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a polygon of P is bounded by a constant, then such an arrangement of k convex polygonsis not much di�erent from an arrangement of n segments, and no bounds better than thosejust cited can be obtained. However, the situation changes drastically if the average sizeof a polygon of P is increased, that is, if k � n. For instance, the maximum complexityof the entire arrangement, which can be as high as �(n2) in an arrangement of n arbitrarysegments, now reduces to �(kn)|this follows trivially from the observation that an edge ofone polygon of P can intersect the boundary of another convex polygon in at most two points,and the lower bound is equally trivial to establish. Below, the maximum total complexity ofE(P) is shown to be �(k2 + n�(k)), which is asymptotically much smaller than �(kn) (seeTheorem 2.1). The maximum complexity of a single face of E(P) is shown to be �(n�(k)),slightly improving the general upper bound cited above. In fact, this bound applies to anyface of the arrangement of P . Finally, we analyze the complexity of any m distinct faces ofE(P), and establish an upper bound of O(m2=3k2=3 log1=3 k2m +n log k), improving considerablythe general upper bound cited above.Intuitively, these bounds indicate that the complexity measures under consideration (of thecommon exterior, of any single face of the exterior, and of several faces of the exterior) dependmainly on the number of polygons k, with the parameter n contributing only an almost-linearadditive term to these bounds. In fact, these additive terms are all linear in n, with smallmultiplicative factors, which are at most logarithmic in k and independent of n.This paper, whose original preparation started about 1989, has found applications in [2].Another motivation for studying the problem comes from the study in [15] of translationalmotion planning in the plane. It is shown there that if P is a collection of Minkowski sums ofthe form Ai � B, where A1; : : : ; Ak and B are convex polygons, and the Ai's have pairwise-disjoint interiors, then the complexity of the common exterior E(P) is O(n), where n is thetotal number of edges of the polygons of P . In fact, the result of [15] is more general. Itstates that if the polygons of P have the property that the boundaries of any pair of themintersect in at most two points (a property that holds in the above case of Minkowski sums),then the complexity of their common exterior is O(n). However, if pairs of polygon boundariescan intersect in four (or more) points, the complexity of the common exterior can increase to
(k2), as is easily seen. The results of this paper give a tight calibration of the complexity ofE(P) (and a fairly accurate calibration of appropriate portions of E(P)) in this more generalcase. We also mention a recent extension of the results of this paper to three dimensions: wehave shown in [4, 5] that the complexity of the union of k convex polyhedra in 3-space, witha total of n faces, is O(k3 + kn log k), and can be 
(k3 + kn�(k)) in the worst case.In the remainder of the paper we assume that the polygons of P are in general position,i.e., no three polygon boundaries meet at a common point and no polygon vertex lies onthe boundary of another polygon. It is easy to show that appropriate slight expansions ofthe given polygons put them in general position, without decreasing the complexity measuresunder consideration. Thus there is no loss of generality in assuming general position.2 The Complexity of the Common ExteriorTheorem 2.1 The maximum number of edges bounding the common exterior of k convexpolygons with a total of n edges is �(n�(k) + k2).Proof: We �rst give a brief high-level overview of the proof. We form the arrangement Aof k `sentinel lines', each passing through the leftmost and rightmost points of some polygon,2



and of the 2k vertical lines passing through these leftmost and rightmost points. We nextdecompose the plane into O(k2) `boxes', by splitting each face of A further by vertical linespassing through the vertices on its lower boundary. We then show that the analysis of thecomplexity of the common exterior can be reduced to the analysis of the complexity of thelower envelopes, one in each box, of the polygon boundaries that cross the box. Within aparticular box C, each polygon boundary edge that crosses C is either `short' (terminateswithin C) or `long' (crosses the boundary of C twice.) We show that the overall number oflong edges, summed over all boxes, is O(k2), and the overall number of short edges is O(n).Using standard results on lower envelopes, the upper bound follows readily. The second termin the lower bound is based on the simple observation that any lower bound that holds forfaces in an arrangement of k line segments can be made to hold for the common exterior ofk convex polygons, by replacing each segment by a su�ciently thin rectangle. The �rst termrequires a more complex construction, built upon the 
(k�(k)) lower bound construction forlower envelopes of k segments, as given in [19].We now present the proof in full detail: Let P = fP1; : : : ; Pkg be a collection of k convexpolygons in the plane. Let ni denote the number of vertices of Pi, for i = 1; : : : ; k, so thatn =Pki=1 ni. In what follows, we will denote the common exterior E(P) simply as E .For each i, de�ne the sentinel segment si of Pi to be the segment connecting the leftmostvertex of Pi to its rightmost vertex. (Without loss of generality, we can assume that each Pihas a unique leftmost vertex and a unique rightmost vertex.) The sentinel line `i of Pi is theline containing si. Put S = fs1; : : : ; skg and L = f`1; : : : ; `kg. Draw a vertical line througheach endpoint of each segment in S, and let L� denote the union of L with the set of these 2kvertical lines.Consider the arrangement A(L�) of L�. Its combinatorial complexity is O(k2). Moreover,the number of intersections between the boundaries of the Pi's and the lines of L� is alsoO(k2), since a line can intersect the boundary of a convex polygon in at most two points.Let C be one of the (necessarily convex) cells of A(L�), and let Pi be a polygon in P . Ifthe x-projection of si is disjoint from that of C, then clearly Pi cannot contribute any featureto @E \ C. Otherwise, si can be classi�ed as lying either (possibly, partially) above C or(partially) below C. Let P+C (resp. P�C ) denote the subcollection of all the Pi's for which silies above (resp. below) C.It is easily seen that E \ C is the set of all points within C that lie between the lowerenvelope EP+C of the polygons in P+C and the upper envelope EP�C of the polygons in P�C .Hence, using a standard argument, the complexity of E \C is proportional to the sum of thecomplexities of these two envelopes within C.We estimate separately the complexity of the lower envelope portions C \EP+C and of theupper envelope portions C \EP�C , over all C 2 A(L�). It su�ces to consider the case of lowerenvelopes, since the case of upper envelopes is fully symmetric.We subdivide each face C of A(L�) into subfaces, by drawing a maximal vertical segmentwithin C from each vertex on the lower boundary of C. Note that each of the left, right,and bottom sides of each subface � consists of a single segment (the left and right sides maydegenerate to a single point, and, in case of unbounded subfaces, some of the sides may beabsent altogether), whereas the top boundary of � is a concave polygonal chain; see Figure 1.For each resulting subface � , let P+� denote the set of polygons in P+C whose lower boundariesintersect � , where C is the face of A(L�) containing � ; clearly, only the lower boundaries ofthese polygons can intersect � . (If some polygon Pi covers � completely, it does not contribute3



� @P � @PFigure 1: Possible interaction of a subface � of A(L�) and a polygon P in P+� . Thick linesindicate @P \ � .to E(P) and � need not be considered at all, so we will assume hereafter that no polygon ofP+C that meets � covers it completely.)Let B+� denote the set of segments that constitute the intersections @Pi \ � , for Pi 2 P+� .Let S+� denote the set of those segments e 2 B+� such that at least one endpoint of e is anoriginal vertex of the polygon on whose boundary e lies, and let R+� denote the set of all othersegments in B+� (both endpoints of each of these segments lie on @�). Clearly, P� jS+� j � 2n.We claim thatP� jR+� j = O(k2). To see this, �x a polygon Pi 2 P , and consider the outerzone of Pi in A(L�). This is de�ned as the collection of those portions of the faces of A(L�)crossed by the boundary of Pi, which lie outside Pi. If we erase, for each line ` 2 L�, thesegment `\ Pi, we obtain a collection L0 of at most 6k lines and rays, and the outer zone is aportion of a single face of A(L0). As is well known [1], the complexity of such a face is O(k).To complete the estimate of P� jR+� j, we charge each segment e 2 R+� , for any subface� , as follows. If e has an endpoint that lies on a line of L�, we charge e to that endpoint;the overall number of such points, as noted above, is O(k2) and each will be charged at mosttwice. Otherwise, the right endpoint of e lies on a vertical side g of � , which is a newly addedvertical segment, erected upwards from some vertex v of A(L�). In this case, we charge e tov, and observe that v is a vertex of the outer zone of the polygon Pi on whose boundary elies, and that v can be charged at most once by segments e lying on the lower boundary ofthe same Pi. It follows that the number of such segments e, over all subfaces � , that lie onthe boundary of any �xed Pi is O(k), so the overall number of such segments is O(k2).Consider next the lower envelope EP+� , within some subface � . Any vertex of EP+� that liesin the interior of � must also be a vertex of the lower envelope EB+� of the segments in B+� (notethat the converse statement may fail to hold). Any other vertex of � \EP+� lies on @� and is anendpoint of a segment in B+� , which also appears as a vertex of �\EB+� . We consider separatelythe lower envelopes ES+� and ER+� of the subcollections S+� and R+� , respectively, and observethat EB+� is the pointwise minimum of ES+� and ER+� , so its complexity is proportional to thesum of the complexities of these two `sub-envelopes'.4



The complexity of ES+� is O(jS+� j�(k)). This follows from the results of [13], exploitingthe fact that any vertical line intersects at most k segments of S+� . The complexity of ER+� isO(jR+� j). To see this, we take each segment e 2 R+� and replace it by a line or ray, as follows.If e does not intersect the bottom side of � , we replace e by the full line containing e. If eintersects the bottom side of � at some (unique) point u, we replace e by the ray emanatingfrom u and containing e. Let R�� denote the resulting collection of lines and rays. It is easyto verify that the lower envelope ER�� of R�� coincides, within � , with the envelope ER+� (theextended portions of the lines and rays in R�� all lie outside � , and none of them passes below�). Using, once again, the results of [1], we conclude that the complexity of ER�� , and thusalso that of ER+� , is O(jR+� j).We have thus shown that the sum of the complexities of the envelope portions � \ EP+� ,over all subfaces � , is proportional toX� O(jS+� j�(k) + jR+� j) = O(n�(k) + k2) :Applying a symmetric analysis to the upper envelopes EP�� , and combining the bounds, weobtain the upper bound asserted in the theorem.The lower bound is established by two constructions. The �rst construction yields acollection of k convex polygons with a total of n edges, whose common exterior E consistsof a single face of complexity 
(n�(k)). This is achieved as follows. Construct a collectionS = fs1; : : : ; skg of k segments, whose upper envelope has complexity 
(k�(k)) [19]. Asis easily veri�ed, one can extend each segment in S to a total continuous piecewise-linearfunction, by adding a steeply ascending (resp. descending) half-line immediately to the left(resp. to the right) of the segment, so that, if the absolute value of the slopes of all these half-lines is greater than some threshold value, then the combinatorial complexity of the upperenvelope of these functions is at least as large as that of the upper envelope of S.Let q = b n2k c, and �x 0 < � < �q . Without loss of generality, we may assume that q � 3.Scale S so that it �ts into a unit disc, and shrink it further vertically, so that any line formingan angle of less than �2 � �q + � with the vertical direction is \su�ciently steep" in the abovesense (in particular, the slope of such a line has larger absolute value than the slope of anysegment in S). Let Q be a regular q-gon whose side has length 10� . Place a rotated copy ofS at each vertex v of Q, aligning its vertical direction with the radial direction of the rayfrom the center of Q through v. Denote this rotated copy by S(v) = fs(v)1 ; : : : ; s(v)k g, wheres(v)i is the image of si in Sv, for each i = 1; : : : ; k and each vertex v of Q. Construct k 2q-gons, Q1; : : : ; Qk, where Qi, for i = 1; : : : ; k, is the convex hull of Sv s(v)i , where the unionis taken over all vertices v of Q. The boundary of each Qi consists of a sequence of edges,alternating between copies of si and long `connecting' edges between endpoints of pairs ofsuccessive copies of si. This follows from the way in which S was shrunk, as argued in moredetail in the following paragraph; see also Figure 2.Let pq be an edge of one of these polygons Qi, so that p is an endpoint of s(v)i and q is anendpoint of s(w)i , for a pair of adjacent vertices v, w of Q. By construction, p (resp. q) is in aunit disc centered at v (resp. w), and v and w are 10� apart. In particular, this implies thatthe angle between vw and pq cannot exceed �. As a result, in any single copy of S, the addedconnecting segments lie on lines forming an angle at most �2 � �q + � with the local \vertical"direction, and thus do not decrease the combinatorial complexity of the upper envelope ofeach copy of S (notice, by the way, that this also implies that the polygons Qi do indeed5



QFigure 2: The lower bound construction in Theorem 2.1, not to scale. One of the polygons Qiis shown dashed and part of the boundary of another polygon Qj is shown dotted.have the alternating structure claimed above). We have thus obtained a collection P of kconvex polygons with a total of 2qk � n edges, where the unbounded face (which is the onlycomponent of the common exterior E) has complexity q �
(k�(k)) = 
(n�(k)), as desired.The second term, 
(k2), in the asserted lower bound is trivial to obtain, e.g., by a collectionof k long and thin rectangles, half of which have their long edge horizontal, and the other halfhave their long edge vertical. Combining these two constructions, the asserted lower boundfollows.This completes the proof of the theorem. 23 Multiple Exterior FacesThe goal of this section is to establish sharp bounds on the overall complexity of m distinctfaces of the common exterior of a collection of convex polygons. We begin by stating thestandard `combination lemma' of [9]:Lemma 3.1 Let A1;A2 be two arrangements of a total of n segments in the plane, and let Adenote the arrangement obtained by superimposing A1 and A2. Let M be a set of m points,none lying on any segment. Then the overall complexity of the faces of A that contain pointsof M is at most C1 + C2 +O(m+ n), where Ci is the total complexity of the faces of Ai thatcontain points of M , for i = 1; 2.The main tool that we use is the so-called `multi-color combination lemma', which dealswith the complexity of several faces in an overlay of many arrangements. There are two knownvariants of this lemma:Lemma 3.2 (Combination Lemma I) Let A1; : : : ;At be t arrangements of a total of nsegments in the plane, and let M be a set of points, none of which lies on any segment. LetT be a binary tree of height O(log t), whose leaves correspond to the individual arrangementsAi, and let us associate with each internal node � of T the arrangement A� obtained by the6



superposition of all the arrangements corresponding to the leaves of the subtree rooted at �; theroot is thus associated with the superposition A of all the given arrangements. For any node� of T , let F� denote the collection of faces of A� that contain points of M , and let F denotethis collection at the root of T . Let Ci denote the total combinatorial complexity of the facesof the original arrangement Ai containing points of M , for i = 1; : : : ; t, and let C = PiCi.Then the total combinatorial complexity of the faces of F is at mostC +O(n log t) + O X� a non-leaf jF� j! :Lemma 3.2 is easily proved by applying Lemma 3.1 to the nodes of T in a bottom-upfashion; see, for example, the proof of Lemma 2.3 in [3].Lemma 3.3 (Combination Lemma II [12]) Let A1; : : : ;At be t arrangements of segmentsin the plane, and let p be a point not lying on any of these segments. Let Fi denote the face ofAi containing p, for i = 1; : : : ; t, and let F denote the face containing p in the arrangementA obtained by the superposition of all the arrangements Ai. Let Ci denote the combinatorialcomplexity of Fi, for i = 1; : : : ; t, and let C =PiCi. Then the combinatorial complexity of Fis O(C�(t)).We begin this section with a tight bound on the maximum complexity of a single face ofthe common exterior of a collection of convex polygons. As a matter of fact, our upper boundholds for any face of the arrangement of such polygons:Theorem 3.4 The maximum number of edges bounding any single face of the arrangementof k convex polygons with a total of n edges is �(n�(k)). The same bound holds for any faceof the arrangement.Proof: The lower bound is an immediate consequence of the �rst lower bound constructiongiven in the proof of Theorem 2.1. (Enclosing the entire construction in a large triangleformed by three elongated rectangles produces an arrangement formed by the boundariesof k convex polygons with a total of n edges, in which there is a non-exterior face withcomplexity 
(n�(k)).) The upper bound is an easy consequence of Combination Lemma II:Let P = fP1; : : : ; Pkg be a collection of k convex polygons with a total of n edges, and let Fbe a face of the arrangement of P . Let Ai, for i = 1; : : : ; k, be the arrangement formed bythe edges of Pi. Then Fi (the face of Ai containing F ) is either the exterior or the interior ofPi, so, in the notation of Lemma 3.3, Ci = O(ni), where ni is the number of edges of Pi, andC = O(n). The asserted upper bound is now an immediate consequence of Lemma 3.3. 2We next analyze the complexity of many faces in the common exterior of a collection ofconvex polygons, as above. First of all, the number of components of the common exterior isonly O(k2), as easily follows from the results of Katona [14] and Kovalev [16]:Theorem 3.5 The common exterior of any collection of k compact convex bodies in the planehas at most �k�12 �+ 1 = O(k2) components.Before proving the main theorem of this section, we introduce the following technical tool.Let L be a collection of m lines in the plane, and let 1 � r � m be an integer. As is wellknown [7, 17], there exists a tiling of the plane by O(r2) triangles, so that the closure of no7



triangle meets more than cmr lines of L, where c is some absolute constant. Moreover, onecan construct a binary tree T of depth O(log r), whose leaves correspond to those triangles,such that, for every node � of T , any line of L that misses all triangles stored at the leavesof the subtree T� rooted at �, lies either above all these triangles or below all of them (see [3,Lemma 2.2]); in other words, such a line cannot separate the triangles of T� : We refer to sucha tiling as an (L; r)-tiling.Theorem 3.6 The maximum number C(m; k; n) of edges bounding anym � �k�12 �+1 distinctfaces of the common exterior of k convex polygons with a total of n edges isO(m2=3k2=3 log1=3 k2m!+ n log k) and 
(m2=3k2=3 + n�(k)) :Proof: Let P be such a collection of polygons, and let M be a set of m `marking' points, onepoint in each of m given faces of E(P).(a) We �rst prove the weaker bound C(m; k; n) = O(kpm+n log k). Since m � �k�12 �+1,we can partition the polygons into t = l kpmm � 2 groups, each group containing O(pm)polygons. Let Pj denote the set of polygons in the j-th group, and apply Theorem 2.1 to eacharrangement A(Pj), to conclude that the total complexity of the faces of A(Pj) containingpoints of M (all these faces belong to the common exterior of Pj) is O(m+Nj�(m)), whereNj is the total number of edges of the polygons in Pj . We apply Combination Lemma I tothe t arrangements A(Pj), and use the trivial estimate P� a non-leaf jF� j = O(mt). Hence weobtain C(m; k; n) = tXj=1O(m+Nj�(m)) +O(mt+ n log t)= O(mt+ n�(m) + n log t) = O(kpm+ n log k);as asserted.(b) We next establish the sharper upper bound asserted in the theorem. Our proof issimilar to an argument used in [3] for arrangements of segments. Let P and M be as above.Using the terminology introduced in Section 2, let L be the set of the k non-vertical sentinellines of the polygons in P .Since we have considerable freedom in choosing the exact position of the points in themarking set M , we may assume that they lie in general position, i.e., that no three points lieon a common line. We consider the dual transformation that maps any point q = (a; b) to thenon-vertical line q� : y = �ax+ b, and maps any non-vertical line ` : y = cx+ d to the point`� = (c; d); this transformation preserves the above-below relation between points and lines[8]. Pass to the dual plane, and consider the set M� of lines dual to the marking points, andthe set L� of points dual to the sentinel lines. Let r be a �xed integer between 1 and m, tobe determined below. We construct an (M�; r)-tiling of the dual plane, as de�ned just beforethe theorem; let T be the associated binary tree built upon the triangles of the tiling.Consider a triangle � , corresponding to some leaf of T , that we also denote by � . Let P�be the set of polygons Pi whose dual points `�i lie in � , let N� denote the total number ofedges of the polygons in P� , and let M� be the set of marking points whose dual lines intersectthe closure of � . As above, there is no loss of generality in assuming that each point dual toa sentinel line lies in the interior of some triangle. Therefore the sets P� , as above, form a8



partition of P , so that P� jP� j = k and P� N� = n. We now apply Combination Lemma Ito the family of arrangements A(P� ) and to the marking set M , to deduce that the totalcomplexity of the marked faces of E(P) is at mostX� a leafC� + O X� a non-leaf jF� j!+O(n log r) ; (1)where C� is the complexity of the marked faces in A(P�), and F� is the collection of markedfaces in the overlay of the arrangements A(P� ), over all leaves � of the subtree T� of T rootedat �.The �rst step in simplifying this expression is to bound the quantities jF�j. Let � be atriangle in the above partitioning of the dual plane. If a marking point p does not belong toM� then � is fully contained in one of the halfplanes, say in the upper halfplane, bounded bythe dual line p�. In the primal plane, this means that p lies below all the sentinel lines of thepolygons in P� . This is easily seen to imply that p lies in the unbounded face of the commonexterior E(P�). In other words, we have just argued that the number jF� j of marked faces inA(P�) is at most cmr +1. The same argument, using the non-separability property of subtreesof T stated above, implies that, for any non-leaf node � of T , we have jF� j � cmr � j�j + 1,where j�j is the number of leaves of T� . Indeed, if p is any marking point p whose dual linep� misses all the triangles � stored at the leaves of T� , then p� passes either above all thesetriangles or below all of them. In both cases, the point p must lie in the unbounded face ofthe overlay of the arrangements A(P�), over all leaves � of the subtree T� . Since the numberof marking points whose dual lines do intersect one of these triangles � is at most cmr � j�j, theclaim follows.Using the weaker bound derived in step (a) above, we haveC� = O(jP� jrcmr + 1+N� log k) :Thus, the bound in (1) isX� a leafO(jP� jrcmr + 1+N� log k) +O X� a non-leaf(cmr � j�j+ 1)!+ O(n log r) :The �rst sum in this expression is O(kqcmr + 1 + n log k). To bound the second sum, notethat P� j�j, over all nodes � at a �xed level of T , is O(r2), so the sum P� j�j, over all nodesof T , is O(r2 log r). To summarize,C(m; k; n) = O(krmr + n log k +mr log r): (2)Now choose r = & k2=3m1=3 log2=3(k2=m)' :It is easily checked that if m � pk then 1 � r � m (the inequality r � 1 follows from the factthat l kpmm � 2). Thus, if m � pk, this choice of r impliesC(m; k; n) = O(k2=3m2=3 log1=3 k2m!+ n log k):9



If m = O(pk), it is su�cient to show that C(m; k; n) = O(n log k), which can be obtained byputting r = m in (2).The �rst term in the lower bound of the theorem follows from the fact that there existsan arrangement of k segments that contains m faces whose overall complexity is 
(m2=3k2=3)[6, 10], and from the observation, already made above, that in this construction the segmentscan be replaced by appropriate elongated rectangles. The second term in the lower boundfollows from the lower bound construction of Theorem 2.1. 2Note: The estimate obtained in part (a) of the above upper bound proof can be written inthe following slightly sharpened form:C(m; k; n) = O(kpm+ n�(m) + n log k2m ):Using this estimate in the remainder of the upper bound proof produces the following expres-sion: C(m; k; n) = O k2=3m2=3 log1=3 k2m!+ n� &m2k '!+ n log k2m! ;which is microscopically better than the bound quoted in the theorem, for m close to �(k2).It gives O(k2+n�(k)) for the largest possible value of m, matching the lower bound. However,a tight bound over the entire range of values of m, k, and n, remains an open problem.References[1] P. Alevizos, J. D. Boissonnat, and F. P. Preparata, An optimal algorithm for the boundaryof a cell in a union of rays, Algorithmica 5 (1990), 573{590.[2] B. Aronov, M. Bern, and D. Eppstein, Arrangements of polytopes with applications,manuscript, 1992.[3] B. Aronov, H. Edelsbrunner, L. Guibas and M. Sharir, Improved bounds on the number ofedges of many faces in arrangements of line segments, Combinatorica 12 (1992), 261{274.[4] B. Aronov and M. Sharir, The union of convex polyhedra in three dimensions, Proc. 34thIEEE Symp. on Foundations of Computer Science (1993), pp. 518{527.[5] B. Aronov, M. Sharir, and B. Tagansky, The union of convex polyhedra in three dimen-sions, SIAM J. Comput., to appear.[6] K. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir, and E. Welzl, Combinatorial com-plexity bounds for arrangements of curves and spheres, Discrete Comput. Geom. 5 (1990),99{160.[7] K. L. Clarkson and P. W. Shor, Applications of random sampling in computational ge-ometry II, Discrete Comput. Geom. 4 (1989), 387{421.[8] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg,1987.[9] H. Edelsbrunner, L. Guibas, and M. Sharir, The complexity and construction of manyfaces in arrangements of lines and of segments, Discrete Comput. Geom. 5 (1990), 161{196. 10
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