r
r0
≤ ε. If along the

search we have found a value of r such that r ≥ r∗, we stop the search and run Chan’s
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technique with the constraint that r∗ ≤ r, as above. Otherwise, we have r∗ > r0(1 − ε)
and we may return the smallest enclosing ball of P as an ε-approximate solution for
the 2-center problem. This way, we ensure that the running time of our algorithm is
O(ε−3n2 log5 n).

An obvious open problem is to design an algorithm for the 2-center problem that runs
in near-quadratic time on all point sets in R3. Another interesting question is whether
the 2-center problem in R3 is 3sum-hard (see [22] for details), which would suggest that
a near-quadratic algorithm is (almost) the best possible for this problem.
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