40 ALGORITHMIC MOTION PLANNING
Micha Sharir

INTRODUCTION

Motion planning is a fundamental problem in robotics. It comes in a variety of
forms, but the simplest version is as follows. We are given a robot system B,
which may consist of several rigid objects attached to each other through various
joints, hinges, and links, or moving independently, and a two-dimensional or three-
dimensional environment V' cluttered with obstacles. We assume that the shape
and location of the obstacles and the shape of B are known to the planning system.
Given an initial placement Z; and a final placement Z, of B, we wish to determine
whether there exists a collision-avoiding motion of B from Z; to Z,, and, if so, to
plan such a motion. In this simplified and purely geometric setup, we ignore issues
such as incomplete information, nonholonomic constraints, control issues related
to inaccuracies in sensing and motion, nonstationary obstacles, optimality of the
planned motion, and so on.

Since the early 1980’s, motion planning has been an intensive area of study in
robotics and computational geometry. In this chapter we will focus on algorithmic
motion planning, emphasizing theoretical algorithmic analysis of the problem and
seeking worst-case asymptotic bounds, and only mention briefly practical heuristic
approaches to the problem. The majority of this chapter is devoted to the sim-
plified version of motion planning, as stated above. Section 40.1 presents general
techniques and lower bounds. Section 40.2 considers efficient solutions to a vari-
ety of specific moving systems with a small number of degrees of freedom. These
efficient solutions exploit various sophisticated methods in computational and com-
binatorial geometry related to arrangements of curves and surfaces (Chapter 21).
Section 40.3 then briefly discusses various extensions of the motion planning prob-
lem, incorporating uncertainty, moving obstacles, etc. We conclude in Section 40.4
with a brief review of Davenport-Schinzel sequences, a combinatorial structure that
plays an important role in many motion planning algorithms.

40.1 GENERAL TECHNIQUES AND LOWER BOUNDS

GLOSSARY

Robot B: A mechanical system consisting of one or more rigid bodies, possibly
connected by various joints and hinges.

0-8493-8524-5/97/$0.00+$.50 733
©1997 by CRC Press LLC



734

M. Sharir

Physical space: The two- or three-dimensional environment in which the robot
moves.

Placement: The portion of physical space occupied by the robot at some instant.

Degrees of freedom k: The number of real parameters that determine the robot
B’s placements. Each placement can be represented as a point in R”.

Free placement: A placement at which the robot is disjoint from the obstacles.

Semifree placement: A placement at which the robot does not meet the interior
of any obstacle (but may be in contact with some obstacles).

Configuration space C: A portion of k-space (where k is the number of degrees
of freedom of B) that represents all possible robot placements; the coordinates
of any point in this space specify the corresponding placement.

Ezxpanded obstacle / C-space obstacle / forbidden region: For an obstacle
O, this is the portion O* of configuration space consisting of placements at which
the robot intersects (collides with) O.

Free configuration space F: The subset of configuration space consisting of
free placements of the robot: F = C\ |J, O*. (In the literature, this usually also
includes semifree placements.)

Contact surface: For an obstacle feature a (corner, edge, face, etc.) and for a
feature b of the robot, this is the locus in C of placements at which a and b are in
contact with each other. In most applications, these surfaces are semialgebraic
sets of constant description complexity (see definitions below).

Collision-free motion of B: A path contained in F. Any two placements of
B that can be reached from each other via a collision-free path must lie in the
same (arcwise-)connected component of F.

Arrangement A(X): The decomposition of k-space into cells of various dimen-
sions, induced by a collection ¥ of surfaces in R*. Each cell is a maximal con-
nected portion of the intersection of some fixed subcollection of surfaces that
does not meet any other surface. See Chapter 21. Since a collision-free motion
should not cross any contact surface, F is the union of some of the cells of A(X),
where ¥ is the collection of contact surfaces.

Semialgebraic set: A subset of R* defined by a Boolean combination of poly-
nomial equalities and inequalities in the k coordinates. See Section 29.2.

Constant description complexity: Said of a semialgebraic set if it is defined
by a constant number of polynomial equalities and inequalities of constant max-
imum degree (where the number of variables is also assumed to be constant).

Example. Let B be a rigid polygon with k edges, moving in a planar polygonal
environment V' with n edges. The system has three degrees of freedom, (z,y,0),
where (z,y) are the coordinates of some reference point on B, and € is the orien-
tation of B. Each contact surface is the locus of placements where some vertex of
B touches some edge of V, or some edge of B touches some vertex of V. There
are 2kn contact surfaces, and if we replace 6 by tan %, then each contact surface
becomes a portion of some algebraic surface of degree at most 4, bounded by a
constant number of algebraic arcs, each of degree at most 2.
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40.1.1 GENERAL SOLUTIONS

GLOSSARY

Cylindrical algebraic decomposition of F: A recursive decomposition of F
into cylindrical-like cells originally proposed by Collins. Over each cell of the
decomposition, each of the polynomials involved in the definition of F has a
fixed sign (positive, negative, or zero), implying that F is the union of some of
the cells of this decomposition. See Section 29.5 for further details.

Connectivity graph: A graph whose nodes are the (free) cells of a decomposition
of F and whose arcs connect pairs of adjacent cells.

Roadmap R: A network of 1-dimensional curves within F, having the properties
that (i) it preserves the connectivity of F, in the sense that the portion of R
within each connected component of F is (nonempty and) connected; and (ii) it
is reachable, in the sense that there is a simple procedure to move from any free
placement of the robot to a placement on R; we denote the mapping resulting
from this procedure by ¢r.

Retraction of F onto R: A continuous mapping of F onto R that is the identity
on R. The roadmap mapping ¢x is usually a retraction. When this is the case,
we note that for any path ¢ within F, represented as a continuous mapping
Y : [0,1] = F, ¢r ot is a path within R, and, concatenating to it the motions
from ¢ (0) and ¢ (1) to R, we see that there is a collision-free motion of B between
two placements Z;, Z iff there is a path within R between ¢ (Z;) and ¢r(Z2).

Silhouette: The set of critical points of a mapping; see Section 29.6.

CELL DECOMPOSITION

F is a semialgebraic set in R*. Applying Collins’s cylindrical algebraic decompo-
sition results in a collection of cells whose total complexity is O((nd)3k), where d
is the maximum algebraic degree of the polynomials defining the contact surfaces;
the decomposition can be constructed within a similar time bound. If the coor-
dinate axes are generic, then we can also compute all pairs of cells of F that are
adjacent to each other (i.e., cells whose closures (within F) overlap), and store
this information in the form of a connectivity graph. It is then easy to search for
a collision-free path through this graph, if one exists, between the (cell containing
the) initial robot placement and the (cell containing the) final placement. This
leads to a doubly-exponential general solution for the motion planning problem:

THEOREM 40.1.1 Cylindrical Cell Decomposition [SS83]

Any motion planning problem, with k degrees of freedom, for which the contact
surfaces are defined by a total of n polynomials of maximum degree d, can be
solved by Collins’s cylindrical algebraic decomposition, in randomized expected time
O((nd)*").

(The randomization is needed only to choose a generic direction for the coor-
dinate axes.)
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ROADMAPS

A more recent and improved solution is given in [Can87, BPR96] based on the
notion of a roadmap R, a network of 1-dimensional curves within (the closure of)
F, having properties defined in the glossary above. Once such a roadmap R has
been constructed, any motion planning instance reduces to path searching within
R, which is easy to do. R is constructed recursively, as follows. One projects F
onto some generic 2-plane, and computes the silhouette of F under this projection.
Next, the critical values of the projection of the silhouette on some line are found,
and a roadmap is constructed recursively within each slice of F at each of these
critical values. The resulting “sub-roadmaps” are then merged with the silhouette,
to obtain the desired R.

The original algorithm of Canny relies heavily on the polynomials defining F
being in general position, and on the availability of a generic plane of projection.
This algorithm runs in n*(logn)d°*") deterministic time, and in n*(logn)d°**)
expected randomized time. Recent work [BPR96] addresses and overcomes the gen-
eral position issue, and produces a roadmap for any semialgebraic set; the running
time of this solution is n*+1dO*"),

If we ignore the dependence on the degree d, the algorithm of Canny is close
to optimal in the worst case, assuming that some representation of the entire F
has to be output, since there are easy examples where the free configuration space
consists of Q(n*) connected components.

THEOREM 40.1.2 Roadmap Algorithm [Can87]

Any motion planning problem, as zzz the preceding theorem, can be solved by tfée
roadmap technique in n*(logn)d®*¥") deterministic time, and in n*(logn)d®*")
expected randomized time.

40.1.2

LOWER BOUNDS

Both general solutions are (at least) exponential in k (but are polynomial in the
other parameters when k is fixed). This raises the problem of calibrating the com-
plexity of the problem when k can be arbitrarily large.

THEOREM 40.1.3 Lower Bounds

The motion planning problem, with arbitrarily many degrees of freedom, is PSPACE-
hard for the instances of: (a) coordinated motion of many rectangular bozxes along
a rectangular floor; (b) motion planning of a planar mechanical linkage with many
links; and (c) motion planning for a multi-arm robot in a 3-dimensional polyhedral
environment.

All these results appear in papers collected in [HSS87]. There are also many
NP-hardness results for other systems.

Facing these findings, we can either approach the general problem with heuristic
and approximate schemes, or attack specific problems with small values of k, with
the goal of obtaining solutions better than those yielded by the general techniques.
We will mostly survey here the latter approach, and mention towards the end what
has been achieved by the first approach.
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40.2 MOTION PLANNING WITH A SMALL NUMBER OF
DEGREES OF FREEDOM

In this main section of the chapter, we review solutions to a variety of specific motion
planning problems, most of which have 2 or 3 degrees of freedom. Exploiting the
special structure of these problems leads to solutions that are more efficient than
the general methods described above.

GLOSSARY

Jordan arc/curve: The image of the closed unit interval under a continuous
bijective mapping into the plane. A closed Jordan curve is the image of the unit
circle under a similar mapping, and an unbounded Jordan curve is an image of
the open unit interval (or of the entire real line) that separates the plane.

Randomized algorithm: An algorithm that applies internal randomization
(“coin-flips”). We consider here algorithms that always terminate, and produce
the correct output, but whose running time is a random variable that depends
on the internal coin-flips. We will state upper bounds on the expectation of the
running time (the randomized expected time) of such an algorithm, which
hold for any input. See Chapter 34.

Minkowski sum: For two planar (or spatial) sets A and B, their Minkowski
sum, or pointwise vector addition, is the set A B={z+y |z € A,y € B}.

General position: The input to a geometric problem is said to be in general
position if no nontrivial algebraic identity with integer coefficients holds among
the parameters that specify the input (assuming the input is not overspecified).
For example: no three input points should be collinear, no four points cocircular,
no three lines concurrent, etc.

Convex distance function: A convex region B that contains the origin in its
interior induces a convex distance function dg defined by

dp(p,q) =min {\ | ¢ € p® AB}.

B-Voronoi diagram: For a set S of sites, and a convex region B as above, the
B-Voronoi diagram Vorg(S) of S is a decomposition of space into Voronoi cells
V(s), for s € S, such that

V(s)={p|dp(p,s) <dp(p,s')forals e€S}.

Here dp(p,s) = minges dp(p, q)-

a(n): The extremely slowly-growing inverse Ackermann function; see Section 40.4.

Contact segment: The locus of semifree placements of a polygon B translating
in the plane, at each of which either some specific vertex of B touches some
specific obstacle edge, or vice-versa.

Contact curve: A generalization of “contact segment” to the locus of semifree
placements of B, assuming that B has only two degrees of freedom, where some
specific feature of B makes contact with some specific obstacle feature.
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40.2.1 TWO DEGREES OF FREEDOM

A TRANSLATING POLYGON IN 2D

This is a system with two degrees of freedom (translations in the z and y directions).

A CONVEX POLYGON

Suppose first the translating polygon B is a convex k-gon, and there are m convex

polygonal obstacles, Ay, ..., A,,, with pairwise disjoint interiors, having a total of n
edges. The region of configuration space where B collides with A; is the Minkowski
sum

Ki=A;®(-B)={z—y|x € A;, y € B}.

The free configuration space is the complement of [J!", K;. Assuming general
position, one can show:

THEOREM 40.2.1 [KLPS86]

(a) Each K; is a convex polygon, with n; + k edges, where n; is the number of
edges of A;.

(b) For each i # j, the boundaries of K; and K; intersect in at most two points.
(This also holds when the A;’s and B are not polygons.)

(c) Given a collection of planar regions Ki,...,K,,, each enclosed by a closed
Jordan curve, such that any pair of the bounding curves intersects at most
twice, then the boundary of the union |J;~, K; consists of at most 6m — 12
mazximal connected portions of the boundaries of the K;’s, provided m > 3,
and this bound is tight in the worst case.

These properties, combined with several algorithmic techniques, imply:
THEOREM 40.2.2

(a) The free configuration space for a translating convez polygon, as above, is a
polygonal region with at most 6m—12 convez vertices and N = Y_;"  (n;+k) =

n + km nonconvex vertices.

(b) F can be computed in deterministic time O(N log®n), or in randomized ex-
pected time O(N - 2°(") logn).

AN ARBITRARY POLYGON

Suppose next that B is an arbitrary polygonal region with k edges. Let A be the
union of all obstacles, which is another polygonal region with n edges. As above,
the free configuration space is the complement of the Minkowski sum

K=A®(-B)={z—-y|z €A, y€ B}.
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K is again a polygonal region, but, in this case, its maximum possible complexity is
O(k%n?), so computing it might be considerably more expensive than in the convex
case.

A single face suffices. If the initial placement Z of B is given, then we do not
have to compute the entire (complement of) K; it suffices to compute the connected
component f of the complement of K that contains Z, because no other placement
is reachable from Z via a collision-free motion.

Let X be the collection of all contact segments; there are 2kn such segments.
The desired component f is the face of A(X) that contains Z. Using the theory
of Davenport-Schinzel sequences (Section 40.4), one can show that the maximum
possible combinatorial complexity of a single face in a two-dimensional arrangement
of N segments is O(Na(N)). A more careful analysis [HCA195] shows:

THEOREM 40.2.3

(a) The mazimum combinatorial complexity of a single face in the arrangement of
contact segments for the case of an arbitrary translating polygon is O (kna(k))
(this improvement is significant only when k < n).

(b) Such a face can be computed in deterministic time O(knlog®n), or in random-
ized expected time O(kn - 2% logn).

VORONOI DIAGRAMS

Another approach to motion planning for a translating convez object B, is via gen-
eralized Voronoi diagrams (see Chapter 20), based on the convex distance function
dg(p,q). This function effectively places B centered at p and expands it until it
hits g. The scaling factor at this moment is the dg-distance from p to ¢ (if B is a
unit disk, dp is the Euclidean distance). dp satisfies the triangle inequality, and is
thus “almost” a metric, except that it is not symmetric in general; it is symmetric
iff B is centrally symmetric with respect to the point of reference.

Using this distance function dg, a B-Voronoi diagram Vorg(S) of S may be
defined for a set S of m pairwise disjoint obstacles.

THEOREM 40.2.4

Assuming that each of B and the obstacles in S has constant description complexity,
and that they are in general position, the B-Voronoi diagram has O(m) complezity,
and can be computed in O(mlogm) time (in an appropriate model of computation).
If B and the obstacles are convex polygons, as above, then the complexity of Vorg(S)
is O(N) and it can be computed in time O(N logm).

One can show that if Z; and Z, are two free placements of B, then there
exists a collision-free motion from Z; to Z, if and only if there exists a collision-
free motion of B where its center moves only along the edges of Vorg(S), between
two corresponding placements Wi, Wa, where W;, for i = 1,2, is the placement
obtained by pushing B from the placement Z; away from its dp-nearest obstacle,
until it becomes equally nearest to two or more obstacles (so that its center lies on
an edge of Vorg(S)).

Thus motion planning of B reduces to a path-searching in the 1-dimensional
network of edges of Vorg(S). This technique is called the retraction technique,
and can be regarded as a special case of the general roadmap algorithm. The
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resulting motions have “high clearance,” and so are safer than arbitrary motions,
because they stay equally nearest to at least two obstacles.

THEOREM 40.2.5

The motion planning problem for a convex object B translating amidst m convex
and pairwise disjoint obstacles can be solved in O(mlogm) time, by constructing
and searching in the B-Voronoi diagram of the obstacles, assuming that B and
the obstacles have constant description complexity each. If B and the obstacles
are convez polygons, then the same technique yields an O(N logm) solution, where
N =n+ km is as above.

THE GENERAL MOTION PLANNING PROBLEM WITH TWO
DEGREES OF FREEDOM

If B is any system with two degrees of freedom, its configuration space is 2-
dimensional, and, for simplicity, let us think of it as the plane (spaces that are
topologically more complex can be decomposed into a constant number of “planar”
patches). We construct a collection X of contact curves, which, under reasonable
assumptions concerning B and the obstacles, are each an algebraic Jordan arc or
curve of some fixed maximum degree b. In particular, each pair of contact curves
will intersect in at most some constant number, s < b?, of points.

As above, it suffices to compute the single face of A(X) that contains the
initial placement of B. The theory of Davenport-Schinzel sequences implies that
the complexity of such a face is O(Agy2(n)), where A\s12(n) is the maximum length
of an (n, s + 2)-Davenport-Schinzel sequence (Section 40.4), which is slightly super-
linear in n when s is fixed.

The face in question can be computed in deterministic time O(\s12(n)log® n),
using a fairly involved divide-and-conquer technique based on line-sweeping; see
Section 21.5. (Some slight improvements in the running time have been obtained
recently.) Using randomized incremental (or divide-and-conquer) techniques, the
face can be computed in randomized expected O(As42(n)logn) time.

THEOREM 40.2.6

Under the above assumptions, the general motion planning problem for systems with
two degrees of freedom can be solved in deterministic time O(\q12(n)log®n), or in
O(Asx2(n)logn) randomized expected time.

40.2.2 THREE DEGREES OF FREEDOM

A ROD IN A PLANAR POLYGONAL ENVIRONMENT

We next pass to systems with three degrees of freedom. Perhaps the simplest in-
stance of such a system is the case of a line segment B (“rod,” “ladder,” “pipe”)
moving (translating and rotating) in a planar polygonal environment with n edges.
The maximum combinatorial complexity of the free configuration space F of B is
©(n?) (recall that the naive bound for systems with three degrees of freedom is
O(n?)). A cell-decomposition representation of F can be constructed in (deter-
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ministic) O(n?logn) time [LS87b]. Several alternative near-quadratic algorithms
have also been developed, including one based on constructing a Voronoi diagram
in F [OSY87].

An Q(n?) lower bound for this problem has been established in [KOS88]. It
exhibits a polygonal environment with n edges and two free placements of B that
are reachable from each other. However, any free motion between them requires
Q(n?) “elementary moves,” that is, the specification of any such motion requires
Q(n?) complexity. This is a fairly strong lower bound, since it does not rely on lower
bounding the complexity of the free configuration space (or of a single connected
component thereof); after all, it is not clear why a motion planning algorithm
should have to produce a full description of the whole free space (or of a single
component).

THEOREM 40.2.7

Motion planning for a rod moving in a polygonal environment bounded by n edges

can be performed in O(n*logn) time. There are instances where any collision-
p g Y

free motion of the rod between two specified placements requires Q(n?) “elementary

moves.”

A CONVEX POLYGON IN A PLANAR POLYGONAL ENVIRONMENT

Here B is a convex k-gon, free to move (translate and rotate) in an arbitrary
polygonal environment bounded by n edges. The free configuration space is 3-
dimensional, and there are at most 2kn contact surfaces, of maximum degree 4.
The naive bound on the complexity of F is O((kn)?) (attained if B is nonconvex),
but, using Davenport-Schinzel sequences, one can show that the complexity of F
is only O(knXg(kn)). Geometrically, a vertex of F is a semifree placement of B at
which it makes simultaneously three obstacle contacts. The above bound implies
that the number of such critical placements is only slightly super-quadratic (and
not cubic) in kn.

Computing F in time close to this bound has proven more difficult, and only
recently has a complete solution, running in O(knAg(kn) log kn) time and construct-
ing the entire F, been attained [AAAS96].

Another approach was given in [CK93]. It computes the Delaunay triangulation
of the obstacles under the distance function dg, when the orientation of B is fixed,
and then traces the discrete combinatorial changes in the diagram as the orientation
varies. The number of changes was shown to be O(k*n)3(n)). Using this structure,
the algorithm of [CK93] produces a high-clearance motion of B between any two
specified placements, in time O(k*n)3(n)logn).

Since all these algorithms are fairly complicated, one might consider in practice
an alternative approximate scheme, proposed in [AFK*90]. This scheme discretizes
the orientation of B, solves the translational motion planning for B at each of
the discrete orientations, and finds those placements of B at which it can rotate
(without translating) between two successive orientations. This scheme works very
well in practice.

THEOREM 40.2.8

Motion planning for a k-sided convex polygon, translating and rotating in a planar
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polygonal environment bounded by n edges, can be performed in O(knAg(kn) log kn)
or O(k*n)z(n)logn) time.

EXTREMAL PLACEMENTS

A related problem is to find the largest free placement of B in the given polygonal
environment. This has applications in manufacturing, where one wants to cut out
copies of B that are as large as possible from a sheet of some material.

If only translations are allowed, the B-Voronoi diagram can be used to find the
largest free homothetic copy of B. If general rigid motions are allowed, the technique
of [CK93] computes the largest free similar copy of B in time O(k*nA3(n)logn).
An alternative technique is given in [AAAS96], with randomized expected running
time O(knXg(kn)log* kn). Both bounds are nearly quadratic in n.

Finally, we mention the special case where the polygonal environment is the
interior of a convex n-gon. This is simpler to analyze. The number of free critical
placements of (similar copies of) B, at which B makes simultaneously four obstacle
contacts, is O(kn?) [AAAS96], and they can all be computed in O(kn?logn) time.

THEOREM 40.2.9

The largest similar placement of a k-sided convex polygon in a planar polygonal
environment bounded by n edges can be computed in randomized expected time
O(knXg(kn)log* kn) or in deterministic time O(k*n)s(n)logn). When the en-
vironment is the interior of an n-sided convex polygon, the running time improves
to O(kn?logn).

A NONCONVEX POLYGON

Next we consider the case where B is an arbitrary polygonal region (not necessar-
ily connected), translating and rotating in a polygonal environment bounded by n
edges, as above. Here one can show that the maximum complexity of F is ©((kn)?).
Using standard techniques, F can be constructed in ©((kn)? log kn) time, an algo-
rithm which has been implemented. However, as in the purely translational case, it
suffices to construct the connected component of F containing the initial placement
of B. The general result, stated below, for systems with three degrees of freedom,
implies that the complexity of such a component is only near-quadratic in kn. An
algorithm that computes the component in time O((kn)>*¢) is given in [HS96].

THEOREM 40.2.10

Motion planning for an arbitrary k-sided polygon, translating and rotating in a pla-
nar polygonal environment bounded by n edges, can be performed in time O((kn)?*¢),
for any € > 0.

A TRANSLATING POLYTOPE IN A 3-D POLYHEDRAL ENVIRONMENT

Another interesting motion planning problem with three degrees of freedom involves
a polytope B, with a total of k vertices, edges, and facets, translating amidst
polyhedral obstacles in R?, with a total of n vertices, edges, and faces. The contact
surfaces in this case are planar polygons, composed of a total of O(kn) triangles in
3-space.
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Without additional assumptions, the complexity of F can be ©((kn)?) in the
worst, case. However, the complexity of a single component is only O((kn)? log kn).
Such a component can be constructed in O((kn)?*¢) time, for any € > 0 [AS94].

If B is a convex polytope, and the obstacles consist of m convex polyhedra,
with pairwise disjoint interiors and with a total of n faces, the complexity of the
entire F is O(kmnlogm) and it can be constructed in O(kmn log® m) time [AS].

THEOREM 40.2.11

Translational motion planning for an arbitrary polytope with k facets, in an arbi-
trary 3-dimensional polyhedral environment bounded by n facets, can be performed
in time O((kn)**€), for any € > 0. If B is a convex polytope, and there are m
convez pairwise disjoint obstacles with a total of n facets, then the motion planning
can be performed in O(kmnlog® m) time.

THE GENERAL MOTION PLANNING PROBLEM WITH
THREE DEGREES OF FREEDOM

The last several instances were special cases of the general motion planning problem
with three degrees of freedom. In abstract terms, we have a collection ¥ of NV
contact surfaces in R®, where these surfaces are assumed to be (patches of) algebraic
surfaces of constant maximum degree. The free configuration space consists of some
cells of the arrangement 4(X), and a single connected component of F is just a
single cell in that arrangement.

Inspecting the preceding cases, a unifying observation is that while the maxi-
mum complexity of the entire F can be @(N?), the complexity of a single component
is invariably only near-quadratic in N. This was recently shown in [HS95a] to hold
in general: the combinatorial complexity of a single cell of A(X) is O(N2%€), for
any € > 0, where the constant of proportionality depends on € and on the maximum
degree of the surfaces; cf. Section 21.5.

A general-purpose algorithm for computing a single cell in such an arrange-
ment was recently given in [SS96]. It runs in randomized expected time O(N?t¢),
for any € > 0, and is based on wvertical decompositions in such arrangements (see
Section 21.3.2).

THEOREM 40.2.12

An arbitrary motion planning problem with three degrees of freedom, involving N
contact surface patches, each of constant description complexity, can be solved in
time O(N?*€), for any e > 0.

40.2.3 OTHER PROBLEMS WITH FEW DEGREES OF FREEDOM

COORDINATED MOTION PLANNING

Another class of motion planning problems involves coordinated motion planning of
several independently moving systems. Conceptually, this situation can be handled
as just another special case of the general problem: Consider all the moving objects
as a single system, with & = Zﬁzl k; degrees of freedom, where ¢ is the number
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of moving objects, and k; is the number of degrees of freedom of the ith object.
However, k will generally be too large, and the problem then will be more difficult

to tackle.
A better approach is as follows [SS91]. Let By, ..., B; be the given independent
objects. For each i = 1,...,t, construct the free configuration space F for B;

alone (ignoring the presence of all other moving objects). The actual free configu-
ration space F is a subset of szl F@ . Suppose we have managed to decompose
each F() into subcells of constant description complexity. Then F is a subset of
the union of Cartesian products of the form ¢; X ¢ X --- X ¢;, where ¢; is a subcell
of F),

We next compute the portion of F within each such product. Each such sub-
problem can be intuitively interpreted as the coordinated motion planning of our
objects, where each moves within a small portion of space, amidst only a constant
number of nearby obstacles; so these subproblems are much easier to solve. More-
over, in typical cases, for most products P = ¢; X ¢g X - - - X ¢; the problem is trivial,
because P represents situations where the moving objects are far from one another,
and so cannot interact at all, meaning that NP = P. The number of subproblems
that really need to be solved will be relatively small.

The connectivity graph that represents F is also relatively easy to construct.
Its nodes are the connected components of the intersections of F with each of
the above cell products P, and two nodes are connected to each other if they are
adjacent in the overall . In many typical cases, determining this adjacency is easy.

As an example, one can apply this technique to the coordinated motion plan-
ning of k£ disks moving in a planar polygonal environment bounded by n edges,
to get a solution with O(n*) running time. Since this problem has 2k degrees of
freedom, this is a significant improvement over the bound O(n?*logn) yielded by
Canny’s general algorithm.

TABLE 40.2.1 Summary of motion planning algorithms.

SYSTEM MOTION ENVIRONMENT | df RUNNING TIME
Convex k-gon translation | planar polygonal | 2 O(N log m)
Arbitrary k-gon translation | planar polygonal | 2 O(knlog?n)
General 2 | O(Ass2(n)log®n)
Line segment trans & rot | planar polygonal | 3 O(n?logn)
Convex k-gon trans & rot | planar polygonal | 3 | O(k%nAs(n)logn)
O(knXg(kn)logn)
Arbitrary k-gon trans & rot | planar polygonal | 3 O((kn)2te)
Convex polytope translation | 3-d polyhedral 3 O(kmnlog? m)
Arbitrary polytope | translation | 3-d polyhedral 3 O((kn)2te)
General 3 O(N2te)

MOTION PLANNING AND ARRANGEMENTS

As can be seen from the preceding subsections, motion planning is closely related
to the study of arrangements of surfaces in higher dimensions. Motion planning
has motivated many problems in arrangements, such as the problem of bounding
the complexity of, and designing efficient algorithms for, computing a single cell
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in an arrangement of n low-degree algebraic surface patches in d dimensions. The
goal is to obtain bounds close to O(n?~1) for both combinatorial and algorithmic
problems. This has been settled satisfactorily for d = 2, 3, as noted above, but both
problems are still open in higher dimensions. See Chapter 21 for further details.

SUMMARY

Some of the above results are summarized in Table 40.2.1. For each specific system,
only one or two algorithms are listed.

40.3

VARIANTS OF THE MOTION PLANNING PROBLEM

We now briefly review several variants of the basic motion planning problem, in
which additional constraints are imposed on the problem. Further material on
many of these problems can be found in Chapter 41.

OPTIMAL MOTION PLANNING

The preceding section described techniques for determining the existence of a
collision-free motion between two given placements of some moving system. It
paid no attention to the optimality of the motion, which is an important consider-
ation in practice. There are several problems involved in optimal motion planning.
First, optimality is a notion that can be defined in many ways, each of which leads
to different algorithmic considerations. Second, optimal motion planning is usually
much harder than motion planning per se.

SHORTEST PATHS

The simplest case is when the moving system B is a single point. In this case the
cost of the motion is simply the length of the path traversed by the point (normally,
we use the Euclidean distance, but other metrics have been considered as well). We
thus face the problem of computing shortest paths amidst obstacles in a two- or
three-dimensional environment.

The planar case. Let V be a closed planar polygonal environment bounded by
n edges, and let s (the “source”) be a point in V. For any other point ¢t € V', let
7(s,t) denote the (Euclidean) shortest path from s to ¢ within V. Finding = (s, )
for any ¢ is facilitated by construction of the shortest path map SPM(s,V) from
s in V, a decomposition of V into regions detailed in Chapter 24. A very recent
result computes SPM(s, V') in optimal O(nlogn) time.

The same problem may be considered in other metrics. For example, it is easier
to give an O(nlogn) algorithm for the shortest path problem under the L; or L
metric. See Section 24.3.

The three-dimensional case. Let V' be a closed polyhedral environment bounded
by a total of n faces, edges, and vertices. Again, given two points s,t € V, we wish
to compute the shortest path (s, t) within V from s to ¢. Here 7(s,t) is a polygonal
path, bending at edges (sometimes also at vertices) of V. To compute 7(s,t), we
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need to solve two subproblems: to find the sequence of edges (and vertices) of
V' visited by 7(s,t) (the shortest-path sequence from s to t), and to compute the
actual points of contact of 7(s,¢) with these edges. These points obey the rule
that the incoming angle of m(s,t) with an edge is equal to the outgoing angle.
Hence, given the shortest-path sequence of length m, we need to solve a system of
m quartic equations in m variables in order to find the contact points. This can be
solved either approximately, using an iterative scheme, or exactly, using techniques
of computational real algebraic geometry; the latter method requires exponential
time. Even the first, more “combinatorial,” problem of computing the shortest-
path sequence is NP-hard [CR87], so the general shortest-path problem is certainly
much harder in three dimensions.

Many special cases of this problem, with more efficient solutions, have been
studied. See Section 24.5.

VARIOUS OPTIMAL MOTION PLANNING PROBLEMS

Suppose next that the moving system B is a rigid body free only to translate in
two or three dimensions. Then the notion of optimality is still well defined—it
is the total distance traversed by (any reference point attached to) B. One can
then apply the same techniques as above, after replacing the obstacles by their
expanded versions. For example, if B is a convex polygon in the plane, and the
obstacles are m pairwise openly-disjoint convex polygons Ay, ..., 4,,, then we form
the Minkowski sums K; = A; & (—B), for i = 1,...,m, and compute a shortest
path in the complement of their union. Since the K;’s may overlap, we first need to
compute their union, as above. A similar approach can be used in planning shortest
motion of a polyhedron translating amidst polyhedra in 3-space, etc.

If B admits more complex motions, then the notion of optimality begins to
be fuzzy. For example, consider the case of a line segment (“rod”) translating and
rotating in a planar polygonal environment. One could measure the cost of a motion
by the total distance traveled by a designated endpoint (or the centerpoint) of B,
or by a weighted average between such a distance and the total turning angle of B,
etc. See Section 24.3.

The notion of optimality gets even more complicated when one introduces kine-
matic constraints on the motion of B. It is then often challenging even without
obstacles; see Section 41.5.4. A version of this problem, involving obstacles, has
recently been shown to be NP-hard [AKY96].

EXPLORATORY MOTION PLANNING

If the environment in which the robot moves is not known to the system a priori,
but the system is equipped with sensory devices, motion planning assumes a more
“exploratory” character. If only tactile (or proximity) sensing is available, then a
plausible strategy might be to move along a straight line (in physical or configu-
ration space) directly to the target position, and when an obstacle is reached, to
follow its boundary until the original straight line of motion is reached again. This
technique has been developed and refined for arbitrary systems with two degrees
of freedom (see, e.g., [LS87]). It can be shown that this strategy provably reaches
the goal, if at all possible, with a reasonable bound on the length of the motion.
This technique has been implemented on several real and simulated systems, and



Algorithmic motion planning 747

has applications to maze-searching problems.

One attempt to extend this technique to a system with three degrees of free-
dom is given in [CY91]. This technique computes within F a certain 1-dimensional
skeleton (roadmap) R which captures the connectivity of F. The twist here is that
F is not known in advance, so the construction of R has to be done in an incre-
mental, exploratory manner. This exploration can be implemented in a controlled
manner that does not require too many “probing” steps, and which enables the
system to recognize when the construction of R has been completed (if the goal
has not been reached beforehand).

If vision is also available, then other possibilities need to be considered, e.g.,
the system can obtain partial information about its environment by viewing it from
the present placement, and then “explore” it to gain progressively more information
until the desired motion can be fully planned. Results of this type can be found
in [GMR92] and Section 41.7.

TIME-VARYING ENVIRONMENTS

Interesting generalizations of the motion planning problem arise when some of the
obstacles in the robot’s environment are assumed to be moving along known trajec-
tories. In this case the robot’s goal will be to “dodge” the moving obstacles while
moving to its target placement. In this “dynamic” motion planning problem, it is
reasonable to assume some limit on the robot’s velocity and/or acceleration. Two
studies of this problem are [SM88, RS94]. They show that the problem of avoiding
moving obstacles is substantially harder than the corresponding static problem.
By using time-related configuration changes to encode Turing machine states, they
show that the problem is PSPACE-hard even for systems with a small and fixed
number of degrees of freedom. However, polynomial-time algorithms are available
in a few particularly simple special cases. Another variant of this problem involves
movable obstacles, which the robot B can, say, push aside to clear its passage.
Again, it can be shown that the general problem of this kind is PSPACE-hard, but
that polynomial-time algorithms are available in certain special cases [Wil91].

COMPLIANT MOTION PLANNING

In realistic situations, the moving system has only approximate knowledge of the
geometry of the obstacles and/or of its current position and velocity, and it has
an inherent amount of error in controlling its motion. The objective is to devise a
strategy that will guarantee that the system reaches its goal, where such a strat-
egy usually proceeds through a sequence of free motions (until an obstacle is hit)
intermixed with compliant motions (sliding along surfaces of contacted obstacles)
until it can be ascertained that the goal has been reached.

A standard approach to this problem is through the construction of pre-images
(or back projections). See Section 41.5.3.

NONHOLONOMIC MOTION PLANNING

Another realistic constraint on the possible motions of a given system is kinematic
(or kinodynamic). For example, the moving object B might be constrained not to
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exceed certain velocity or acceleration thresholds, or has only limited steering capa-
bility. Even without any obstacles, such problems are usually quite hard, and the
presence of (stationary or moving) obstacles makes them extremely complicated to
solve. These so-called nonholonomic motion planning problems are usually handled
using tools from control theory. See Section 41.5.2.

GENERAL TASK AND ASSEMBLY PLANNING

In task planning problems, the system is given a complex task to perform, such as
assembling a part from several components or restructuring its workcell into a new
layout, but the precise sequence of substeps needed to attain the final goal is not
specified and must be inferred by the system.

Suppose we want to manufacture a product consisting of several parts. Let
S be the set of parts in their final assembled form. The first question is whether
the product can be disassembled by translating in some fixed direction one part
after the other, so that no collision occurs. An order of the parts that satisfies this
property is called a depth order. It need not always exist, but when it does, the
product can be assembled by translating the constituent parts one after another,
in the reverse of the depth order, to their target positions. Products that can be
assembled in this manner are called stack products [WL94]. The simplicity of the
assembly process makes stack products attractive to manufacture. Computing a
depth order in a given direction (or deciding that no such order exists) can be done
in O(m*/3*¢) time, for any € > 0, for a set of polygons in 3-space with m vertices in
total [dBOS94]. Faster algorithms are known for the special cases of axis-parallel
polygons, c-oriented polygons, and “fat” objects.

Many products, however, are not stack products, that is, a single direction in
which the parts must be moved is not sufficient to assemble the product. One
solution is to search for an assembly sequence that allows a subcollection of parts
to be moved as a rigid body in some direction. This can be accomplished in
polynomial time, though the running time is rather high in the worst case: it may
require Q(m*) time for a collection of m tetrahedra in 3-space. A more modest,
but considerably more efficient, solution allows each disassembly step to proceed in
one of a few given directions [ABHS96]. Tt has running time O(m?*/3+¢), for any
€ > 0. See Section 41.3 for further details on assembly sequencing, and Chapter 46
for related problems.

ON-LINE MOTION PLANNING

Consider the problem of a point robot moving through a planar environment filled
with polygonal obstacles, where the robot has no a priori information about the
obstacles that lie ahead. One models this situation by assuming that the robot
knows the location of the target position and of its own absolute position, but that
it only acquires knowledge about the obstacles as it contacts them. The goal is to
minimize the distance that the robot travels. See also the discussion on exploratory
motion planning above.

Because the robot must make decisions without knowing what lies ahead, it is
natural to use the competitive ratio to evaluate the performance of a strategy.
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In particular, one would like to minimize the ratio between the distance traveled
by the robot and the length of the shortest start-to-target path in that scene. The
competitive ratio is the worst-case ratio achieved over all scenes having a given
source-target distance. A special case of interest is when all obstacles are axis-
parallel rectangles of width at least 1 located in the infinite Euclidean plane. Nat-
ural greedy strategies yield a competitive ratio of ©(n), where n is the Euclidean
source-target distance. More sophisticated algorithms obtain competitive ratios of
O(y/n) [BRSI1]. Randomized algorithms can do much better [BBF196]. Through
the use of randomization, one can translate the case of arbitrary convex obstacles
[BRS91] to rectilinearly-aligned rectangles, at the cost of some increase in the com-
petitive ratio. If the scene is not on an infinite plane but rather within some finite
rectangular “warehouse,” and the start location is one of the warehouse corners,
then the competitive ratio drops to logn [BBFY92].

PRACTICAL APPROACHES TO MOTION PLANNING

When the number of degrees of freedom is even moderately large, exact solutions of
the motion planning problem are very inefficient in practice, so one seeks heuristic
but practical solutions. Several such techniques have been developed.

Potential field and probabilistic techniques. The first heuristic regards the
robot as moving in a potential field induced by the obstacles and by the target
placement, where the obstacles act as repulsive barriers, and the target as a strongly
attracting source. By letting the robot follow the gradient of such a potential field,
we obtain a motion that avoids the obstacles and that can be expected to reach
the goal. An attractive feature of this technique is that planning and executing
the desired motion are done in a single stage. Another important feature is the
generality of the approach; it can easily be applied to systems with many degrees
of freedom.

This technique, however, may lead to a motion where the robot gets stuck at
a local minimum of the potential field, leaving no guarantee that the goal will be
reached. To overcome this problem, several solutions have been proposed. One is
to try to escape from such a “potential well” by making a few small random moves,
in the hope that one of them will put the robot in a position from which the field
leads it away from this well. Another approach is to use the potential field only for
subproblems where the initial and final placements are close to each other, so the
chance to get stuck at a local minimum is small. One then generates many random
placements throughout the workspace, and applies the potential field technique to
attempt to connect many pairs of them, until a path is generated from start to
goal. (In this randomized technique, any convenient local planner may be used.)
See [Lat91, KSLO] and Section 41.4 for more details concerning this technique.

Fat obstacles. Another technique exploits the fact that, in typical layouts, the
obstacles can be expected to be “fat” (this has several definitions; intuitively, they
do not have long and skinny parts). Also, the obstacles tend not to be too clustered,
in the sense that each placement of the robot can interact with only a constant
number of obstacles. These facts tend to make the problem easier to solve. See
[SO94] for such a solution.
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40.4 DAVENPORT-SCHINZEL SEQUENCES

Davenport-Schinzel sequences are interesting and powerful combinatorial structures
that arise in the analysis and calculation of the lower or upper envelope of collections
of functions, and therefore have applications in many geometric problems, including
numerous motion planning problems, which can be reduced to the calculation of
such an envelope. A recent comprehensive survey of Davenport-Schinzel sequences
and their geometric applications can be found in [SA95].

An (n, s) Davenport-Schinzel sequence, where n and s are positive integers,
is a sequence U = (u1, - - ., Unm) composed of n symbols with the properties:

(i) No two adjacent elements of U are equal: u; # ujzq fori=1,...,m — 1.

(ii) U does not contain as a subsequence any alternation of length s + 2 between
two distinct symbols: there do not exist s + 2 indices i1 < iz < +++ < i542 SO
that w;, = u;; = ui; = --- = a and u;, = u;, = ui, = --- = b, for two distinct
symbols a and b.

Thus, for example, an (n,3) sequence is not allowed to contain any subsequence of
the form (a---b---a---b---a). Let A;(n) denote the maximum possible length of
an (n, s) Davenport-Schinzel sequence.

The importance of Davenport-Schinzel sequences lies in their relationship to the
combinatorial structure of the lower (or upper) envelope of a collection of functions
(Section 21.2). Specifically, for any collection of n real-valued continuous functions
fi,-+-, fn defined on the real line, having the property that each pair of them
intersect in at most s points, one can show that the sequence of function indices 4
in the order in which these functions attain their lower envelope (i.e., their pointwise
minimum f = min; f;) from left to right is an (n,s) Davenport-Schinzel sequence.
Conversely, any (n, s) Davenport-Schinzel sequence can be realized in this way for
an appropriate collection of n continuous univariate functions, each pair of which
intersect in at most s points.

The crucial and surprising property of Davenport-Schinzel sequences is that,
for a fixed s, the maximal length A(n) is nearly linear in n, although for s > 3 it
is slightly super-linear. Specifically, one has

A1(n) n

A2(n) 2n —1

As(n) = O(na(n))

M(n) = O(n-20M)

os(n) <m0 HCa(n)
ooy (n) < m-20( T loga(n)+Caupi(n)
Mog(n) = Qn- e IECR )

where a(n) is the inverse of Ackermann’s function, and where C.(n), C.(n) are
asymptotically smaller than the leading terms in the respective exponents. Acker-
mann’s function A(n) grows extremely quickly, with A(4) an exponential “tower”
of 65636 2’s. Thus a(n) < 4 for all practical values of n. See [SA95].
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If one considers the lower envelope of n continuous, but only partially defined,
functions, then the complexity of the envelope is at most As12(n), where s is the
maximum number of intersections between any pair of functions. Thus for a col-
lection of n line segments (for which s = 1), the lower envelope consists of at most
O(na(n)) subsegments. A surprising result is that this bound is tight in the worst
case: there are collections of n segments, for arbitrarily large n, whose lower en-
velope does consist of Q(na(n)) subsegments. This is perhaps the most natural
example of a combinatorial structure defined in terms of n simple objects, whose
complexity involves the inverse Ackermann’s function.

Algorithms. The lower envelope of n given total or partial continuous functions,
each pair of which intersect in at most s points, can be computed by a simple
divide-and-conquer technique that runs (in an appropriate model of computation)
in time O(As(n)logn) or O(As42(n)logn) (depending on whether the functions are
totally or partially defined). A refined technique reduces the time for partially-
defined functions to O(Asx1(n)logn). Thus, in the case of segments, the algorithm
computes their lower envelope in optimal O(nlogn) time. More complex combi-
natorial and algorithmic applications of Davenport-Schinzel sequences (such as the
complexity and construction of a single face in a planar arrangement) are mentioned
throughout this chapter.

40.5 SOURCES AND RELATED MATERIAL

SURVEYS

All results not given an explicit reference above, and additional material on motion
planning and related problems may be traced in these surveys:

[Lat91]: A book devoted to robot motion planning.
[HSS87]: A collection of early papers on motion planning.

[SA95]: A book on Davenport-Schinzel sequences and their geometric applications;
contains a section on motion planning.

[HS95b]: A recent review on arrangements and their applications to motion plan-
ning.

[SS88, SS90, Sha89, Sha95, AY90]: Several survey papers on algorithmic motion
planning.

RELATED CHAPTERS

Chapter 20: Voronoi diagrams and Delaunay triangulations
Chapter 21: Arrangements

Chapter 24: Shortest paths and networks

Chapter 29: Computational real algebraic geometry
Chapter 41: Robotics
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