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40 ALGORITHMIC MOTION PLANNINGMi
ha Sharir
INTRODUCTIONMotion planning is a fundamental problem in roboti
s. It 
omes in a variety offorms, but the simplest version is as follows. We are given a robot system B,whi
h may 
onsist of several rigid obje
ts atta
hed to ea
h other through variousjoints, hinges, and links, or moving independently, and a two-dimensional or three-dimensional environment V 
luttered with obsta
les. We assume that the shapeand lo
ation of the obsta
les and the shape of B are known to the planning system.Given an initial pla
ement Z1 and a �nal pla
ement Z2 of B, we wish to determinewhether there exists a 
ollision-avoiding motion of B from Z1 to Z2, and, if so, toplan su
h a motion. In this simpli�ed and purely geometri
 setup, we ignore issuessu
h as in
omplete information, nonholonomi
 
onstraints, 
ontrol issues relatedto ina

ura
ies in sensing and motion, nonstationary obsta
les, optimality of theplanned motion, and so on.Sin
e the early 1980's, motion planning has been an intensive area of study inroboti
s and 
omputational geometry. In this 
hapter we will fo
us on algorithmi
motion planning, emphasizing theoreti
al algorithmi
 analysis of the problem andseeking worst-
ase asymptoti
 bounds, and only mention brie
y pra
ti
al heuristi
approa
hes to the problem. The majority of this 
hapter is devoted to the sim-pli�ed version of motion planning, as stated above. Se
tion 40.1 presents generalte
hniques and lower bounds. Se
tion 40.2 
onsiders eÆ
ient solutions to a vari-ety of spe
i�
 moving systems with a small number of degrees of freedom. TheseeÆ
ient solutions exploit various sophisti
ated methods in 
omputational and 
om-binatorial geometry related to arrangements of 
urves and surfa
es (Chapter 21).Se
tion 40.3 then brie
y dis
usses various extensions of the motion planning prob-lem, in
orporating un
ertainty, moving obsta
les, et
. We 
on
lude in Se
tion 40.4with a brief review of Davenport-S
hinzel sequen
es, a 
ombinatorial stru
ture thatplays an important role in many motion planning algorithms.40.1 GENERAL TECHNIQUES AND LOWER BOUNDSGLOSSARYRobot B: A me
hani
al system 
onsisting of one or more rigid bodies, possibly
onne
ted by various joints and hinges.733



734 M. SharirPhysi
al spa
e: The two- or three-dimensional environment in whi
h the robotmoves.Pla
ement: The portion of physi
al spa
e o

upied by the robot at some instant.Degrees of freedom k: The number of real parameters that determine the robotB's pla
ements. Ea
h pla
ement 
an be represented as a point in Rk.Free pla
ement: A pla
ement at whi
h the robot is disjoint from the obsta
les.Semifree pla
ement: A pla
ement at whi
h the robot does not meet the interiorof any obsta
le (but may be in 
onta
t with some obsta
les).Con�guration spa
e C: A portion of k-spa
e (where k is the number of degreesof freedom of B) that represents all possible robot pla
ements; the 
oordinatesof any point in this spa
e spe
ify the 
orresponding pla
ement.Expanded obsta
le / C-spa
e obsta
le / forbidden region: For an obsta
leO, this is the portion O� of 
on�guration spa
e 
onsisting of pla
ements at whi
hthe robot interse
ts (
ollides with) O.Free 
on�guration spa
e F: The subset of 
on�guration spa
e 
onsisting offree pla
ements of the robot: F = C nSO O�. (In the literature, this usually alsoin
ludes semifree pla
ements.)Conta
t surfa
e: For an obsta
le feature a (
orner, edge, fa
e, et
.) and for afeature b of the robot, this is the lo
us in C of pla
ements at whi
h a and b are in
onta
t with ea
h other. In most appli
ations, these surfa
es are semialgebrai
sets of 
onstant des
ription 
omplexity (see de�nitions below).Collision-free motion of B: A path 
ontained in F . Any two pla
ements ofB that 
an be rea
hed from ea
h other via a 
ollision-free path must lie in thesame (ar
wise-)
onne
ted 
omponent of F .Arrangement A(�): The de
omposition of k-spa
e into 
ells of various dimen-sions, indu
ed by a 
olle
tion � of surfa
es in Rk. Ea
h 
ell is a maximal 
on-ne
ted portion of the interse
tion of some �xed sub
olle
tion of surfa
es thatdoes not meet any other surfa
e. See Chapter 21. Sin
e a 
ollision-free motionshould not 
ross any 
onta
t surfa
e, F is the union of some of the 
ells of A(�),where � is the 
olle
tion of 
onta
t surfa
es.Semialgebrai
 set: A subset of Rk de�ned by a Boolean 
ombination of poly-nomial equalities and inequalities in the k 
oordinates. See Se
tion 29.2.Constant des
ription 
omplexity: Said of a semialgebrai
 set if it is de�nedby a 
onstant number of polynomial equalities and inequalities of 
onstant max-imum degree (where the number of variables is also assumed to be 
onstant).Example. Let B be a rigid polygon with k edges, moving in a planar polygonalenvironment V with n edges. The system has three degrees of freedom, (x; y; �),where (x; y) are the 
oordinates of some referen
e point on B, and � is the orien-tation of B. Ea
h 
onta
t surfa
e is the lo
us of pla
ements where some vertex ofB tou
hes some edge of V , or some edge of B tou
hes some vertex of V . Thereare 2kn 
onta
t surfa
es, and if we repla
e � by tan �2 , then ea
h 
onta
t surfa
ebe
omes a portion of some algebrai
 surfa
e of degree at most 4, bounded by a
onstant number of algebrai
 ar
s, ea
h of degree at most 2.
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 motion planning 73540.1.1 GENERAL SOLUTIONSGLOSSARYCylindri
al algebrai
 de
omposition of F : A re
ursive de
omposition of Finto 
ylindri
al-like 
ells originally proposed by Collins. Over ea
h 
ell of thede
omposition, ea
h of the polynomials involved in the de�nition of F has a�xed sign (positive, negative, or zero), implying that F is the union of some ofthe 
ells of this de
omposition. See Se
tion 29.5 for further details.Conne
tivity graph: A graph whose nodes are the (free) 
ells of a de
ompositionof F and whose ar
s 
onne
t pairs of adja
ent 
ells.Roadmap R: A network of 1-dimensional 
urves within F , having the propertiesthat (i) it preserves the 
onne
tivity of F , in the sense that the portion of Rwithin ea
h 
onne
ted 
omponent of F is (nonempty and) 
onne
ted; and (ii) itis rea
hable, in the sense that there is a simple pro
edure to move from any freepla
ement of the robot to a pla
ement on R; we denote the mapping resultingfrom this pro
edure by �R.Retra
tion of F onto R: A 
ontinuous mapping of F ontoR that is the identityon R. The roadmap mapping �R is usually a retra
tion. When this is the 
ase,we note that for any path  within F , represented as a 
ontinuous mapping : [0; 1℄ 7! F , �R Æ is a path within R, and, 
on
atenating to it the motionsfrom  (0) and  (1) toR, we see that there is a 
ollision-free motion of B betweentwo pla
ements Z1; Z2 i� there is a path within R between �R(Z1) and �R(Z2).Silhouette: The set of 
riti
al points of a mapping; see Se
tion 29.6.CELL DECOMPOSITIONF is a semialgebrai
 set in Rk. Applying Collins's 
ylindri
al algebrai
 de
ompo-sition results in a 
olle
tion of 
ells whose total 
omplexity is O((nd)3k ), where dis the maximum algebrai
 degree of the polynomials de�ning the 
onta
t surfa
es;the de
omposition 
an be 
onstru
ted within a similar time bound. If the 
oor-dinate axes are generi
, then we 
an also 
ompute all pairs of 
ells of F that areadja
ent to ea
h other (i.e., 
ells whose 
losures (within F) overlap), and storethis information in the form of a 
onne
tivity graph. It is then easy to sear
h fora 
ollision-free path through this graph, if one exists, between the (
ell 
ontainingthe) initial robot pla
ement and the (
ell 
ontaining the) �nal pla
ement. Thisleads to a doubly-exponential general solution for the motion planning problem:THEOREM 40.1.1 Cylindri
al Cell De
omposition [SS83℄Any motion planning problem, with k degrees of freedom, for whi
h the 
onta
tsurfa
es are de�ned by a total of n polynomials of maximum degree d, 
an besolved by Collins's 
ylindri
al algebrai
 de
omposition, in randomized expe
ted timeO((nd)3k ).(The randomization is needed only to 
hoose a generi
 dire
tion for the 
oor-dinate axes.)



736 M. SharirROADMAPSA more re
ent and improved solution is given in [Can87, BPR96℄ based on thenotion of a roadmap R, a network of 1-dimensional 
urves within (the 
losure of)F , having properties de�ned in the glossary above. On
e su
h a roadmap R hasbeen 
onstru
ted, any motion planning instan
e redu
es to path sear
hing withinR, whi
h is easy to do. R is 
onstru
ted re
ursively, as follows. One proje
ts Fonto some generi
 2-plane, and 
omputes the silhouette of F under this proje
tion.Next, the 
riti
al values of the proje
tion of the silhouette on some line are found,and a roadmap is 
onstru
ted re
ursively within ea
h sli
e of F at ea
h of these
riti
al values. The resulting \sub-roadmaps" are then merged with the silhouette,to obtain the desired R.The original algorithm of Canny relies heavily on the polynomials de�ning Fbeing in general position, and on the availability of a generi
 plane of proje
tion.This algorithm runs in nk(log n)dO(k4) deterministi
 time, and in nk(log n)dO(k2)expe
ted randomized time. Re
ent work [BPR96℄ addresses and over
omes the gen-eral position issue, and produ
es a roadmap for any semialgebrai
 set; the runningtime of this solution is nk+1dO(k2).If we ignore the dependen
e on the degree d, the algorithm of Canny is 
loseto optimal in the worst 
ase, assuming that some representation of the entire Fhas to be output, sin
e there are easy examples where the free 
on�guration spa
e
onsists of 
(nk) 
onne
ted 
omponents.THEOREM 40.1.2 Roadmap Algorithm [Can87℄Any motion planning problem, as in the pre
eding theorem, 
an be solved by theroadmap te
hnique in nk(logn)dO(k4) deterministi
 time, and in nk(log n)dO(k2)expe
ted randomized time.40.1.2 LOWER BOUNDSBoth general solutions are (at least) exponential in k (but are polynomial in theother parameters when k is �xed). This raises the problem of 
alibrating the 
om-plexity of the problem when k 
an be arbitrarily large.THEOREM 40.1.3 Lower BoundsThe motion planning problem, with arbitrarily many degrees of freedom, is PSPACE-hard for the instan
es of: (a) 
oordinated motion of many re
tangular boxes alonga re
tangular 
oor; (b) motion planning of a planar me
hani
al linkage with manylinks; and (
) motion planning for a multi-arm robot in a 3-dimensional polyhedralenvironment.All these results appear in papers 
olle
ted in [HSS87℄. There are also manyNP-hardness results for other systems.Fa
ing these �ndings, we 
an either approa
h the general problem with heuristi
and approximate s
hemes, or atta
k spe
i�
 problems with small values of k, withthe goal of obtaining solutions better than those yielded by the general te
hniques.We will mostly survey here the latter approa
h, and mention towards the end whathas been a
hieved by the �rst approa
h.
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 motion planning 73740.2 MOTION PLANNING WITH A SMALL NUMBER OFDEGREES OF FREEDOMIn this main se
tion of the 
hapter, we review solutions to a variety of spe
i�
 motionplanning problems, most of whi
h have 2 or 3 degrees of freedom. Exploiting thespe
ial stru
ture of these problems leads to solutions that are more eÆ
ient thanthe general methods des
ribed above.GLOSSARYJordan ar
/
urve: The image of the 
losed unit interval under a 
ontinuousbije
tive mapping into the plane. A 
losed Jordan 
urve is the image of the unit
ir
le under a similar mapping, and an unbounded Jordan 
urve is an image ofthe open unit interval (or of the entire real line) that separates the plane.Randomized algorithm: An algorithm that applies internal randomization(\
oin-
ips"). We 
onsider here algorithms that always terminate, and produ
ethe 
orre
t output, but whose running time is a random variable that dependson the internal 
oin-
ips. We will state upper bounds on the expe
tation of therunning time (the randomized expe
ted time) of su
h an algorithm, whi
hhold for any input. See Chapter 34.Minkowski sum: For two planar (or spatial) sets A and B, their Minkowskisum, or pointwise ve
tor addition, is the set A�B = fx+ y j x 2 A; y 2 Bg.General position: The input to a geometri
 problem is said to be in generalposition if no nontrivial algebrai
 identity with integer 
oeÆ
ients holds amongthe parameters that spe
ify the input (assuming the input is not overspe
i�ed).For example: no three input points should be 
ollinear, no four points 
o
ir
ular,no three lines 
on
urrent, et
.Convex distan
e fun
tion: A 
onvex region B that 
ontains the origin in itsinterior indu
es a 
onvex distan
e fun
tion dB de�ned bydB(p; q) = min f� j q 2 p� �Bg :B-Voronoi diagram: For a set S of sites, and a 
onvex region B as above, theB-Voronoi diagram VorB(S) of S is a de
omposition of spa
e into Voronoi 
ellsV (s), for s 2 S, su
h thatV (s) = fp j dB(p; s) � dB(p; s0) for all s0 2 S g :Here dB(p; s) = minq2s dB(p; q).�(n): The extremely slowly-growing inverse A
kermann fun
tion; see Se
tion 40.4.Conta
t segment: The lo
us of semifree pla
ements of a polygon B translatingin the plane, at ea
h of whi
h either some spe
i�
 vertex of B tou
hes somespe
i�
 obsta
le edge, or vi
e-versa.Conta
t 
urve: A generalization of \
onta
t segment" to the lo
us of semifreepla
ements of B, assuming that B has only two degrees of freedom, where somespe
i�
 feature of B makes 
onta
t with some spe
i�
 obsta
le feature.



738 M. Sharir40.2.1 TWO DEGREES OF FREEDOMA TRANSLATING POLYGON IN 2DThis is a system with two degrees of freedom (translations in the x and y dire
tions).A CONVEX POLYGONSuppose �rst the translating polygon B is a 
onvex k-gon, and there are m 
onvexpolygonal obsta
les, A1; : : : ; Am, with pairwise disjoint interiors, having a total of nedges. The region of 
on�guration spa
e where B 
ollides with Ai is the Minkowskisum Ki = Ai � (�B) = fx� y j x 2 Ai; y 2 Bg :The free 
on�guration spa
e is the 
omplement of Smi=1Ki. Assuming generalposition, one 
an show:THEOREM 40.2.1 [KLPS86℄(a) Ea
h Ki is a 
onvex polygon, with ni + k edges, where ni is the number ofedges of Ai.(b) For ea
h i 6= j, the boundaries of Ki and Kj interse
t in at most two points.(This also holds when the Ai's and B are not polygons.)(
) Given a 
olle
tion of planar regions K1; : : : ;Km, ea
h en
losed by a 
losedJordan 
urve, su
h that any pair of the bounding 
urves interse
ts at mosttwi
e, then the boundary of the union Smi=1Ki 
onsists of at most 6m � 12maximal 
onne
ted portions of the boundaries of the Ki's, provided m � 3,and this bound is tight in the worst 
ase.These properties, 
ombined with several algorithmi
 te
hniques, imply:THEOREM 40.2.2(a) The free 
on�guration spa
e for a translating 
onvex polygon, as above, is apolygonal region with at most 6m�12 
onvex verti
es and N =Pmi=1(ni+k) =n+ km non
onvex verti
es.(b) F 
an be 
omputed in deterministi
 time O(N log2 n), or in randomized ex-pe
ted time O(N � 2�(n) logn).AN ARBITRARY POLYGONSuppose next that B is an arbitrary polygonal region with k edges. Let A be theunion of all obsta
les, whi
h is another polygonal region with n edges. As above,the free 
on�guration spa
e is the 
omplement of the Minkowski sumK = A� (�B) = fx� y j x 2 A; y 2 Bg :
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 motion planning 739K is again a polygonal region, but, in this 
ase, its maximum possible 
omplexity is�(k2n2), so 
omputing it might be 
onsiderably more expensive than in the 
onvex
ase.A single fa
e suÆ
es. If the initial pla
ement Z of B is given, then we do nothave to 
ompute the entire (
omplement of) K; it suÆ
es to 
ompute the 
onne
ted
omponent f of the 
omplement of K that 
ontains Z, be
ause no other pla
ementis rea
hable from Z via a 
ollision-free motion.Let � be the 
olle
tion of all 
onta
t segments; there are 2kn su
h segments.The desired 
omponent f is the fa
e of A(�) that 
ontains Z. Using the theoryof Davenport-S
hinzel sequen
es (Se
tion 40.4), one 
an show that the maximumpossible 
ombinatorial 
omplexity of a single fa
e in a two-dimensional arrangementof N segments is �(N�(N)). A more 
areful analysis [HCA+95℄ shows:THEOREM 40.2.3(a) The maximum 
ombinatorial 
omplexity of a single fa
e in the arrangement of
onta
t segments for the 
ase of an arbitrary translating polygon is �(kn�(k))(this improvement is signi�
ant only when k � n).(b) Su
h a fa
e 
an be 
omputed in deterministi
 time O(kn log2 n), or in random-ized expe
ted time O(kn � 2�(n) logn).VORONOI DIAGRAMSAnother approa
h to motion planning for a translating 
onvex obje
t B, is via gen-eralized Voronoi diagrams (see Chapter 20), based on the 
onvex distan
e fun
tiondB(p; q). This fun
tion e�e
tively pla
es B 
entered at p and expands it until ithits q. The s
aling fa
tor at this moment is the dB-distan
e from p to q (if B is aunit disk, dB is the Eu
lidean distan
e). dB satis�es the triangle inequality, and isthus \almost" a metri
, ex
ept that it is not symmetri
 in general; it is symmetri
i� B is 
entrally symmetri
 with respe
t to the point of referen
e.Using this distan
e fun
tion dB , a B-Voronoi diagram VorB(S) of S may bede�ned for a set S of m pairwise disjoint obsta
les.THEOREM 40.2.4Assuming that ea
h of B and the obsta
les in S has 
onstant des
ription 
omplexity,and that they are in general position, the B-Voronoi diagram has O(m) 
omplexity,and 
an be 
omputed in O(m logm) time (in an appropriate model of 
omputation).If B and the obsta
les are 
onvex polygons, as above, then the 
omplexity of VorB(S)is O(N) and it 
an be 
omputed in time O(N logm).One 
an show that if Z1 and Z2 are two free pla
ements of B, then thereexists a 
ollision-free motion from Z1 to Z2 if and only if there exists a 
ollision-free motion of B where its 
enter moves only along the edges of VorB(S), betweentwo 
orresponding pla
ements W1;W2, where Wi, for i = 1; 2, is the pla
ementobtained by pushing B from the pla
ement Zi away from its dB-nearest obsta
le,until it be
omes equally nearest to two or more obsta
les (so that its 
enter lies onan edge of VorB(S)).Thus motion planning of B redu
es to a path-sear
hing in the 1-dimensionalnetwork of edges of VorB(S). This te
hnique is 
alled the retra
tion te
hnique ,and 
an be regarded as a spe
ial 
ase of the general roadmap algorithm. The



740 M. Sharirresulting motions have \high 
learan
e," and so are safer than arbitrary motions,be
ause they stay equally nearest to at least two obsta
les.THEOREM 40.2.5The motion planning problem for a 
onvex obje
t B translating amidst m 
onvexand pairwise disjoint obsta
les 
an be solved in O(m logm) time, by 
onstru
tingand sear
hing in the B-Voronoi diagram of the obsta
les, assuming that B andthe obsta
les have 
onstant des
ription 
omplexity ea
h. If B and the obsta
lesare 
onvex polygons, then the same te
hnique yields an O(N logm) solution, whereN = n+ km is as above.THE GENERAL MOTION PLANNING PROBLEM WITH TWODEGREES OF FREEDOMIf B is any system with two degrees of freedom, its 
on�guration spa
e is 2-dimensional, and, for simpli
ity, let us think of it as the plane (spa
es that aretopologi
ally more 
omplex 
an be de
omposed into a 
onstant number of \planar"pat
hes). We 
onstru
t a 
olle
tion � of 
onta
t 
urves, whi
h, under reasonableassumptions 
on
erning B and the obsta
les, are ea
h an algebrai
 Jordan ar
 or
urve of some �xed maximum degree b. In parti
ular, ea
h pair of 
onta
t 
urveswill interse
t in at most some 
onstant number, s � b2, of points.As above, it suÆ
es to 
ompute the single fa
e of A(�) that 
ontains theinitial pla
ement of B. The theory of Davenport-S
hinzel sequen
es implies thatthe 
omplexity of su
h a fa
e is O(�s+2(n)), where �s+2(n) is the maximum lengthof an (n; s+2)-Davenport-S
hinzel sequen
e (Se
tion 40.4), whi
h is slightly super-linear in n when s is �xed.The fa
e in question 
an be 
omputed in deterministi
 time O(�s+2(n) log2 n),using a fairly involved divide-and-
onquer te
hnique based on line-sweeping; seeSe
tion 21.5. (Some slight improvements in the running time have been obtainedre
ently.) Using randomized in
remental (or divide-and-
onquer) te
hniques, thefa
e 
an be 
omputed in randomized expe
ted O(�s+2(n) logn) time.THEOREM 40.2.6Under the above assumptions, the general motion planning problem for systems withtwo degrees of freedom 
an be solved in deterministi
 time O(�s+2(n) log2 n), or inO(�s+2(n) logn) randomized expe
ted time.40.2.2 THREE DEGREES OF FREEDOMA ROD IN A PLANAR POLYGONAL ENVIRONMENTWe next pass to systems with three degrees of freedom. Perhaps the simplest in-stan
e of su
h a system is the 
ase of a line segment B (\rod," \ladder," \pipe")moving (translating and rotating) in a planar polygonal environment with n edges.The maximum 
ombinatorial 
omplexity of the free 
on�guration spa
e F of B is�(n2) (re
all that the naive bound for systems with three degrees of freedom isO(n3)). A 
ell-de
omposition representation of F 
an be 
onstru
ted in (deter-



Algorithmi
 motion planning 741ministi
) O(n2 logn) time [LS87b℄. Several alternative near-quadrati
 algorithmshave also been developed, in
luding one based on 
onstru
ting a Voronoi diagramin F [OSY87℄.An 
(n2) lower bound for this problem has been established in [KO88℄. Itexhibits a polygonal environment with n edges and two free pla
ements of B thatare rea
hable from ea
h other. However, any free motion between them requires
(n2) \elementary moves," that is, the spe
i�
ation of any su
h motion requires
(n2) 
omplexity. This is a fairly strong lower bound, sin
e it does not rely on lowerbounding the 
omplexity of the free 
on�guration spa
e (or of a single 
onne
ted
omponent thereof); after all, it is not 
lear why a motion planning algorithmshould have to produ
e a full des
ription of the whole free spa
e (or of a single
omponent).THEOREM 40.2.7Motion planning for a rod moving in a polygonal environment bounded by n edges
an be performed in O(n2 logn) time. There are instan
es where any 
ollision-free motion of the rod between two spe
i�ed pla
ements requires 
(n2) \elementarymoves."A CONVEX POLYGON IN A PLANAR POLYGONAL ENVIRONMENTHere B is a 
onvex k-gon, free to move (translate and rotate) in an arbitrarypolygonal environment bounded by n edges. The free 
on�guration spa
e is 3-dimensional, and there are at most 2kn 
onta
t surfa
es, of maximum degree 4.The naive bound on the 
omplexity of F is O((kn)3) (attained if B is non
onvex),but, using Davenport-S
hinzel sequen
es, one 
an show that the 
omplexity of Fis only O(kn�6(kn)). Geometri
ally, a vertex of F is a semifree pla
ement of B atwhi
h it makes simultaneously three obsta
le 
onta
ts. The above bound impliesthat the number of su
h 
riti
al pla
ements is only slightly super-quadrati
 (andnot 
ubi
) in kn.Computing F in time 
lose to this bound has proven more diÆ
ult, and onlyre
ently has a 
omplete solution, running in O(kn�6(kn) log kn) time and 
onstru
t-ing the entire F , been attained [AAAS96℄.Another approa
h was given in [CK93℄. It 
omputes the Delaunay triangulationof the obsta
les under the distan
e fun
tion dB , when the orientation of B is �xed,and then tra
es the dis
rete 
ombinatorial 
hanges in the diagram as the orientationvaries. The number of 
hanges was shown to be O(k4n�3(n)). Using this stru
ture,the algorithm of [CK93℄ produ
es a high-
learan
e motion of B between any twospe
i�ed pla
ements, in time O(k4n�3(n) logn).Sin
e all these algorithms are fairly 
ompli
ated, one might 
onsider in pra
ti
ean alternative approximate s
heme, proposed in [AFK+90℄. This s
heme dis
retizesthe orientation of B, solves the translational motion planning for B at ea
h ofthe dis
rete orientations, and �nds those pla
ements of B at whi
h it 
an rotate(without translating) between two su

essive orientations. This s
heme works verywell in pra
ti
e.THEOREM 40.2.8Motion planning for a k-sided 
onvex polygon, translating and rotating in a planar



742 M. Sharirpolygonal environment bounded by n edges, 
an be performed in O(kn�6(kn) log kn)or O(k4n�3(n) logn) time.EXTREMAL PLACEMENTSA related problem is to �nd the largest free pla
ement of B in the given polygonalenvironment. This has appli
ations in manufa
turing, where one wants to 
ut out
opies of B that are as large as possible from a sheet of some material.If only translations are allowed, the B-Voronoi diagram 
an be used to �nd thelargest free homotheti
 
opy of B. If general rigid motions are allowed, the te
hniqueof [CK93℄ 
omputes the largest free similar 
opy of B in time O(k4n�3(n) logn).An alternative te
hnique is given in [AAAS96℄, with randomized expe
ted runningtime O(kn�6(kn) log4 kn). Both bounds are nearly quadrati
 in n.Finally, we mention the spe
ial 
ase where the polygonal environment is theinterior of a 
onvex n-gon. This is simpler to analyze. The number of free 
riti
alpla
ements of (similar 
opies of) B, at whi
h B makes simultaneously four obsta
le
onta
ts, is O(kn2) [AAAS96℄, and they 
an all be 
omputed in O(kn2 logn) time.THEOREM 40.2.9The largest similar pla
ement of a k-sided 
onvex polygon in a planar polygonalenvironment bounded by n edges 
an be 
omputed in randomized expe
ted timeO(kn�6(kn) log4 kn) or in deterministi
 time O(k4n�3(n) logn). When the en-vironment is the interior of an n-sided 
onvex polygon, the running time improvesto O(kn2 logn).A NONCONVEX POLYGONNext we 
onsider the 
ase where B is an arbitrary polygonal region (not ne
essar-ily 
onne
ted), translating and rotating in a polygonal environment bounded by nedges, as above. Here one 
an show that the maximum 
omplexity of F is �((kn)3).Using standard te
hniques, F 
an be 
onstru
ted in �((kn)3 log kn) time, an algo-rithm whi
h has been implemented. However, as in the purely translational 
ase, itsuÆ
es to 
onstru
t the 
onne
ted 
omponent of F 
ontaining the initial pla
ementof B. The general result, stated below, for systems with three degrees of freedom,implies that the 
omplexity of su
h a 
omponent is only near-quadrati
 in kn. Analgorithm that 
omputes the 
omponent in time O((kn)2+�) is given in [HS96℄.THEOREM 40.2.10Motion planning for an arbitrary k-sided polygon, translating and rotating in a pla-nar polygonal environment bounded by n edges, 
an be performed in time O((kn)2+�),for any � > 0.A TRANSLATING POLYTOPE IN A 3-D POLYHEDRAL ENVIRONMENTAnother interesting motion planning problem with three degrees of freedom involvesa polytope B, with a total of k verti
es, edges, and fa
ets, translating amidstpolyhedral obsta
les in R3, with a total of n verti
es, edges, and fa
es. The 
onta
tsurfa
es in this 
ase are planar polygons, 
omposed of a total of O(kn) triangles in3-spa
e.
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omplexity of F 
an be �((kn)3) in theworst 
ase. However, the 
omplexity of a single 
omponent is only O((kn)2 log kn).Su
h a 
omponent 
an be 
onstru
ted in O((kn)2+�) time, for any � > 0 [AS94℄.If B is a 
onvex polytope, and the obsta
les 
onsist of m 
onvex polyhedra,with pairwise disjoint interiors and with a total of n fa
es, the 
omplexity of theentire F is O(kmn logm) and it 
an be 
onstru
ted in O(kmn log2m) time [AS℄.THEOREM 40.2.11Translational motion planning for an arbitrary polytope with k fa
ets, in an arbi-trary 3-dimensional polyhedral environment bounded by n fa
ets, 
an be performedin time O((kn)2+�), for any � > 0. If B is a 
onvex polytope, and there are m
onvex pairwise disjoint obsta
les with a total of n fa
ets, then the motion planning
an be performed in O(kmn log2m) time.THE GENERAL MOTION PLANNING PROBLEM WITHTHREE DEGREES OF FREEDOMThe last several instan
es were spe
ial 
ases of the general motion planning problemwith three degrees of freedom. In abstra
t terms, we have a 
olle
tion � of N
onta
t surfa
es in R3, where these surfa
es are assumed to be (pat
hes of) algebrai
surfa
es of 
onstant maximum degree. The free 
on�guration spa
e 
onsists of some
ells of the arrangement A(�), and a single 
onne
ted 
omponent of F is just asingle 
ell in that arrangement.Inspe
ting the pre
eding 
ases, a unifying observation is that while the maxi-mum 
omplexity of the entire F 
an be �(N3), the 
omplexity of a single 
omponentis invariably only near-quadrati
 in N . This was re
ently shown in [HS95a℄ to holdin general: the 
ombinatorial 
omplexity of a single 
ell of A(�) is O(N2+�), forany � > 0, where the 
onstant of proportionality depends on � and on the maximumdegree of the surfa
es; 
f. Se
tion 21.5.A general-purpose algorithm for 
omputing a single 
ell in su
h an arrange-ment was re
ently given in [SS96℄. It runs in randomized expe
ted time O(N2+�),for any � > 0, and is based on verti
al de
ompositions in su
h arrangements (seeSe
tion 21.3.2).THEOREM 40.2.12An arbitrary motion planning problem with three degrees of freedom, involving N
onta
t surfa
e pat
hes, ea
h of 
onstant des
ription 
omplexity, 
an be solved intime O(N2+�), for any � > 0.40.2.3 OTHER PROBLEMS WITH FEW DEGREES OF FREEDOMCOORDINATED MOTION PLANNINGAnother 
lass of motion planning problems involves 
oordinated motion planning ofseveral independently moving systems. Con
eptually, this situation 
an be handledas just another spe
ial 
ase of the general problem: Consider all the moving obje
tsas a single system, with k = Pti=1 ki degrees of freedom, where t is the number
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ts, and ki is the number of degrees of freedom of the ith obje
t.However, k will generally be too large, and the problem then will be more diÆ
ultto ta
kle.A better approa
h is as follows [SS91℄. Let B1; : : : ; Bt be the given independentobje
ts. For ea
h i = 1; : : : ; t, 
onstru
t the free 
on�guration spa
e F (i) for Bialone (ignoring the presen
e of all other moving obje
ts). The a
tual free 
on�gu-ration spa
e F is a subset of Qti=1 F (i). Suppose we have managed to de
omposeea
h F (i) into sub
ells of 
onstant des
ription 
omplexity. Then F is a subset ofthe union of Cartesian produ
ts of the form 
1 � 
2 � � � � � 
t, where 
i is a sub
ellof F (i).We next 
ompute the portion of F within ea
h su
h produ
t. Ea
h su
h sub-problem 
an be intuitively interpreted as the 
oordinated motion planning of ourobje
ts, where ea
h moves within a small portion of spa
e, amidst only a 
onstantnumber of nearby obsta
les; so these subproblems are mu
h easier to solve. More-over, in typi
al 
ases, for most produ
ts P = 
1�
2�� � ��
t the problem is trivial,be
ause P represents situations where the moving obje
ts are far from one another,and so 
annot intera
t at all, meaning that F\P = P . The number of subproblemsthat really need to be solved will be relatively small.The 
onne
tivity graph that represents F is also relatively easy to 
onstru
t.Its nodes are the 
onne
ted 
omponents of the interse
tions of F with ea
h ofthe above 
ell produ
ts P , and two nodes are 
onne
ted to ea
h other if they areadja
ent in the overall F . In many typi
al 
ases, determining this adja
en
y is easy.As an example, one 
an apply this te
hnique to the 
oordinated motion plan-ning of k disks moving in a planar polygonal environment bounded by n edges,to get a solution with O(nk) running time. Sin
e this problem has 2k degrees offreedom, this is a signi�
ant improvement over the bound O(n2k logn) yielded byCanny's general algorithm.TABLE 40.2.1 Summary of motion planning algorithms.SYSTEM MOTION ENVIRONMENT df RUNNING TIMEConvex k-gon translation planar polygonal 2 O(N logm)Arbitrary k-gon translation planar polygonal 2 O(kn log2 n)General 2 O(�s+2(n) log2 n)Line segment trans & rot planar polygonal 3 O(n2 log n)Convex k-gon trans & rot planar polygonal 3 O(k4n�3(n) log n)O(kn�6(kn) log n)Arbitrary k-gon trans & rot planar polygonal 3 O((kn)2+�)Convex polytope translation 3-d polyhedral 3 O(kmn log2m)Arbitrary polytope translation 3-d polyhedral 3 O((kn)2+�)General 3 O(N2+�)MOTION PLANNING AND ARRANGEMENTSAs 
an be seen from the pre
eding subse
tions, motion planning is 
losely relatedto the study of arrangements of surfa
es in higher dimensions. Motion planninghas motivated many problems in arrangements, su
h as the problem of boundingthe 
omplexity of, and designing eÆ
ient algorithms for, 
omputing a single 
ell
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 surfa
e pat
hes in d dimensions. Thegoal is to obtain bounds 
lose to O(nd�1) for both 
ombinatorial and algorithmi
problems. This has been settled satisfa
torily for d = 2; 3, as noted above, but bothproblems are still open in higher dimensions. See Chapter 21 for further details.SUMMARYSome of the above results are summarized in Table 40.2.1. For ea
h spe
i�
 system,only one or two algorithms are listed.40.3 VARIANTS OF THE MOTION PLANNING PROBLEMWe now brie
y review several variants of the basi
 motion planning problem, inwhi
h additional 
onstraints are imposed on the problem. Further material onmany of these problems 
an be found in Chapter 41.OPTIMAL MOTION PLANNINGThe pre
eding se
tion des
ribed te
hniques for determining the existen
e of a
ollision-free motion between two given pla
ements of some moving system. Itpaid no attention to the optimality of the motion, whi
h is an important 
onsider-ation in pra
ti
e. There are several problems involved in optimal motion planning.First, optimality is a notion that 
an be de�ned in many ways, ea
h of whi
h leadsto di�erent algorithmi
 
onsiderations. Se
ond, optimal motion planning is usuallymu
h harder than motion planning per se.SHORTEST PATHSThe simplest 
ase is when the moving system B is a single point. In this 
ase the
ost of the motion is simply the length of the path traversed by the point (normally,we use the Eu
lidean distan
e, but other metri
s have been 
onsidered as well). Wethus fa
e the problem of 
omputing shortest paths amidst obsta
les in a two- orthree-dimensional environment.The planar 
ase. Let V be a 
losed planar polygonal environment bounded byn edges, and let s (the \sour
e") be a point in V . For any other point t 2 V , let�(s; t) denote the (Eu
lidean) shortest path from s to t within V . Finding �(s; t)for any t is fa
ilitated by 
onstru
tion of the shortest path map SPM(s; V ) froms in V , a de
omposition of V into regions detailed in Chapter 24. A very re
entresult 
omputes SPM(s; V ) in optimal O(n logn) time.The same problem may be 
onsidered in other metri
s. For example, it is easierto give an O(n logn) algorithm for the shortest path problem under the L1 or L1metri
. See Se
tion 24.3.The three-dimensional 
ase. Let V be a 
losed polyhedral environment boundedby a total of n fa
es, edges, and verti
es. Again, given two points s; t 2 V , we wishto 
ompute the shortest path �(s; t) within V from s to t. Here �(s; t) is a polygonalpath, bending at edges (sometimes also at verti
es) of V . To 
ompute �(s; t), we
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e of edges (and verti
es) ofV visited by �(s; t) (the shortest-path sequen
e from s to t), and to 
ompute thea
tual points of 
onta
t of �(s; t) with these edges. These points obey the rulethat the in
oming angle of �(s; t) with an edge is equal to the outgoing angle.Hen
e, given the shortest-path sequen
e of length m, we need to solve a system ofm quarti
 equations in m variables in order to �nd the 
onta
t points. This 
an besolved either approximately, using an iterative s
heme, or exa
tly, using te
hniquesof 
omputational real algebrai
 geometry; the latter method requires exponentialtime. Even the �rst, more \
ombinatorial," problem of 
omputing the shortest-path sequen
e is NP-hard [CR87℄, so the general shortest-path problem is 
ertainlymu
h harder in three dimensions.Many spe
ial 
ases of this problem, with more eÆ
ient solutions, have beenstudied. See Se
tion 24.5.VARIOUS OPTIMAL MOTION PLANNING PROBLEMSSuppose next that the moving system B is a rigid body free only to translate intwo or three dimensions. Then the notion of optimality is still well de�ned|itis the total distan
e traversed by (any referen
e point atta
hed to) B. One 
anthen apply the same te
hniques as above, after repla
ing the obsta
les by theirexpanded versions. For example, if B is a 
onvex polygon in the plane, and theobsta
les are m pairwise openly-disjoint 
onvex polygons A1; : : : ; Am, then we formthe Minkowski sums Ki = Ai � (�B), for i = 1; : : : ;m, and 
ompute a shortestpath in the 
omplement of their union. Sin
e the Ki's may overlap, we �rst need to
ompute their union, as above. A similar approa
h 
an be used in planning shortestmotion of a polyhedron translating amidst polyhedra in 3-spa
e, et
.If B admits more 
omplex motions, then the notion of optimality begins tobe fuzzy. For example, 
onsider the 
ase of a line segment (\rod") translating androtating in a planar polygonal environment. One 
ould measure the 
ost of a motionby the total distan
e traveled by a designated endpoint (or the 
enterpoint) of B,or by a weighted average between su
h a distan
e and the total turning angle of B,et
. See Se
tion 24.3.The notion of optimality gets even more 
ompli
ated when one introdu
es kine-mati
 
onstraints on the motion of B. It is then often 
hallenging even withoutobsta
les; see Se
tion 41.5.4. A version of this problem, involving obsta
les, hasre
ently been shown to be NP-hard [AKY96℄.EXPLORATORY MOTION PLANNINGIf the environment in whi
h the robot moves is not known to the system a priori,but the system is equipped with sensory devi
es, motion planning assumes a more\exploratory" 
hara
ter. If only ta
tile (or proximity) sensing is available, then aplausible strategy might be to move along a straight line (in physi
al or 
on�gu-ration spa
e) dire
tly to the target position, and when an obsta
le is rea
hed, tofollow its boundary until the original straight line of motion is rea
hed again. Thiste
hnique has been developed and re�ned for arbitrary systems with two degreesof freedom (see, e.g., [LS87℄). It 
an be shown that this strategy provably rea
hesthe goal, if at all possible, with a reasonable bound on the length of the motion.This te
hnique has been implemented on several real and simulated systems, and
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ations to maze-sear
hing problems.One attempt to extend this te
hnique to a system with three degrees of free-dom is given in [CY91℄. This te
hnique 
omputes within F a 
ertain 1-dimensionalskeleton (roadmap) R whi
h 
aptures the 
onne
tivity of F . The twist here is thatF is not known in advan
e, so the 
onstru
tion of R has to be done in an in
re-mental, exploratory manner. This exploration 
an be implemented in a 
ontrolledmanner that does not require too many \probing" steps, and whi
h enables thesystem to re
ognize when the 
onstru
tion of R has been 
ompleted (if the goalhas not been rea
hed beforehand).If vision is also available, then other possibilities need to be 
onsidered, e.g.,the system 
an obtain partial information about its environment by viewing it fromthe present pla
ement, and then \explore" it to gain progressively more informationuntil the desired motion 
an be fully planned. Results of this type 
an be foundin [GMR92℄ and Se
tion 41.7.TIME-VARYING ENVIRONMENTSInteresting generalizations of the motion planning problem arise when some of theobsta
les in the robot's environment are assumed to be moving along known traje
-tories. In this 
ase the robot's goal will be to \dodge" the moving obsta
les whilemoving to its target pla
ement. In this \dynami
" motion planning problem, it isreasonable to assume some limit on the robot's velo
ity and/or a

eleration. Twostudies of this problem are [SM88, RS94℄. They show that the problem of avoidingmoving obsta
les is substantially harder than the 
orresponding stati
 problem.By using time-related 
on�guration 
hanges to en
ode Turing ma
hine states, theyshow that the problem is PSPACE-hard even for systems with a small and �xednumber of degrees of freedom. However, polynomial-time algorithms are availablein a few parti
ularly simple spe
ial 
ases. Another variant of this problem involvesmovable obsta
les, whi
h the robot B 
an, say, push aside to 
lear its passage.Again, it 
an be shown that the general problem of this kind is PSPACE-hard, butthat polynomial-time algorithms are available in 
ertain spe
ial 
ases [Wil91℄.COMPLIANT MOTION PLANNINGIn realisti
 situations, the moving system has only approximate knowledge of thegeometry of the obsta
les and/or of its 
urrent position and velo
ity, and it hasan inherent amount of error in 
ontrolling its motion. The obje
tive is to devise astrategy that will guarantee that the system rea
hes its goal, where su
h a strat-egy usually pro
eeds through a sequen
e of free motions (until an obsta
le is hit)intermixed with 
ompliant motions (sliding along surfa
es of 
onta
ted obsta
les)until it 
an be as
ertained that the goal has been rea
hed.A standard approa
h to this problem is through the 
onstru
tion of pre-images(or ba
k proje
tions). See Se
tion 41.5.3.NONHOLONOMIC MOTION PLANNINGAnother realisti
 
onstraint on the possible motions of a given system is kinemati
(or kinodynami
). For example, the moving obje
t B might be 
onstrained not to
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eed 
ertain velo
ity or a

eleration thresholds, or has only limited steering 
apa-bility. Even without any obsta
les, su
h problems are usually quite hard, and thepresen
e of (stationary or moving) obsta
les makes them extremely 
ompli
ated tosolve. These so-
alled nonholonomi
 motion planning problems are usually handledusing tools from 
ontrol theory. See Se
tion 41.5.2.GENERAL TASK AND ASSEMBLY PLANNINGIn task planning problems, the system is given a 
omplex task to perform, su
h asassembling a part from several 
omponents or restru
turing its work
ell into a newlayout, but the pre
ise sequen
e of substeps needed to attain the �nal goal is notspe
i�ed and must be inferred by the system.Suppose we want to manufa
ture a produ
t 
onsisting of several parts. LetS be the set of parts in their �nal assembled form. The �rst question is whetherthe produ
t 
an be disassembled by translating in some �xed dire
tion one partafter the other, so that no 
ollision o

urs. An order of the parts that satis�es thisproperty is 
alled a depth order . It need not always exist, but when it does, theprodu
t 
an be assembled by translating the 
onstituent parts one after another,in the reverse of the depth order, to their target positions. Produ
ts that 
an beassembled in this manner are 
alled sta
k produ
ts [WL94℄. The simpli
ity of theassembly pro
ess makes sta
k produ
ts attra
tive to manufa
ture. Computing adepth order in a given dire
tion (or de
iding that no su
h order exists) 
an be donein O(m4=3+�) time, for any � > 0, for a set of polygons in 3-spa
e with m verti
es intotal [dBOS94℄. Faster algorithms are known for the spe
ial 
ases of axis-parallelpolygons, 
-oriented polygons, and \fat" obje
ts.Many produ
ts, however, are not sta
k produ
ts, that is, a single dire
tion inwhi
h the parts must be moved is not suÆ
ient to assemble the produ
t. Onesolution is to sear
h for an assembly sequen
e that allows a sub
olle
tion of partsto be moved as a rigid body in some dire
tion. This 
an be a

omplished inpolynomial time, though the running time is rather high in the worst 
ase: it mayrequire 
(m4) time for a 
olle
tion of m tetrahedra in 3-spa
e. A more modest,but 
onsiderably more eÆ
ient, solution allows ea
h disassembly step to pro
eed inone of a few given dire
tions [ABHS96℄. It has running time O(m4=3+�), for any� > 0. See Se
tion 41.3 for further details on assembly sequen
ing, and Chapter 46for related problems.ON-LINE MOTION PLANNINGConsider the problem of a point robot moving through a planar environment �lledwith polygonal obsta
les, where the robot has no a priori information about theobsta
les that lie ahead. One models this situation by assuming that the robotknows the lo
ation of the target position and of its own absolute position, but thatit only a
quires knowledge about the obsta
les as it 
onta
ts them. The goal is tominimize the distan
e that the robot travels. See also the dis
ussion on exploratorymotion planning above.Be
ause the robot must make de
isions without knowing what lies ahead, it isnatural to use the 
ompetitive ratio to evaluate the performan
e of a strategy.
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ular, one would like to minimize the ratio between the distan
e traveledby the robot and the length of the shortest start-to-target path in that s
ene. The
ompetitive ratio is the worst-
ase ratio a
hieved over all s
enes having a givensour
e-target distan
e. A spe
ial 
ase of interest is when all obsta
les are axis-parallel re
tangles of width at least 1 lo
ated in the in�nite Eu
lidean plane. Nat-ural greedy strategies yield a 
ompetitive ratio of �(n), where n is the Eu
lideansour
e-target distan
e. More sophisti
ated algorithms obtain 
ompetitive ratios of�(pn) [BRS91℄. Randomized algorithms 
an do mu
h better [BBF+96℄. Throughthe use of randomization, one 
an translate the 
ase of arbitrary 
onvex obsta
les[BRS91℄ to re
tilinearly-aligned re
tangles, at the 
ost of some in
rease in the 
om-petitive ratio. If the s
ene is not on an in�nite plane but rather within some �nitere
tangular \warehouse," and the start lo
ation is one of the warehouse 
orners,then the 
ompetitive ratio drops to logn [BBFY92℄.PRACTICAL APPROACHES TO MOTION PLANNINGWhen the number of degrees of freedom is even moderately large, exa
t solutions ofthe motion planning problem are very ineÆ
ient in pra
ti
e, so one seeks heuristi
but pra
ti
al solutions. Several su
h te
hniques have been developed.Potential �eld and probabilisti
 te
hniques. The �rst heuristi
 regards therobot as moving in a potential �eld indu
ed by the obsta
les and by the targetpla
ement, where the obsta
les a
t as repulsive barriers, and the target as a stronglyattra
ting sour
e. By letting the robot follow the gradient of su
h a potential �eld,we obtain a motion that avoids the obsta
les and that 
an be expe
ted to rea
hthe goal. An attra
tive feature of this te
hnique is that planning and exe
utingthe desired motion are done in a single stage. Another important feature is thegenerality of the approa
h; it 
an easily be applied to systems with many degreesof freedom.This te
hnique, however, may lead to a motion where the robot gets stu
k ata lo
al minimum of the potential �eld, leaving no guarantee that the goal will berea
hed. To over
ome this problem, several solutions have been proposed. One isto try to es
ape from su
h a \potential well" by making a few small random moves,in the hope that one of them will put the robot in a position from whi
h the �eldleads it away from this well. Another approa
h is to use the potential �eld only forsubproblems where the initial and �nal pla
ements are 
lose to ea
h other, so the
han
e to get stu
k at a lo
al minimum is small. One then generates many randompla
ements throughout the workspa
e, and applies the potential �eld te
hnique toattempt to 
onne
t many pairs of them, until a path is generated from start togoal. (In this randomized te
hnique, any 
onvenient lo
al planner may be used.)See [Lat91, KSLO℄ and Se
tion 41.4 for more details 
on
erning this te
hnique.Fat obsta
les. Another te
hnique exploits the fa
t that, in typi
al layouts, theobsta
les 
an be expe
ted to be \fat" (this has several de�nitions; intuitively, theydo not have long and skinny parts). Also, the obsta
les tend not to be too 
lustered,in the sense that ea
h pla
ement of the robot 
an intera
t with only a 
onstantnumber of obsta
les. These fa
ts tend to make the problem easier to solve. See[SO94℄ for su
h a solution.
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hinzel sequen
es are interesting and powerful 
ombinatorial stru
turesthat arise in the analysis and 
al
ulation of the lower or upper envelope of 
olle
tionsof fun
tions, and therefore have appli
ations in many geometri
 problems, in
ludingnumerous motion planning problems, whi
h 
an be redu
ed to the 
al
ulation ofsu
h an envelope. A re
ent 
omprehensive survey of Davenport-S
hinzel sequen
esand their geometri
 appli
ations 
an be found in [SA95℄.An (n; s) Davenport-S
hinzel sequen
e, where n and s are positive integers,is a sequen
e U = (u1; : : : ; um) 
omposed of n symbols with the properties:(i) No two adja
ent elements of U are equal: ui 6= ui+1 for i = 1; : : : ;m� 1.(ii) U does not 
ontain as a subsequen
e any alternation of length s+ 2 betweentwo distin
t symbols: there do not exist s+ 2 indi
es i1 < i2 < � � � < is+2 sothat ui1 = ui3 = ui5 = � � � = a and ui2 = ui4 = ui6 = � � � = b, for two distin
tsymbols a and b.Thus, for example, an (n; 3) sequen
e is not allowed to 
ontain any subsequen
e ofthe form (a � � � b � � �a � � � b � � � a). Let �s(n) denote the maximum possible length ofan (n; s) Davenport-S
hinzel sequen
e.The importan
e of Davenport-S
hinzel sequen
es lies in their relationship to the
ombinatorial stru
ture of the lower (or upper) envelope of a 
olle
tion of fun
tions(Se
tion 21.2). Spe
i�
ally, for any 
olle
tion of n real-valued 
ontinuous fun
tionsf1; : : : ; fn de�ned on the real line, having the property that ea
h pair of theminterse
t in at most s points, one 
an show that the sequen
e of fun
tion indi
es iin the order in whi
h these fun
tions attain their lower envelope (i.e., their pointwiseminimum f = mini fi) from left to right is an (n; s) Davenport-S
hinzel sequen
e.Conversely, any (n; s) Davenport-S
hinzel sequen
e 
an be realized in this way foran appropriate 
olle
tion of n 
ontinuous univariate fun
tions, ea
h pair of whi
hinterse
t in at most s points.The 
ru
ial and surprising property of Davenport-S
hinzel sequen
es is that,for a �xed s, the maximal length �s(n) is nearly linear in n, although for s � 3 itis slightly super-linear. Spe
i�
ally, one has�1(n) = n�2(n) = 2n� 1�3(n) = �(n�(n))�4(n) = �(n � 2�(n))�2s(n) � n � 2�(n)s�1+C2s(n)�2s+1(n) � n � 2�(n)s�1 log�(n)+C2s+1(n)�2s(n) = 
(n � 2 1(s�1)!�(n)s�1+C02s(n)) ;where �(n) is the inverse of A
kermann's fun
tion, and where Cr(n), C 0r(n) areasymptoti
ally smaller than the leading terms in the respe
tive exponents. A
ker-mann's fun
tion A(n) grows extremely qui
kly, with A(4) an exponential \tower"of 65636 2's. Thus �(n) � 4 for all pra
ti
al values of n. See [SA95℄.
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onsiders the lower envelope of n 
ontinuous, but only partially de�ned,fun
tions, then the 
omplexity of the envelope is at most �s+2(n), where s is themaximum number of interse
tions between any pair of fun
tions. Thus for a 
ol-le
tion of n line segments (for whi
h s = 1), the lower envelope 
onsists of at mostO(n�(n)) subsegments. A surprising result is that this bound is tight in the worst
ase: there are 
olle
tions of n segments, for arbitrarily large n, whose lower en-velope does 
onsist of 
(n�(n)) subsegments. This is perhaps the most naturalexample of a 
ombinatorial stru
ture de�ned in terms of n simple obje
ts, whose
omplexity involves the inverse A
kermann's fun
tion.Algorithms. The lower envelope of n given total or partial 
ontinuous fun
tions,ea
h pair of whi
h interse
t in at most s points, 
an be 
omputed by a simpledivide-and-
onquer te
hnique that runs (in an appropriate model of 
omputation)in time O(�s(n) logn) or O(�s+2(n) logn) (depending on whether the fun
tions aretotally or partially de�ned). A re�ned te
hnique redu
es the time for partially-de�ned fun
tions to O(�s+1(n) logn). Thus, in the 
ase of segments, the algorithm
omputes their lower envelope in optimal O(n logn) time. More 
omplex 
ombi-natorial and algorithmi
 appli
ations of Davenport-S
hinzel sequen
es (su
h as the
omplexity and 
onstru
tion of a single fa
e in a planar arrangement) are mentionedthroughout this 
hapter.40.5 SOURCES AND RELATED MATERIALSURVEYSAll results not given an expli
it referen
e above, and additional material on motionplanning and related problems may be tra
ed in these surveys:[Lat91℄: A book devoted to robot motion planning.[HSS87℄: A 
olle
tion of early papers on motion planning.[SA95℄: A book on Davenport-S
hinzel sequen
es and their geometri
 appli
ations;
ontains a se
tion on motion planning.[HS95b℄: A re
ent review on arrangements and their appli
ations to motion plan-ning.[SS88, SS90, Sha89, Sha95, AY90℄: Several survey papers on algorithmi
 motionplanning.RELATED CHAPTERSChapter 20: Voronoi diagrams and Delaunay triangulationsChapter 21: ArrangementsChapter 24: Shortest paths and networksChapter 29: Computational real algebrai
 geometryChapter 41: Roboti
s
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