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Abstract

Let p1, p2, p3 be three noncollinear points in the plane, and let P be a set of n other
points in the plane. We show that the number of distinct distances between p1, p2, p3
and the points of P is Ω(n6/11), improving the lower bound Ω(n0.502) of Elekes and
Szabó [4] (and considerably simplifying the analysis).

Keywords. Distinct distances, combinatorial geometry, incidences.

2010 AMS Math Subject Classification: 52C10, 52C45, 05C35.

1 Introduction

The problem studied in this paper, as stated in the abstract, was raised by Erdős, Lovász,
and Vesztergombi [5], who conjectured that in the plane the number of distinct distances
between three points, p1, p2, p3, and n other points is linear in n. This conjecture was refuted
by Elekes and Szabó [4], who gave a construction where the number of distinct distances can
be as small as c

√
n, for a suitable constant c, when p1, p2, and p3 are collinear. Nevertheless,

they also showed that if the three points are not collinear then there is a gap—the number
of distinct distances is at least n0.502. Using a different approach, which also appears to be
considerably simpler, we improve this lower bound, for noncollinear p1, p2, p3, to Ω(n6/11).

The general setup. Our derivation can be viewed as a special instance of a more general
technique, which applies to the following general setup, as studied by Elekes and Rónyai [3]
and by Elekes and Szabó [4] (see also [1]). We have three sets A, B, C, each of n real
numbers, and we have a trivariate real polynomial F of degree d, which we assume to
be some constant. Let Z(F ) denote the subset of A × B × C where F vanishes. Then,
unless F and A, B, C have some very special structure, |Z(F )| should be subquadratic.
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(For a simple example where |Z(F )| is quadratic in n, consider the case where F (x, y, z) =
p(x) + q(y) + r(z), for three suitable univariate polynomials p, q, and r, and where the
respective images of A, B, and C under p, q, and r are, say, {1, 2, . . . , n}.)

Positive and significant results for this general problem have been obtained by Elekes
and Rónyai [3] and by Elekes and Szabó [4], who showed that if |Z(F )| = Ω(n1.95) and n
is large enough, then F must indeed have a very restricted form. For example, in the case
where F is of the form z− f(x, y), f must be of the form p(q(x)+ r(y)) or p(q(x) · r(y)) for
suitable polynomials or rational functions p, q, r. Related representations, somewhat more
complicated to state, have also been obtained for the general case.

As will be apparent from the analysis in the following section, the problem that we
study fits into this general scenario, for appropriate choices of A, B, C, and F . However,
instead of applying the general results reviewed above, we tackle the problem in a more
explicit and ad-hoc manner, which reduces the problem to an incidence problem between
points and curves in a suitable parametric plane.

Our approach also applies to the general problem, and, in this context, it can be (briefly)
described as follows.1 Let A, B, C, and F be as above, and put M = |Z(F )|. For each
a ∈ A, b ∈ B, consider the planar curve γa,b, which is the locus of all (x, y) ∈ A × B for
which there exists z ∈ C such that F (x, b, z) = F (a, y, z) = 0.

Let Π denote the set A × B in the xy-plane, let Γ denote the (multi-)set of the curves
γa,b, and let I = I(Π,Γ) denote the number of incidences between the curves of Γ and the
points of Π.

For each c ∈ C, put
Πc = {(x, y) ∈ Π | F (x, y, c) = 0},

and put Mc = |Πc|. We clearly have
∑

c∈C Mc = M .

Fix c ∈ C, and note that for any pair of pairs (a1, b1), (a2, b2) ∈ Πc, we have (a1, b2) ∈
γa2,b1 and (a2, b1) ∈ γa1,b2 . Moreover, for a fixed pair (a1, b1), (a2, b2) of this kind, the
number of values c for which (a1, b1) and (a2, b2) both belong to Πc is at most the constant
degree d of F , unless F vanishes identically on the two “vertical” lines (a1, b1)×R, (a2, b2)×
R, an assumption that we adopt for our analysis.

It then follows, using the Cauchy-Schwarz inequality, that

I ≥ 1

d

∑

c∈C

M2
c ≥

(
∑

c∈C Mc

)2

dn
=

M2

dn
.

The next step of the analysis is to derive an upper bound on I. On one hand this is an
instance of a fairly standard point-curve incidence problem, which can be tackled using
well established machinery, such as the incidence bound of Pach and Sharir [6], or, more
fundamentally, the crossing-lemma technique of Székely [9] (on which the analysis in [6] is
based). However, to apply this machinery, there are several issues that need to be addressed:
(a) The curves of Γ are not necessarily distinct, or, more generally, many pairs of them might
(partially) overlap, at common irreducible components. (b) We need to bound the number

1The general technique, as described next, is incomplete, in the sense that we do not yet have a way
to handle, in full generality, one crucial step in the analysis (concerning the multiplicity of certain curves
constructed by the analysis; see below). We provide this general approach to put our problem in the
appropriate more general perspective, and to raise the open problem of closing this gap in the analysis.
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of intersections of any pair of distinct curves, and to bound the number of curves that pass
through any pair of points of Π.

As it turns out, and somewhat surprisingly, the first issue is the major hurdle in the
handling of the general problem. Before expanding upon this point, let us first see how
the technique continues in the ideal situation where all the curves of Γ are distinct and
non-overlapping. In this case we have |Π| = n2 distinct points and |Γ| = n2 distinct curves
in the xy-plane. Using standard algebraic considerations, one can show that each pair of
curves intersect in O(1) points (assuming the degree d of F to be constant), and each pair
of points can be incident to at most O(1) common curves. In this case, the techniques of
[6, 9] can be applied to yield

I(Π,Γ) = O
(

|Π|2/3|Γ|2/3 + |Π|+ |Γ|
)

= O(n8/3).

Combining this with the lower bound on I, we get M2/n = O(n8/3), or M = O(n11/6).

Note that this improves considerably the bound n1.95 in [3, 4].

Let us return to the issue of coincidence or overlapping of the curves in Γ. In the special
instance that we study in this paper we use a concrete ad-hoc argument that exploits the
special geometric and algebraic structure of the specific problem, allowing us to control the
amount of coincidences and overlapping of curves. What we are still missing, for the general
problem, is a general argument that if there are many coincident or overlapping pairs of
curves, then F , A, B, and C must have a special structure, similar to those established
in [3, 4]. We find it rather strange that such a special structure (or the lack thereof) is
manifested in the coincidence or overlapping (or the lack thereof) of the curves of Γ, and
would like to better understand this connection.

An additional discussion of these and related issues is given in the concluding section.

2 Distinct distances from three points in the plane

We recall the problem: Let p1, p2, p3 be three points in the plane, and let P be a set of n
other points in the plane. The goal is to obtain a lower bound for the number of distinct
distances between p1, p2, p3 and the points of P , when p1, p2, and p3 are noncollinear.

We may assume, without loss of generality, that p1 = (1, 0), p2 = (−1, 0), and p3 = (a, b),
for b 6= 0. For a pair of points q1 = (x, y) and q2 = (u, v), we denote the squares of their
distances from p1 and p2 as

X = |p1q1|2 = (x− 1)2 + y2

Y = |p2q1|2 = (x+ 1)2 + y2 (1)

U = |p1q2|2 = (u− 1)2 + v2

V = |p2q2|2 = (u+ 1)2 + v2.

See Figure 1.

Let P denote the set of the n other given points. We are going to estimate the number
Q of pairs (q1, q2) ∈ P 2, with q1 6= q2, which have equal distances from p3. We will derive
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Figure 1: A configuration involving the three fixed points p1, p2, p3 and two other points
q1, q2 at equal distances from p3. (The symbols X,Y , etc. are the squares of the lengths of
the respective segments.)

an upper bound and a lower bound for Q, and the comparison of these bounds will yield
the asserted lower bound on the number of distinct distances.

Before plunging into the analysis, we note that the problem at hand is indeed a special in-
stance of the general problem as reviewed in the introduction. A point q = (x, y) determines
three squared distances X = |p1q|2, Y = |p2q|2, and Z = |p3q|2 from the three respective
points p1, p2, and p3. These distances must satisfy a polynomial equation F (X,Y, Z) = 0;
one can show that this is a quadratic equation, although we will not make explicit use of
this fact. The n points of P determine n triples (X,Y, Z) at which F vanishes. If we denote
by D the set of distinct distances between p1, p2, p3 and the points of P , then F vanishes
at n points of D × D × D, and our goal is in fact to obtain an upper bound for n that is
subquadratic in κ = |D|.

The analysis proceeds as follows. For fixed values of X and V , we define a planar curve
γX,V , in a parametric plane with coordinates Y, U , which is the locus of all points (Y, U)
that, together with X and V , correspond to a pair of points q1 = (x, y), q2 = (u, v), so that
these parameters satisfy (1) and |p3q1| = |p3q2|, namely,

(x− a)2 + (y − b)2 = (u− a)2 + (v − b)2,

or
x2 + y2 − 2ax− 2by = u2 + v2 − 2au− 2bv. (2)

That is, (Y, U) ∈ γX,V if and only if the following equations, which result from a suitable
combination of (1) and (2), have a common solution (x, y, u, v).

X = (x− 1)2 + y2

V = (u+ 1)2 + v2

1

2
(V −X) = (1− a)x− by + (1 + a)u+ bv (3)

Y = X + 4x

U = V − 4u.

Note that, given X,Y, U, V , we can easily recover the corresponding coordinates (x, y)
and (u, v), up to multiplicity of at most 4, by observing that each of the two triangles
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△p1p2q1, △p1p2q2, is fixed, up to a possible reflection about p1p2. Algebraically, the coor-
dinates x and u are uniquely determined from the fourth and fifth equations of (3), and the
absolute values of y and v are then uniquely determined from the first two equations of (3).

The third equation of (3) enforces the constraint that (Y, U) ∈ γX,V , and can be used
to obtain the algebraic equation of γX,V . That is, we have

1

2
(V −X) = 1

4
(1− a)(Y −X) + 1

4
(1 + a)(V − U) (4)

+ b
(

(

V − 1

4
(V − U + 4)2

)1/2 −
(

X − 1

4
(Y −X − 4)2

)1/2
)

,

and we can turn this equation into a polynomial equation (in Y and U , regarding X and
V as fixed parameters) of degree four, as can be easily verified.

As remarked in the overview of the general problem in the introduction, a major technical
hurdle that we need to overcome is the possibility that many pairs of curves γX,V coincide
or overlap (in a common irreducible component).

For example, when b = 0 (i.e., p1, p2, p3 are collinear), the equations (4) are of parallel
lines, all of the form U = 1−a

1+aY + c(X,V ), where c(X,V ) is linear in X and V . In this case
many curves can coincide with one another, and the multiplicity of a curve can be as high
as Θ(κ), where κ is the number of distinct distances between p1, p2, p3 and the points of P .
As will be seen later, this will cause our analysis to break down, in the sense that in this
case all we will be able to show is the trivial lower bound κ = Ω(

√
n). This will be further

elaborated in a remark given at the end of the analysis.

Fortunately, as we next argue, when b 6= 0, the amount of coincidence or overlap between
the curves is very limited. More precisely, we have the following result.

Proposition 2.1 Each irreducible component of any curve γX,V can be shared by at most

three other curves.

Proof. We first observe that each curve γX,V is bounded because, for X,V fixed, the
point q1 lies on a circle of radius

√
X centered at p1, and the point q2 lies on a circle of

radius
√
V centered at p2. This is easily seen to imply that any (Y, U) ∈ γX,V must satisfy

Y ≤ (2 +
√
X)2 and U ≤ (2 +

√
V )2.

Let us consider an irreducible component γ′X,V of some curve γX,V and a point on it,
(Y0, U0), such that Y0 is maximal among all points of γ′X,V . We will show that, given the
point (Y0, U0), the parameters X and V can be recovered, up to multiplicity 4.

Since (U0, Y0) is Y -extremal, it has to satisfy the equations H(U0, Y0) = HU (U0, Y0) = 0,
where H = 0 is the algebraic equation of γX,V given in (4). The second equation is

HU (U0, Y0) = −1 + a

4
+

b

4
· V − U0 + 4

(V − 1

4
(V − U0 + 4)2)1/2

= 0,

or

V − 1

4
(V − U0 + 4)2) =

(

b

1 + a

)2

(V − U0 + 4)2.

This is a quadratic equation in V whose leading coefficient, namely 1

4
+
(

b
1+a

)2

, is strictly

positive, so it has at most two solutions. (Note that the case a = −1, i.e., the case where
p2 and p3 are co-vertical, is special, and yields the single solution V = U0 − 4.)
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Next, fixing V to be one of these two roots, the equation (4) becomes an equation in X
of the form

L(X) = (X − 1

4
(Y0 −X − 4)2)1/2,

where L(X) is a linear expression in X. Squaring this, we obtain a quadratic equation in
X whose leading coefficient is strictly positive. Again, we obtain at most two solutions for
X, for each value of V , for a total of at most four pairs (X,V ).

To sum up, we have shown that each irreducible curve γ′ can be a component of at most
four curves γX,V , as asserted. ✷

We continue with the analysis of the Erdős–Lovász–Vesztergombi problem. Let D denote
the set of distinct squared distances between p1, p2, p3 and the points of P , and put κ = |D|.
Let Γ denote the set of all curves γX,V , for X,V ∈ D.

Every ordered pair (q1, q2) of distinct points of P with |p3q1| = |p3q2| generate a quadru-
ple (X,Y, U, V ) ∈ D4, where

X = |p1q1|2, Y = |p2q1|2, U = |p1q2|2, V = |p2q2|2,

such that (Y, U) ∈ γX,V .

The number Q of these pairs (q1, q2), introduced earlier, is proportional to the number
of such quadruples (or incidences), because, as argued earlier, each quadruple (X,Y, U, V )
can arise from at most four pairs (q1, q2). We obtain a lower bound for Q, in complete
analogy to the approach sketched in the introduction, as follows. For each Z ∈ D, denote
by PZ the set of points at squared distance Z from p3. Then, using the Cauchy-Schwarz
inequality, we obtain

Q =
∑

Z∈D

(|PZ |
2

)

=
1

2

∑

Z∈D

|PZ |2 −
1

2

∑

Z∈D

|PZ | ≥
1

2κ

(

∑

Z∈D

|PZ |
)2

− n

2
=

n2

2κ
− n

2
. (5)

To obtain an upper bound for Q, we bound the number of incidences between the curves
γX,V and the points (Y, U). For this, we apply Székely’s technique [9], which is based on
the crossing lemma. This is also the approach used in the proof of the incidence bound
in Pach and Sharir [6], but the possible overlap of curves, both in the primal and in the
dual settings (see below for details), requires some extra (and more explicit) care in the
application of the technique.

In more detail, denote by Π the set D2 of the κ2 points (Y, U), and let Γ denote the
(possibly multi-)set of the curves γX,V . We begin by constructing a plane embedding of a
multigraph G, whose vertices are the points of Π, and each of whose edges connects a pair
π1 = (Y1, U1), π2 = (Y2, U2) of points that lie on the same curve γX,V and are consecutive
along (some connected component of) γX,V ; one edge for each such curve (connecting π1
and π2) is generated.

A major potential problem with this construction is that the edge multiplicity in G
may not be bounded (by a constant). More concretely, we want to avoid edges (π1, π2)
whose multiplicity exceeds 16. We pass to a dual parametric plane, in which the roles
of (X,V ) and (Y, U) are interchanged, so points (Y, U) of Π become dual curves that we
denote as γ∗Y,U , and curves γX,V become dual points (X,V ). By the symmetric nature of
the definition, we have (Y, U) ∈ γX,V if and only if (X,V ) ∈ γ∗Y,U . Hence, if the multiplicity
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of the edge connecting (Y1, U1) and (Y2, U2) is larger than 16 then the dual curves γ∗Y1,U1

and γ∗Y2,U2
intersect in more than 16 points, and therefore, since each is the zero set of

a polynomial of degree 4, Bézout’s theorem implies that they must overlap in a common
irreducible component.

Note that, given (Y1, U1), the dual curve γ∗Y1,U1
, having degree 4, has at most four

irreducible components, and, by Proposition 2.1, applied in the dual plane, each such com-
ponent can be shared by at most three other dual curves. That is, each (Y1, U1) has at most
12 “problematic” neighbors that we do not want to connect it to; for any other point, the
multiplicity of the edge connecting (Y1, U1) with that point is at most 16; more precisely,
at most 16 curves γX,V pass through both points.

Consider a point (Y1, U1) and one of its bad neighbors (Y2, U2); that is, they are con-
secutive points along many curves. Let γX,V be one of the curves along which (Y1, U1) and
(Y2, U2) are neighbors. Then, rather than connecting (Y1, U1) to (Y2, U2) along γX,V , we
continue along the curve past (Y2, U2) until we reach a good point for (Y1, U1), and then
connect (Y1, U1) to that point (along γX,V ). We skip over at most 12 points in the process,
but now, having applied this “stretching” to each pair of bad neighbors, each of the modified
edges has multiplicity at most 16.

The number of new edges in G is at least I(Π,Γ) − c|Γ|, for a suitable constant c,
where the term c|Γ| accounts for the number of connected components of the curves—for
components with fewer than 14 incident points, there might be no edge drawn along that
component.

The final ingredient needed for this technique is an upper bound on the number of
crossings between the edges of G. Each such crossing is a crossing between two curves of
Γ. Even though the two curves might overlap in a common irreducible component (where
they have infinitely many intersection points, none of which is a crossing), the number of
proper crossings between them is O(1), as follows, for example, from the Milnor–Thom and
Bézout’s theorems. Finally, because of the way the drawn edges have been stretched, the
edges now may overlap one another, and then a crossing between two curves may be claimed
by more than one pair of edges. Nevertheless, since no edge straddles through more than
12 points, the number of pairs that claims a specific crossing is O(1). Hence, we conclude
that the total number of edge crossings in G is O(|Γ|2).

We can now continue by applying the crossing lemma, exactly as done in many earlier
works (e.g., see [6, 9]), and conclude that

I(Π, γ) = O
(

|Π|2/3|Γ|2/3 + |Π|+ |Γ|
)

.

Since |Π| = |Γ| = O(κ2), it follows that

Q = O(I(Π,Γ′)) = O(κ8/3).

Comparing this with the lower bound in (5), we obtain

n2

2κ
− n

2
= O(κ8/3), or κ = Ω(n6/11).

That is, we have obtained the following main result of this section.
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Theorem 2.2 The number of distinct distances between three noncollinear points and n
other points in the plane is Ω(n6/11).

Remark. Returning to a comment made earlier, we note that the preceding analysis can
also be applied when p1, p2, p3 are collinear. In this case the maximum multiplicity of a
curve γX,V (which is a line of a fixed slope in this case) is κ, because each value of X
determines a unique value of V that yields the same curve (that is, line). We can carry out
the analysis by considering the worst case, where we have only O(κ) distinct curves, each
with multiplicity κ. In this case the upper bound on Q is

O(κ · (κ2/3(κ2)2/3 + κ+ κ2)) = O(κ3),

so n2/κ = O(κ3), or κ = Ω(
√
n). This lower bound matches the upper bound in the

construction of Elekes and Szabó [4], but it is totally trivial, because if there were fewer
than 1

2

√
n distinct distances, P would have contained fewer than n points. The present

remark is made in order to highlight the significance of the non-overlapping of the curves.

3 Discussion

We have studied an interesting problem in combinatorial geometry, concerning the number
of distinct distances between three noncollinear points and n other points in the plane,
which can also be regarded as a special instance of a more general problem, concerning the
number of points of a triple Cartesian product at which a given trivariate polynomial can
vanish. The general problem has been tackled in [3, 4], but we have bypassed this general
approach, replaced it with a different novel general approach, and combined it with a direct
ad-hoc technique, and have thereby managed to improve (a) the bound on the number of
zeros of the specific polynomial F that arises in our setup, and (b) the earlier bound for
the specific distinct distances problem, as obtained in [2].

Certainly, one of the main open problems is to understand better the structure of the
general problem. In particular, what is the connection between low multiplicities of the
curves that we define and the structure of the polynomial F (as provided in [3, 4])? A more
concrete formulation of the problem is to find a general technique for showing that if our
curves have high multiplicity then F must have the special form given in [3, 4] (or perhaps
some other special form?)

In parallel, it would be interesting to identify other special instances of the general
problem, and apply our machinery to obtain new or improved bounds for them. One
such instance, that we are currently studying, is the following problem, studied by Elekes,
Simonovits and Szabó [2]. Let p1, p2, p3 be three distinct points in the plane, and, for
i = 1, 2, 3, let Ci be a family of n unit circles that pass through pi. The goal is to obtain a
subquadratic upper bound on the number of triple points, which are points that are incident
to a circle of each family. Elekes et al. [2] have shown that the number of such points is
O(n2−η), for some constant parameter η > 0 (that they did not specify), as an application
of a more general technique that they have developed (see also other references in [2]).

This problem too fits into the general framework, and if the multiplicities of the resulting
curves could be shown to be under control, we would obtain that the number of triple points
is O(n11/6), improving the bound and making it more concrete.
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Another such possible problem is the following. Let P1, P2, and P3 be three sets of
n points each, so that each set Pi is contained in some line ℓi, for i = 1, 2, 3. How many
unit-area triangles are determined by triples of points in P1 × P2 × P3?

It turns out that our technique can also be applied to the following problem. Let γ be
a small-degree algebraic curve in the plane, and let P be a set of n points lying on γ. How
many distinct distances must there be between the points of P? We have recently obtained
[8] an improved lower bound of Ω(n4/3) for a special bipartite version of this problem, where
we have two sets P1, P2 of n points each, lying on two respective lines in the plane, which
are neither parallel nor orthogonal. Later, and very recently, Pach and de Zeeuw [7] have
extended the machinery to the general case, with a similar lower bound.

We note that the application of our technique to this problem is interesting because
it does not seem to fit into the paradigm of a polynomial vanishing on a 3-dimensional
Cartesian product, but it nevertheless benefits from our approach.

In conclusion, we note that the bounds that we have obtained are asymmetric. In the
notation of the general problem, if the sets A, B, C are of different sizes, our bound on
|Z(F )| becomes O(|A|2/3|B|2/3|C|1/2), with similar asymmetric consequences for the two
specific problems. However, the general problem is fully symmetric in A, B, and C, so one
would definitely expect a bound that is symmetric in the sizes of the three sets. We leave
this refinement of the bound as an open problem.

References

[1] G. Elekes, Sums versus products in number theory, algebra and Erdős geometry–A
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[2] G. Elekes, M. Simonovits and E. Szabó, A combinatorial distinction between unit circles
and straight lines: How many coincidences can they have? Combinat. Probab. Comput.

18 (2009), 691–705.

[3] G. Elekes and L. Rónyai, A combinatorial problem on polynomials and rational func-
tions, J. Combinat. Theory Ser. A, 89 (2000), 1–20.
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