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Abstract

We establish several combinatorial bounds on the complexity (number of vertices and
edges) of the complement of the union (also known as the common exterior) of k convex
polygons in the plane, with a total of n edges. We show:

1. The maximum complexity of the entire common exterior is ©(na(k) + k%).!

2. The maximum complexity of a single cell of the common exterior is ©(na(k)).

3. The complexity of m distinct cells in the common exterior is O(m2/3k2/3 logl/?’(%) +
nlogk) and can be Q(m*/3k*/®> + na(k)) in the worst case.

1 Introduction

In this paper we establish several combinatorial bounds on the complexity of the common
exterior (namely, the complement of the union) of a collection of k& convex polygons in the
plane, with a total of n edges. The arrangement of such a collection of polygons can be
viewed as a special case of an arrangement of n segments, but we prefer to regard it as a
generalization of an arrangement of k segments, where each segment is replaced by a convex
polygon. Arrangements of segments have been studied extensively in [3, 9, 11, 19] (see also
[18]). It is shown in these papers that

e the maximum combinatorial complexity (i.e., number of edges and vertices) of an ar-
rangement of n segments is ©(n?);

e the maximum complexity of a single face of such an arrangement is O(na(n)) [11, 19];
and

e the maximum complexity of any m distinct faces in such an arrangement is O(m2/3n2/3—|—

na(n) + nlogm) and can be Q(m?/3n?? + na(n)) [3, 9].

Let P be a set of k convex polygons with a total of n edges. We denote the common
exterior of P by £ = £(P). If k is proportional to n or, equivalently, if the average size of
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a polygon of P is bounded by a constant, then such an arrangement of k& convex polygons
is not much different from an arrangement of n segments, and no bounds better than those
just cited can be obtained. However, the situation changes drastically if the average size
of a polygon of P is increased, that is, if & < n. For instance, the maximum complexity
of the entire arrangement, which can be as high as ©(n?) in an arrangement of n arbitrary
segments, now reduces to ©(kn)—this follows trivially from the observation that an edge of
one polygon of P can intersect the boundary of another convex polygon in at most two points,
and the lower bound is equally trivial to establish. Below, the maximum total complexity of
E(P) is shown to be O(k* + na(k)), which is asymptotically much smaller than ©(kn) (see
Theorem 2.1). The maximum complexity of a single face of £(P) is shown to be O(na(k)),
slightly improving the general upper bound cited above. In fact, this bound applies to any
face of the arrangement of P. Finally, we analyze the complexity of any m distinct faces of
E(P), and establish an upper bound of O(m2/3k2/3 logl/3 %2 +nlogk), improving considerably
the general upper bound cited above.

Intuitively, these bounds indicate that the complexity measures under consideration (of the
common exterior, of any single face of the exterior, and of several faces of the exterior) depend
mainly on the number of polygons k, with the parameter n contributing only an almost-linear
additive term to these bounds. In fact, these additive terms are all linear in n, with small
multiplicative factors, which are at most logarithmic in k£ and independent of n.

This paper, whose original preparation started about 1989, has found applications in [2].
Another motivation for studying the problem comes from the study in [15] of translational
motion planning in the plane. It is shown there that if P is a collection of Minkowski sums of
the form A; & B, where Ay,..., A and B are convex polygons, and the A;’s have pairwise-
disjoint interiors, then the complexity of the common exterior £(P) is O(n), where n is the
total number of edges of the polygons of P. In fact, the result of [15] is more general. It
states that if the polygons of P have the property that the boundaries of any pair of them
intersect in at most two points (a property that holds in the above case of Minkowski sums),
then the complexity of their common exterior is O(n). However, if pairs of polygon boundaries
can intersect in four (or more) points, the complexity of the common exterior can increase to
Q(k?), as is easily seen. The results of this paper give a tight calibration of the complexity of
E(P) (and a fairly accurate calibration of appropriate portions of £(P)) in this more general
case. We also mention a recent extension of the results of this paper to three dimensions: we
have shown in [4, 5] that the complexity of the union of k convex polyhedra in 3-space, with
a total of n faces, is O(k® + knlog k), and can be Q(k® + kna(k)) in the worst case.

In the remainder of the paper we assume that the polygons of P are in general position,
i.e., no three polygon boundaries meet at a common point and no polygon vertex lies on
the boundary of another polygon. It is easy to show that appropriate slight expansions of
the given polygons put them in general position, without decreasing the complexity measures
under consideration. Thus there is no loss of generality in assuming general position.

2 The Complexity of the Common Exterior

Theorem 2.1 The mazximum number of edges bounding the common exterior of k convex
polygons with a total of n edges is O(na(k) + k?).

Proof: We first give a brief high-level overview of the proof. We form the arrangement A
of k ‘sentinel lines’, each passing through the leftmost and rightmost points of some polygon,



and of the 2k vertical lines passing through these leftmost and rightmost points. We next
decompose the plane into O(k?) ‘boxes’, by splitting each face of A further by vertical lines
passing through the vertices on its lower boundary. We then show that the analysis of the
complexity of the common exterior can be reduced to the analysis of the complexity of the
lower envelopes, one in each box, of the polygon boundaries that cross the box. Within a
particular box C', each polygon boundary edge that crosses C' is either ‘short’ (terminates
within ') or ‘long’ (crosses the boundary of C' twice.) We show that the overall number of
long edges, summed over all boxes, is O(k?), and the overall number of short edges is O(n).
Using standard results on lower envelopes, the upper bound follows readily. The second term
in the lower bound is based on the simple observation that any lower bound that holds for
faces in an arrangement of k line segments can be made to hold for the common exterior of
k convex polygons, by replacing each segment by a sufficiently thin rectangle. The first term
requires a more complex construction, built upon the Q(ka(k)) lower bound construction for
lower envelopes of k segments, as given in [19].

We now present the proof in full detail: Let P = {Py,..., Py} be a collection of k convex
polygons in the plane. Let n; denote the number of vertices of P, for ¢ = 1,...,k, so that
n =% n;. In what follows, we will denote the common exterior £(P) simply as &.

For each i, define the sentinel segment s; of P; to be the segment connecting the leftmost
vertex of P, to its rightmost vertex. (Without loss of generality, we can assume that each P,
has a unique leftmost vertex and a unique rightmost vertex.) The sentinel line {; of P, is the
line containing s;. Put S = {sy,...,s;} and £ = {{y,...,{;}. Draw a vertical line through
each endpoint of each segment in S, and let £ denote the union of £ with the set of these 2k
vertical lines.

Consider the arrangement A(L*) of £*. Its combinatorial complexity is O(k*). Moreover,
the number of intersections between the boundaries of the P,’s and the lines of £* is also
O(k?), since a line can intersect the boundary of a convex polygon in at most two points.

Let C' be one of the (necessarily convex) cells of A(L”), and let P; be a polygon in P. If
the z-projection of s; is disjoint from that of C', then clearly F; cannot contribute any feature
to 0& N C. Otherwise, s; can be classified as lying either (possibly, partially) above C' or
(partially) below C. Let PZ (resp. P5) denote the subcollection of all the P;’s for which s;
lies above (resp. below) C'.

It is easily seen that £ N C is the set of all points within C that lie between the lower
envelope EPg of the polygons in 772? and the upper envelope EPE of the polygons in Pg.
Hence, using a standard argument, the complexity of £ N C' is proportional to the sum of the
complexities of these two envelopes within C'.

We estimate separately the complexity of the lower envelope portions C'N EPg and of the

upper envelope portions C'N Ej,—, over all ' € A(L*). It suffices to consider the case of lower
C

envelopes, since the case of upper envelopes is fully symmetric.

We subdivide each face C' of A(L*) into subfaces, by drawing a maximal vertical segment
within C' from each vertex on the lower boundary of C. Note that each of the left, right,
and bottom sides of each subface 7 consists of a single segment (the left and right sides may
degenerate to a single point, and, in case of unbounded subfaces, some of the sides may be
absent altogether), whereas the top boundary of 7 is a concave polygonal chain; see Figure 1.
For each resulting subface 7, let P1 denote the set of polygons in 772? whose lower boundaries
intersect 7, where C' is the face of A(L*) containing 7; clearly, only the lower boundaries of
these polygons can intersect 7. (If some polygon P; covers 7 completely, it does not contribute
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Figure 1: Possible interaction of a subface 7 of A(L*) and a polygon P in PF. Thick lines
indicate 0P N 7.

to £(P) and T need not be considered at all, so we will assume hereafter that no polygon of
772? that meets 7 covers it completely.)

Let BY denote the set of segments that constitute the intersections dP; N 7, for P, € Pt.
Let S} denote the set of those segments e € Bt such that at least one endpoint of e is an
original vertex of the polygon on whose boundary e lies, and let RY denote the set of all other
segments in B} (both endpoints of each of these segments lie on d7). Clearly, > [St] < 2n.

We claim that 3" |RF| = O(k?). To see this, fix a polygon P, € P, and consider the outer
zone of P; in A(L*). This is defined as the collection of those portions of the faces of A(L*)
crossed by the boundary of P;, which lie outside F;. If we erase, for each line £ € L*, the
segment £ N P;, we obtain a collection £’ of at most 6k lines and rays, and the outer zone is a
portion of a single face of A(L"). As is well known [1], the complexity of such a face is O(k).

To complete the estimate of 5" |RYT|, we charge each segment e € R}, for any subface
7, as follows. If e has an endpoint that lies on a line of £*, we charge e to that endpoint;
the overall number of such points, as noted above, is O(k?) and each will be charged at most
twice. Otherwise, the right endpoint of e lies on a vertical side g of 7, which is a newly added
vertical segment, erected upwards from some vertex v of A(L*). In this case, we charge e to
v, and observe that v is a vertex of the outer zone of the polygon F; on whose boundary e
lies, and that v can be charged at most once by segments e lying on the lower boundary of
the same P;. It follows that the number of such segments e, over all subfaces 7, that lie on
the boundary of any fixed P, is O(k), so the overall number of such segments is O(k?).

Consider next the lower envelope £/, +5 within some subface 7. Any vertex of £, + that lies
in the interior of 7 must also be a vertex of the lower envelope EB+ of the segments in B"’ (note
that the converse statement may fail to hold). Any other vertex of TOEP:, lies on 07 and is an
endpoint of a segment in B, which also appears as a vertex of TOEB:,. We consider separately
the lower envelopes Esj and ER;, of the subcollections ST and RT, respectively, and observe
that EBi is the pointwise minimum of Esj and ER;,, S0 its complexity is proportional to the
sum of the complexities of these two ‘sub-envelopes’.



The complexity of g+ is O(]S7|a(k)). This follows from the results of [13], exploiting
the fact that any vertical line intersects at most k segments of ST. The complexity of ER;, is
O(|RF]). To see this, we take each segment e € RY and replace it by a line or ray, as follows.
If e does not intersect the bottom side of 7, we replace e by the full line containing e. If e
intersects the bottom side of 7 at some (unique) point u, we replace e by the ray emanating
from w and containing e. Let RX denote the resulting collection of lines and rays. It is easy
to verify that the lower envelope Egx of R coincides, within 7, with the envelope ER;, (the
extended portions of the lines and rays in RI all lie outside 7, and none of them passes below
7). Using, once again, the results of [1], we conclude that the complexity of Erx, and thus
also that of Ep+, is O(|Rt)).

We have thus shown that the sum of the complexities of the envelope portions 7N EP;”
over all subfaces 7, is proportional to

S O(IsHa(k) + [RE]) = O(na(k) + 1)

Applying a symmetric analysis to the upper envelopes EPT_7 and combining the bounds, we
obtain the upper bound asserted in the theorem.

The lower bound is established by two constructions. The first construction yields a
collection of k convex polygons with a total of n edges, whose common exterior £ consists
of a single face of complexity Q(na(k)). This is achieved as follows. Construct a collection
S = {s1,...,sx} of k segments, whose upper envelope has complexity Q(ka(k)) [19]. As
is easily verified, one can extend each segment in S to a total continuous piecewise-linear
function, by adding a steeply ascending (resp. descending) half-line immediately to the left
(resp. to the right) of the segment, so that, if the absolute value of the slopes of all these half-
lines is greater than some threshold value, then the combinatorial complexity of the upper
envelope of these functions is at least as large as that of the upper envelope of S.

Let ¢ = | %], and fix 0 < € < g Without loss of generality, we may assume that ¢ > 3.

2k
Scale S so that it fits into a unit disc, and shrink it further vertically, so that any line forming
an angle of less than 5 — g + ¢ with the vertical direction is “sufficiently steep” in the above

sense (in particular, the slope of such a line has larger absolute value than the slope of any
segment in S). Let () be a regular ¢g-gon whose side has length %. Place a rotated copy of
S at each vertex v of @), aligning its vertical direction with the radial direction of the ray

from the center of @ through v. Denote this rotated copy by S(®) = {sgv), .. .,sgf)}, where
sgu) is the image of s; in .S, for each ¢ = 1,..., k and each vertex v of (. Construct k 2¢-
gons, Q1,...,Qk, where Q;, for : = 1,...,k, is the convex hull of (J, sgv), where the union
is taken over all vertices v of ). The boundary of each @); consists of a sequence of edges,
alternating between copies of s; and long ‘connecting’ edges between endpoints of pairs of
successive copies of s;. This follows from the way in which S was shrunk, as argued in more

detail in the following paragraph; see also Figure 2.

(v)

Let pg be an edge of one of these polygons ();, so that p is an endpoint of s;’ and ¢ is an

endpoint of sgw), for a pair of adjacent vertices v, w of ). By construction, p (resp. ¢) is in a
unit disc centered at v (resp. w), and v and w are 15_0 apart. In particular, this implies that
the angle between vw and pg cannot exceed €. As a result, in any single copy of S, the added
connecting segments lie on lines forming an angle at most 7 — = 4 ¢ with the local “vertical”
direction, and thus do not decrease the combinatorial complexity of the upper envelope of

each copy of S (notice, by the way, that this also implies that the polygons @); do indeed



Figure 2: The lower bound construction in Theorem 2.1, not to scale. One of the polygons @Q);
is shown dashed and part of the boundary of another polygon (); is shown dotted.

have the alternating structure claimed above). We have thus obtained a collection P of k
convex polygons with a total of 2¢gk < n edges, where the unbounded face (which is the only
component of the common exterior £) has complexity ¢ - Q(ka(k)) = Q(na(k)), as desired.

The second term, Q(k?), in the asserted lower bound is trivial to obtain, e.g., by a collection
of k long and thin rectangles, half of which have their long edge horizontal, and the other half
have their long edge vertical. Combining these two constructions, the asserted lower bound
follows.

This completes the proof of the theorem. O

3 Multiple Exterior Faces

The goal of this section is to establish sharp bounds on the overall complexity of m distinct
faces of the common exterior of a collection of convex polygons. We begin by stating the
standard ‘combination lemma’ of [9]:

Lemma 3.1 Let Ay, Ay be two arrangements of a total of n segments in the plane, and let A
denote the arrangement obtained by superimposing Ay and Ay. Let M be a set of m points,
none lying on any segment. Then the overall complexity of the faces of A that contain points
of M is at most Cy + Cy+ O(m + n), where C; is the total complezity of the faces of A; that
contain points of M, for i =1,2.

The main tool that we use is the so-called ‘multi-color combination lemma’, which deals
with the complexity of several faces in an overlay of many arrangements. There are two known
variants of this lemma:

Lemma 3.2 (Combination Lemma I) Let Ay,..., A; be t arrangements of a total of n
segments in the plane, and let M be a set of points, none of which lies on any segment. Let
T be a binary tree of height O(logt), whose leaves correspond to the individual arrangements
A;, and let us associate with each internal node v of T the arrangement A, obtained by the



superposition of all the arrangements corresponding to the leaves of the subtree rooted at v; the
root is thus associated with the superposition A of all the given arrangements. For any node
v of T, let F,, denote the collection of faces of A, that contain points of M, and let F denote
this collection at the root of T. Let C; denote the total combinatorial complexity of the faces
of the original arrangement A; containing points of M, for i = 1,...,t, and let C = 3, (.
Then the total combinatorial complexity of the faces of F is at most

C—I—O(nlogt)—l—O( Z |]-'l,|).

v a non-leaf

Lemma 3.2 is easily proved by applying Lemma 3.1 to the nodes of 7 in a bottom-up
fashion; see, for example, the proof of Lemma 2.3 in [3].

Lemma 3.3 (Combination Lemma II [12]) Let Ay, ..., A; bet arrangements of segments
in the plane, and let p be a point not lying on any of these segments. Let F; denote the face of
A; containing p, for i = 1,...,t, and let F denote the face containing p in the arrangement
A obtained by the superposition of all the arrangements A;. Let C; denote the combinatorial
complexity of I;, fori=1,...,t, and let C =}, C;. Then the combinatorial complexity of F
is O(Caft)).

We begin this section with a tight bound on the maximum complexity of a single face of
the common exterior of a collection of convex polygons. As a matter of fact, our upper bound
holds for any face of the arrangement of such polygons:

Theorem 3.4 The mazimum number of edges bounding any single face of the arrangement
of k convex polygons with a total of n edges is ©(na(k)). The same bound holds for any face
of the arrangement.

Proof: The lower bound is an immediate consequence of the first lower bound construction
given in the proof of Theorem 2.1. (Enclosing the entire construction in a large triangle
formed by three elongated rectangles produces an arrangement formed by the boundaries
of k convex polygons with a total of n edges, in which there is a non-exterior face with
complexity Q(na(k)).) The upper bound is an easy consequence of Combination Lemma II:
Let P ={Py,..., P} be a collection of k convex polygons with a total of n edges, and let F
be a face of the arrangement of P. Let A;, for ¢ = 1,...,k, be the arrangement formed by
the edges of P;. Then F; (the face of A; containing I') is either the exterior or the interior of
P;, so, in the notation of Lemma 3.3, C; = O(n;), where n; is the number of edges of P;, and
C' = O(n). The asserted upper bound is now an immediate consequence of Lemma 3.3. O

We next analyze the complexity of many faces in the common exterior of a collection of
convex polygons, as above. First of all, the number of components of the common exterior is
only O(k?), as easily follows from the results of Katona [14] and Kovalev [16]:

Theorem 3.5 The common exterior of any collection of k compact convex bodies in the plane
has at most (") +1 = O(k?) components.

Before proving the main theorem of this section, we introduce the following technical tool.
Let £ be a collection of m lines in the plane, and let 1 < r < m be an integer. As is well
known [7, 17], there exists a tiling of the plane by O(r?) triangles, so that the closure of no



triangle meets more than €% lines of £, where ¢ is some absolute constant. Moreover, one

can construct a binary treerT of depth O(logr), whose leaves correspond to those triangles,
such that, for every node v of T, any line of £ that misses all triangles stored at the leaves
of the subtree 7, rooted at v, lies either above all these triangles or below all of them (see [3,
Lemma 2.2]); in other words, such a line cannot separate the triangles of T,. We refer to such
a tiling as an (L, r)-tiling.

Theorem 3.6 The mazimum number C'(m, k,n) of edges bounding any m < (kgl)—l—l distinct
faces of the common exterior of k convex polygons with a total of n edges is

2

O(m*/3k?13 1og!/? (k_) +nlogh) and Q(m**E? 4 na(k)).
m

Proof: Let P be such a collection of polygons, and let M be a set of m ‘marking’ points, one
point in each of m given faces of £(P).

(a) We first prove the weaker bound C'(m, k,n) = O(ky/'m+nlogk). Since m < (kgl) +1,

we can partition the polygons into ¢ = [\/%1 > 2 groups, each group containing O(y/m)

polygons. Let P; denote the set of polygons in the j-th group, and apply Theorem 2.1 to each
arrangement A(P;), to conclude that the total complexity of the faces of A(P;) containing
points of M (all these faces belong to the common exterior of P;) is O(m + N;a(m)), where
N; is the total number of edges of the polygons in P;. We apply Combination Lemma I to
the t arrangements A(P;), and use the trivial estimate >, . Lonteat | Fv| = O(mt). Hence we
obtain

C(m,k,n) = Zt:O(m—l— N;a(m))+ O(mt + nlogt)

= O(mt+ na(m) +nlogt) = O(kv/m + nlogk),

as asserted.

(b) We next establish the sharper upper bound asserted in the theorem. Our proof is
similar to an argument used in [3] for arrangements of segments. Let P and M be as above.
Using the terminology introduced in Section 2, let L be the set of the k non-vertical sentinel
lines of the polygons in P.

Since we have considerable freedom in choosing the exact position of the points in the
marking set M, we may assume that they lie in general position, i.e., that no three points lie
on a common line. We consider the dual transformation that maps any point ¢ = (a, b) to the
non-vertical line ¢* : y = —ax + b, and maps any non-vertical line ¢ : y = cx + d to the point
* = (c,d); this transformation preserves the above-below relation between points and lines
[8]. Pass to the dual plane, and consider the set M™ of lines dual to the marking points, and
the set L™ of points dual to the sentinel lines. Let r be a fixed integer between 1 and m, to
be determined below. We construct an (M*, r)-tiling of the dual plane, as defined just before
the theorem; let 7 be the associated binary tree built upon the triangles of the tiling.

Consider a triangle 7, corresponding to some leaf of T, that we also denote by 7. Let P-
be the set of polygons FP; whose dual points £ lie in 7, let N; denote the total number of
edges of the polygons in P,, and let M be the set of marking points whose dual lines intersect
the closure of 7. As above, there is no loss of generality in assuming that each point dual to
a sentinel line lies in the interior of some triangle. Therefore the sets P., as above, form a



partition of P, so that > |P;| = k and Y} N. = n. We now apply Combination Lemma I
to the family of arrangements A(P.) and to the marking set A, to deduce that the total
complexity of the marked faces of £(P) is at most

Z C,+0 Z |]:l,|) +O(nlogr), (1)

7 a leaf (1/ a non-leaf

where C7; is the complexity of the marked faces in A(P:), and F, is the collection of marked
faces in the overlay of the arrangements A(P;), over all leaves 7 of the subtree 7, of T rooted
at v.

The first step in simplifying this expression is to bound the quantities |F,|. Let 7 be a
triangle in the above partitioning of the dual plane. If a marking point p does not belong to
M. then 7 is fully contained in one of the halfplanes, say in the upper halfplane, bounded by
the dual line p*. In the primal plane, this means that p lies below all the sentinel lines of the
polygons in P,. This is easily seen to imply that p lies in the unbounded face of the common
exterior £(P;). In other words, we have just argued that the number |F;| of marked faces in
A(P;) is at most < + 1. The same argument, using the non-separability property of subtrees
of 7 stated above, implies that, for any non-leaf node v of 7, we have |F,| < <= - |v| + 1,
where |v| is the number of leaves of 7,. Indeed, if p is any marking point p whose dual line
p* misses all the triangles 7 stored at the leaves of 7, then p* passes either above all these
triangles or below all of them. In both cases, the point p must lie in the unbounded face of
the overlay of the arrangements A(P;), over all leaves 7 of the subtree 7,. Since the number
of marking points whose dual lines do intersect one of these triangles 7 is at most <™ - |v|, the
claim follows.

Using the weaker bound derived in step (a) above, we have

Cr = O(|P,] ? + 14+ N logk).
Thus, the bound in (1) is
> 0Py %Jr 1+ N, logk)+O ( > (% " +1)) + O(nlogr) .
7 a leaf v a non-leaf

The first sum in this expression is O(k, /% + 1+ nlogk). To bound the second sum, note

that 3°, |v|, over all nodes v at a fixed level of T, is O(r?), so the sum >, |v|, over all nodes
of T,is O(r?*logr). To summarize,

C(m,k,n):O(k,/m—l—nlogk—l—mrlogr). (2)
r

Now choose

L2/3
N {ml/?’logm(’ﬂ?/m)w '
It is easily checked that if m > VEkthen1<r<m (the inequality r > 1 follows from the fact

that [\/k—mw > 2). Thus, if m > Vk, this choice of r implies

2
C'(m, k,n) = O(k**m*31og!/3 (k—) +nlogk).
m

9



If m = O(Vk), it is sufficient to show that C'(m, k,n) = O(nlogk), which can be obtained by
putting r = m in (2).

The first term in the lower bound of the theorem follows from the fact that there exists
an arrangement of k segments that contains m faces whose overall complexity is Q(m?/3k?/3)
[6, 10], and from the observation, already made above, that in this construction the segments
can be replaced by appropriate elongated rectangles. The second term in the lower bound
follows from the lower bound construction of Theorem 2.1. O

Note: The estimate obtained in part (a) of the above upper bound proof can be written in
the following slightly sharpened form:

k2
C(m,k,n) = O(kv/m + na(m) + nlog E)

Using this estimate in the remainder of the upper bound proof produces the following expres-

sion:
2 2 2
C(m,k,n)=0 (k2/3m2/310g1/3 (k—) + na (’Vm—-‘) + nlog k—) ,
m k m

which is microscopically better than the bound quoted in the theorem, for m close to ©(k?).
It gives O(k*+na(k)) for the largest possible value of m, matching the lower bound. However,
a tight bound over the entire range of values of m, k, and n, remains an open problem.
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