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Abstract. We study cross-graph charging schemes for graphs drawn
in the plane. These are charging schemes where charge is moved across
vertices of different graphs. Such methods have been recently applied to
obtain various properties of triangulations that are embedded over a fixed
set of points in the plane. We show how this method can be generalized
to obtain results for various other types of graphs that are embedded
in the plane. Specifically, we obtain a new bound of* O* (187.53N) for
the maximum number of crossing-free straight-edge graphs that can be
embedded over any specific set of N points in the plane (improving upon
the previous best upper bound 207.85" in Hoffmann et al. [14]). We
also derive upper bounds for numbers of several other types of plane
graphs (such as connected and bi-connected plane graphs), and obtain
various bounds on expected vertex-degrees in graphs that are uniformly
chosen from the set of all crossing-free straight-edge graphs that can be
embedded over a specific point set.

We then show how to apply the cross-graph charging-scheme method
for graphs that allow certain types of crossings. Specifically, we consider
graphs with no set of k pairwise-crossing edges (more commonly known
as k-quasi-planar graphs). For k = 3 and k = 4, we prove that, for
any set S of N points in the plane, the number of graphs that have a
straight-edge k-quasi-planar embedding over S is only exponential in N.

1 Introduction

Background. Consider the following problem — given a set S of labeled points
in the plane, no three collinear, what is the number of graphs that have a straight-
edge crossing-free embedding over S?7 That is, we consider graphs whose vertex
set is (or is mapped to) S and whose edges are drawn as straight segments con-
necting the corresponding pairs of points, so that these segments do not cross
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each other (at a point in their relative interiors). For example, if S is a set
of N points in convex position, the answer is known to be 6 ((6 + 4v2)V) ~
(C] (11.66N ) [11]. The more general problem asks for the maximum number of
crossing-free straight-edge graphs that can be embedded over any specific set of
N points in the plane. The first exponential bound, 103", on the number of
such graphs was proved by Ajtai et al. [4] back in 1982. Since then, progressively
(and significantly) smaller upper bounds have been derived (for example, see
[14,18,23]). Upper bounds on numbers of more specific types of crossing-free
straight-edge graphs, such as Hamiltonian cycles, spanning trees, perfect match-
ings, and triangulations, were also studied (e.g., see [6, 7,20, 21, 25]). Worst-case
lower bounds for these numbers have also been addressed (e.g., see [3,9,12]).2

Research on the above problems has led to the development of several useful
combinatorial techniques, many of which are interesting in their own right. One
such distant achievement was the introduction of the Catalan numbers by Euler
and Lamé [10, 15]. A more recent development was the first proof for the crossing
lemma, presented by Ajtai et al. [4]. In this paper we discuss another novel
combinatorial technique that has recently emerged from research on the above
counting problems. Namely, this is the concept of cross-graph charging schemes.

The idea of applying charging schemes to obtain graph properties probably
originated from the attempts of Heesch to prove the four colors theorem [13].
Later, his ideas were used in Appel and Haken’s famous proof of the theorem [5],
and their extensions have become a common technique in graph theory (e.g., see
[2,17]). This technique involves giving charges to vertices (or edges, or faces, for
graphs drawn in the plane) of a graph G, and then moving these charges between
various vertices (or edges, or faces) of G. The novel approach of moving such
charges between vertices and edges of different graphs over the same point set
originated by Sharir and Welzl in 2006 [25], in studying the maximum number
of triangulations that can be embedded over a specific set of N points in the
plane. Since then, this technique has been extended in [18,19,23,24] to study
various combinatorial and algorithmic properties of triangulations.

In this paper, we extend the idea of cross-graph charging schemes beyond the
realm of triangulations. We first show how to apply this technique to bound the
maximum number of crossing-free straight-edge graphs that can be embedded
over a specific set of points in the plane. Then we show how to extend this idea to
several other types of graphs, including families of non-planar graphs (this seems
to be the first derivation of reasonable bounds for such graph types). It seems
likely that these techniques can be further extended to other types of problems
(that is, problems not involving bounding or counting the number of embedded
graphs), and we hope that the present study will motivate such applications.
Before discussing our results any further, we require some formal definitions of
the concepts related to these problems.

2 We try to keep a comprehensive list of the various up-to-date bounds in a dedicated
webpage http://www.cs.tau.ac.il/~sheffera/counting/PlaneGraphs.html (ver-
sion of May 2012).



Notations and results. A planar graph is a graph that can be embedded
in the plane in such a way that its vertices are embedded as points and its edges
are embedded as Jordan arcs that connect the respective pairs of points and can
meet only at a common endpoint. A crossing-free straight-edge graph is a plane
embedding of a planar graph such that its edges are embedded as non-crossing
straight line segments; we sometimes refer to such graphs simply as plane graphs.
In Sect. 2 we only consider plane graphs. In Sect. 3 we allow certain types of
crossings by considering quasi-planar graphs; here too we assume that the edges
are embedded as (possibly crossing) straight line segments. In both sections we
only consider embeddings where the points are in general position, that is, where
no three points are collinear. For upper bounds on the number of graphs, this
involves no loss of generality, because the number of graphs can only grow when
a degenerate point set is slightly perturbed into general position.

A triangulation of a finite point set S in the plane is a maximal plane graph
on S (that is, no additional straight edges can be inserted without crossing any
of the existing edges). For a set S of points in the plane, we denote by 7(S5)
the set of all triangulations of S, and put tr(S) := |7 (S)|. Similarly, we denote
by P(S) the set of all plane graphs of S, and put pg(S) := |P(S)|. Finally,
let tr(N) = max gy tr(S) and pg(N) = max|g—y pg(S). So another way of
formulating our problem is — find a small constant b (ideally, find the smallest)
such that pg(N) = O*(bY). (By the results mentioned above, we know that such
a b exists.)

Notice that every plane graph is contained in at least one triangulation. Also,
by Euler’s formula, every triangulation has fewer than 3|S| edges, and thus, every
triangulation contains fewer than 23151 = 8I5! plane graphs. From the above we
have the inequality pg(S) < 8!5I-tr(S), which implies pg(N) < 8V -tr(N). Every
several years an improved upper bound for tr(N) is discovered (e.g., see [8, 22,
25]), and currently, the best known bound is tr(N) < 30" [23]. Combining this
bound with the above inequality implies pg(N) < 240". Currently, the best
known lower bound is pg(N) = £2(41.18") [3].

The inequality pg(N) < 8V - tr(N) seems rather weak, since it potentially
counts some plane graphs many times. Razen, Snoeyink, and Welzl [18] were
the first to address this inefficiency, deriving the slightly improved inequality
pg(N) = O (7.9792") - tr(N). A more significant improvement of pg(N) <
6.9283Y . tr(IV) was recently obtained by Hoffmann et al. [14]. This implies the
bound pg(N) < 207.85V.

As far as we know, our cross-graph charging-scheme method is currently the
only method that does not rely on the ratio between pg(N) and tr(N) and yields
a non-astronomical bound. An initial, more direct application of this method
implies only a bound of 3207.42"V. On the other hand, by combining this method
with the current bound on the number of triangulations (indirectly, by using an
upper bound on the maximum number of plane graphs with at least ¢V edges,
which is derived in [14] and relies on tr(N)) we obtain pg(N) = O* (187.53").

Our method relies on charging schemes between objects from different plane
graphs over the same point set (hence the name cross-graph charging schemes).



Given a set S of N points in the plane, we consider the set S x P(S) and call
each of its elements a ving (vertex in graph, similar to the definition of a wvint
(vertex in triangulation) from [23-25]). Intuitively, a ving is an instance of a
vertex in a specific plane graph. Our charging schemes are between vings from
different graphs (sharing a common vertex).

A k-quasi-plane graph is a straight-edge graph over a set of points in the
plane that may contain crossings, but does not contain any set of k pairwise
crossing edges (some other works, such as [2], refer to such graphs as k-quasi-
planar geometric graphs). Notice that a 2-quasi-plane graph is simply a plane
graph.

For a set S of points in the plane, we denote by Q(S) the set of all k-quasi-
plane graphs on S, and put qp,(S) := |Qx(S)|. Moreover, we let qp,(N) =
max|s|—n qpx(S). As far as we know, there are no known singly exponential
upper bounds on qp,(N), for any k& > 3. We show that an appropriate extension
of our technique easily implies the bounds qp5(N) < 225V and qp, (V) < 2145V,
These bounds are probably very far from being tight, but our purpose here is to
show that the number of 3-quasi-plane graphs, say, that can be embedded over
a specific point set is only exponential in the number of points (note that, the
first bound, on qps(N), is significantly smaller than the first exponential bound
— 10'3" — that was obtained for the number of plane graphs [4]). We also show
that the main conjecture about quasi-planar graphs (namely, that the number
of their edges is linear for any fixed k, e.g., see [1,2,16]) would imply, if true,
that qp,(NN) is (only) exponential in N for any fixed k.

2 An Upper Bound on the Number of Plane Graphs

In this section we derive upper bounds on the number of plane graphs. In Sub-
sect. 2.1, we derive the initial bound pg(N) < 4096". In Subsect. 2.2, we ex-
ploit some geometric aspects of the problem, to improve the bound to pg(N) <
3207.42% . Even though this is far worse than the recent bound pg(N) < 207.85"
[14], it constitutes a significant progress in deriving bounds that do not de-
pend on tr(N). In Subsect. 2.3, we extend our technique to obtain the bound
pg(N) = O* (187.53N), which is currently the best known upper bound for this
quantity. This extension is a combination of our technique with some recently
obtained bounds on the number of certain types of plane graphs (from [14]).
These latter bounds do depend on the number of triangulations, but the way
we exploit these bounds makes our new bound (that is, O* (187.53N)) depend
non-linearly on tr(N); see below for details. In Subsect. 2.4, we present a variety
of additional results that can be obtained by simple extensions of our technique.

2.1 The Infrastructure and an Initial Bound

Given two vertices p,q of a plane graph G, we say that p sees ¢ in G if the
(straight) edge pq does not cross any edge of G. The degree of a ving (p, G) is
the degree (number of neighbors) of p in G; a ving of degree i is called an i-ving.



We say that a ving v = (p,G) is an z-ving if we cannot increase the degree
of p by inserting additional (straight) edges to G (that is, every vertex that is
not connected to p in G cannot see p in G). We say that a ving v = (p,G’)
corresponds to the z-ving v = (p,G) if G is obtained by inserting into G’ all
the edges that connect p to the points that it sees in G’ and is not connected
to them. Notice that every ving corresponds to a unique z-ving. Given a plane
graph G € P(S), we denote by v;(G) the number of i-vings in G, for i > 0,
and by v, (G) the number of z-vings in G. Finally, the expected value of v, (G),
for a graph chosen uniformly at random from P(S), is denoted as 0,(S). More

ZGGP(S) 2(G)
formally, 0, = 0,(5) := E{v,(G)} = —————~———.
(5) = Bloa(G)) = =2

The following lemma, inspired by similar lemmas in [23-25], presents a con-
nection between 9, and upper bounds for pg(N).

Lemma 1. For N > 2, let o5 > 0 be a real number, such that 0,(S) > N
1

holds for every set S of N points in the plane. Then pg(N) < 6—pg(N —1).
N

Proof. Let S be a set that maximizes pg(S) among all sets of N points in the
plane. Note that we can get some plane graphs of S by choosing a point g € S
and a plane graph G of S'\ {¢}, inserting ¢ into G, and then connecting ¢ to all
of the vertices that it can see in G. In fact, a plane graph G of S can be obtained
in exactly v, (G) ways in this manner (in particular, if v,(G) = 0, G cannot be
obtained at all in this fashion). This is easily seen to imply that

bz - PE(S) = X aep(s)Ve(G) = L yespa(S\{d}) -

The leftmost expression equals 0, - pg(IN), and the rightmost expression is
at most N - pg(N — 1). Hence, with 9, > dy N, we have pg(N) = pg(s) <
£~pg(N*1)§i-pg(N*1)~
Vg 5N

We thus seek a lower bound for 9, of the kind assumed in Lemma 1. For
this purpose, we use a charging scheme similar in spirit to the one presented in
[23-25]. The following lemma establishes such a bound, which is rather weak.
Nevertheless, it has the advantage of being a “stand-alone” bound, independent
of the bound on the number of triangulations on S. In the following subsections,
we will derive a considerably improved bound, which does depend on the known
bounds on the number of triangulations of S (albeit in a nonlinear manner).

N
> —.
— 4096

Proof. We use a charging scheme where every i-ving v = (p, G) is given 7 — i
units of charge. The sum of the charges of the vings in any fixed plane graph
G eP(S)is > ,(T—1)vi(G) =73, vi(G) =, iw;(G) = TN = 3, iv;(G). Since
G can have at most 3N — 6 edges, we have ), iv;(G) < 6N — 12. This implies
that the total charge in any fixed graph is at least TN — >, iv;(G) > N + 12.
Therefore, on average, every ving has a charge larger than 1.

Lemma 2. For every point set S of N points in the plane, 9,(S)



Next, every i-ving moves its entire charge to its corresponding z-ving. (In
general, the z-ving lies in a graph different than the one containing the i-ving.)
This results with all of the charge being placed only on z-vings. If we can show
that every x-ving gets charged at most t units in this manner, we will get the
lower bound ¥, > N/t, as is easily verified.

To upper bound the charge that an z-ving v = (p, G) can get, we need to
consider the degree d of v. Notice that the number of i-vings that charge v is
exactly (Cf) (that is, the number of ways to remove d — i edges that are adjacent
to p in G). Therefore, the total charge to v is

Z (C;)(?_i):? Z (?)_ Z (?)-:7.2d_d.2d—1:2d‘1(14—d).

0<i<d 0<i<d 0<i<d

This expression maximizes when d is either 12 or 13, and is then 4096. Thus, on

average, a plane graph of S has more than WA&;G T-vings. =)

Finally, by combining Lemmas 1 and 2 and using an obvious induction on
N, we obtain

Theorem 3. pg(N) < 4096".

2.2 First Improvement

Interestingly, the bound in Subsect. 2.1 hardly relies on the geometric properties
of the problem. Specifically, it only uses Euler’s formula for plane graphs?®, and
the trivial property, already noted, that in a plane graph, connecting a ving
to any subset of the vertices that it sees results in a (larger) plane graph. In
this subsection we obtain an improved bound by observing and exploiting some
additional geometric properties of z-vings.

N

. ; ) U > .
Lemma 4. For every set S of N points in the plane, 0,(S) > 3907 49

Proof. We start by applying the same charging scheme as in the proof of Lemma
2, but then perform another step of moving charges across z-vings, as follows.
We say that an z-ving v = (p, G) is an x;-ving if v is also an é-ving. According to
the analysis in the proof of Lemma 2, only z12-vings and x13-vings are charged
4096; the next highest charge is 3072. At the other end, an x3-ving is charged
only 44, and an zo-ving is charged only 24. Note that an z-ving (p, G) can be
an xo-ving only if p is part of the boundary of the convex hull of S and the two
neighbors of p along this boundary are connected in G (e.g., see Fig. 1(a)). Note
also that x1-vings (and zo-vings) do not exist. Consider an x;-ving v = (p, G),
where ¢ > 3, and let S, be the set of ¢ vertices that are connected to p in G. Let
P, be the star-shaped polygon (with respect to p) that is obtained by removing
from G all the edges that are incident to p, ordering the vertices of S, in their

3 In fact, it only uses the fact that the number of edges in a plane graph is at most
three times the number of vertices.



(a) (b)
Fig. 1. (a) The ving involving v is an z2-ving. (b) An z¢-ving v = (p,G) and an z3-
ving it reduces to: The enclosing polygon P, (whose new edges are drawn dashed), and a
triangulation of P,, with the triangle containing p highlighted. A corresponding z4-ving is
also depicted.

angular (cyclic) order around p, and connecting every pair of consecutive vertices
by an edge (some of these connecting edges may already exist in GG, and adding
the others cannot create a crossing). Triangulate P, arbitrarily and let A denote
the triangle that contains p. We remove from G all the edges incident to v, add
the edges of A, and connect p to the three vertices of A to obtain a new graph
G’, and notice that v' = (p, G’) is an x3-ving (once again, some of the edges of
A, but not all of them, may already exist in G). Notice that we did not add the
missing edges of P, to G'. We say that v is reduced to v’. An example for such
a reduction is depicted in Fig. 1(b).

Given a specific z3-ving v = (p, G), we now consider how many x2-vings and
x13-vings can be reduced to it. Let A denote the triangle spanned by the three
vertices u, v, w that p is connected to. (By construction, only x3-vings where all
the edges of A belong to G should be considered.) Denote by a, b, ¢ the number
of additional vertices that p would be able to see after the removal of each of
the three respective edges of A in G. For example, if we remove the first edge
of A then p would see 3 + a vertices (including the three vertices of A that are
connected to p), if we remove all three edges of A then p would be able to see
34 a+ b+ c vertices, etc. After such an edge removal, we can connect p to all of
the new vertices that it sees, and obtain an x-ving that reduces to v. For every
set of values of a, b, ¢, out of the seven possible edge removal combinations, at
most four could yield an z12-ving or an x13-ving (for example, four combinations
are obtained when a =9, b = 1, and ¢ = 0). This can be verified with a simple
case analysis, depending on how many of a, b, ¢ are equal to 9 or 10 (so that the
corresponding quantity 3+ a, 3+ b, or 3+ ¢ is 12 or 13). Thus, at most four x12-
vings and x13-vings can be reduced to any specific z3-ving. From every x;2-ving
and every x13-ving, we move a charge of 810.4 to some x3-ving that it is reduced
to. Now, every z-ving is charged at most 3285.6 = 44 + 4 - 810.4 = 4096 — 810.4
(z;-vings are charged at most 0 when ¢ > 13, at most 3072 when 3 < ¢ < 12,
and 24 when ¢ = 2). This already gives us the bound 9,(S) > N/3285.6.

To further improve this bound to the one asserted in the lemma, we have
to send some of the charge of x15- and z13-vings also to x4-vings, as hinted in
Fig. 1(b). For the full details, see the full version of this paper.

By combining Lemmas 1 and 4, we obtain our second upper bound:



Theorem 5. pg(N) < 3207.42".

2.3 Second Improvement

Given a set S of N points in the plane, we let pg> (S) (resp., pgs(S)) denote
the number of plane graphs with more than ¢N edges (resp., at most ¢N edges)
that can be embedded over S, for some parameter 0 < ¢ < 3. Additionally, let
Uy,m (S) denote the expected (i.e., average) value of v, (G) over all plane graphs
G € P(S) with at most m edges.

In [14], Hoffmann et al. establish the following theorem:

Theorem 6. For any set S of N points in the plane and 19/12 < ¢ < 3,
N

5/2
> () |,

8(c+t—1) 7 (3 c—t)p—e—t(a) (L — 1)

pg. (S) =0~

—t

Nl=

1
where t = 3 ( (7/2)2 +3c+ 2 —5/2 — c).
We begin by stating the following variants of Lemmas 1 and 2.

Lemma 7. Let S be a set of N points in the plane and let 0 < ¢ < 3 be a
parameter, such that v, .n(S) > SN for some constant 6 > 0. Then pg=(S) <

% -pg(N —1).

Proof. By applying the same proof as in Lemma 1, we obtain the rela-
tion pg=(S) < (1/6) - ngSN/(N_l)(N — 1). The lemma follows by noting that
ngSN/(Nfl)(N — 1) < pg(N — 1). The reason for replacing ¢ by ¢N/(N — 1) is
that the graphs obtained by removing z-vings have only N — 1 vertices (and

fewer than ¢N edges).

We let ¢ = 1.968549; see the full version of this paper for an explanation why
we use this value of c. Substituting this value of ¢ into Theorem 6, and using
tr(N) < 30V from [23], we get pgZ (N) = O* (187.53"). For a proof of the
following lemma, see the full version of this paper.

Lemma 8. For every point set S of N points in the plane, either pg(S) =
0*(187.53") or v, .n(S) > N/187.53 (or both).

By combining Lemmas 7 and 8, we get the following improved bound.
Theorem 9. pg(N) = O* (187.53").

Proof. Let S be a set of N points in the plane that maximizes pg(S) (that
is, pg(S) = pg(N)). As mentioned above, pg. (S) < pg (N) = O* (187.53N).
Hence,

pg(N) = pg(S) = pg=(S) + pg. (S) < pg=(S) + O* (187.53%) . (1)



By Lemma 8 we have either pgs(S) = O* (187.53") or 0,,.n(S) > N/187.53.
The former case immediately implies the asserted bound, and in the latter case
we have, by Lemma 7,

pg(IN) < 187.53 - pg(N — 1) + O* (187.53") |
and the asserted bound follows by induction on N.

Remarks: (1) As opposed to previous bounds for pg(N), the dependence of the
bound on tr(N) is non-linear, as can be seen in the analysis in the full version
of this paper.

(2) The bound in Theorem 9 can be slightly improved by passing some of the
charge to x5-vings and xg-vings.

2.4 Additional types of plane graphs and degree-related results

In this subsection we present various additional bounds that can be obtained
by using the above technique. Specifically, we extend the technique to some
other types of plane graphs, and show how to derive degree-related properties of
random plane graphs (embedded over a fixed set S). Proofs for the lemmas and
theorems of this subsection can be found in the full version of this paper.

Let pg(N,i) be the maximum number of plane graphs with no vertex of
degree smaller than i, that can be embedded over a specific N-point set in the
plane.

Theorem 10. pg(N,1) = O* (186.46") and pg(N,2) = O* (180.20").
Since every connected graph has no isolated vertices, we obtain the following.

Corollary 11. For every point set S of N points in the plane, the number of
connected plane graphs that can be embedded over S is O* (186.46N).

Although this is only a slight improvement over our bound of O*(187.53") on
the total number of plane graphs, this is nevertheless, as far as we know, the first
time that a bound on the number of connected plane graphs is asymptotically
smaller than the bound on the total number of plane graphs. In a similar manner,
since every bi-connected graph has no vertices of degree 0 or 1, we obtain

Corollary 12. For every point set S of N points in the plane, the number of
bi-connected plane graphs that can be embedded over S is O* (180.20N).

Cross-graph charging can also be used to obtain other properties of random plane
graphs (embedded over a fixed point set). We present the following lemmas as
examples of such properties. The first lemma, which is a variant of Lemma 2,
lower bounds the expected number of isolated vertices, leaves (i.e, 1-vings), and
2-vings in a graph uniformly chosen from P(S). Let the expected value of v;(G),
for a graph chosen uniformly at random from P(S), be denoted as ©;(S).

Lemma 13. For every set S of N points in the plane,

N 3N 33N
> 0 > 3 > —
> q0067 )2 and 0(8) 2 5re

Lemma 14. For every set S of N points in the plane, 02(S) + 03(S) > N/24.

0o(S)



3 Quasi-Plane Graphs

In this section we show that our techniques can easily be extended to obtain
bounds for k-quasi-plane graphs. We derive the bounds qps(N) < 226V and
qp(IV) < 219N,

The number of 3-quasi-plane graphs. We use the notation given in
the introduction. A 3-quasi-plane graph does not contain three pairwise crossing
edges. Ackerman and Tardos [2] proved that such graphs have at most 6.5N — 20
edges, and that this is tight up to some additive constant. Using this result, we
can apply our method in a straightforward manner. As before, we denote by
Q1 (S) the set of all k-quasi-plane graphs embedded on a fixed labeled set S of
N points in the plane, and put qp,(S) := |Qx(S)|. Moreover, we let qp,(N) =
max|s|=n qpPx(S)-

Given a k-quasi-plane graph G € Q(S), we say that a ving v = (p, G) is an
x-ving if we cannot add to G any additional edges that are adjacent to p without
violating the k-quasi-planarity property of G. We denote by v;(G) the number
of i-vings in G, and by v, (G) the number of z-vings in G (as in the previous
cases). The expected value of v, (G), for a graph chosen uniformly from Q(.5),
is denoted as 9%(S). More formally,

€T

sk _ ok — RLF _ ZGEQk(S) v:(G)

Lemma 15. For N > 2 and k > 2, let 65 > 0 be a real number, such that
F(S) > 8K N holds for every set S of N points in the plane. Then qpy(N) <

% qpy (N = 1).
Proof. Identical to the proof of Lemma 1.

Lemma 16. For every set S of N points in the plane, 02(S) > N/2%.

Proof. 'We use a charging scheme where every i-ving v = (p, G) will be charged
14 — ¢ units. The sum of the charges of the vings in any fixed 3-quasi-plane graph
GeP(S)is )y ,(14—i)v; =14, v; — Y. iv; = 14N — ). iv;. Since G can have
at most 6.5N — 20 edges, we have >, iv; < 13N — 40. This implies that the
total charge in any fixed graph is at least 14N — . iv; > N 4 40. Therefore, on
average, every ving has a charge larger than 1.

Next, we move all of the charge to z-vings in the same manner as in Lemma
2. Connecting a new edge to p (while not violating the 3-quasi-plane property)
does not affect the set of additional edges that can be connected to p, since a
pair of edges connected to p cannot participate in a triplet of pairwise crossing
edges. Consider the charge that an x4-ving (a notation analogous to that used
for plane graphs) v = (p, G) can have. By the observation just made, the number
of i-vings that charge v is exactly (?), as before. Therefore, v is charged exactly

d 4(14—1'):142% d fzd: I j=14-29 — . 2971 = 2971(28 — q).
> (Jos-0=02 (1) -2 ()
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This expression maximizes when d is either 26 or 27, and is then 225. Therefore,
on average, a 3-quasi-plane graph on S has more than 2% z-vings.

By combining Lemmas 15 and 16, we obtain an upper bound on the number
of 3-quasi-plane graphs. As far as we know, this is the first exponential upper
bound for qps(V).

Theorem 17. qp;(N) < 22V,

Quasi-plane graphs with k> 4. Ackerman [1] proved that every 4-quasi-
plane graph that is embedded over a set of N points in the plane has at most
36N — 72 edges, even when the edges are not necessarily straight. This implies
that qp,(S) is also exponential in N. Specifically:

Theorem 18. qp,(N) < 2145V,

Proof. Since Lemma 15 applies for every k, we only need to replace Lemma 16.
We can derive the bound 133(5 ) > 21% by using the same analysis as in the proof
of Lemma 16, except that an i-ving will be charged 73 — ¢ units. In this case,
the analysis implies that an z4-ving is charged 2971(146 — d). This expression is
maximized for d = 144 and d = 145, and is then 2145,

A common conjecture (e.g., see [1,2,16]) is that every k-quasi-plane graph
with IV vertices has at most ¢, N edges, where ¢ is a constant depending on k
(in fact, the conjecture is also made for the more general case where the edges
are not necessarily straight). Proving the conjecture will immediately imply that
qp (V) is exponential in N for every fixed k. This consequence is easily obtained
by adapting the proof of Theorem 18, and giving each i-ving a charge of 2¢;+1—1.
Valtr [26] proved that any k-quasi-plane graph with N vertices has O(N log N)
edges. Combining this bound with the cross-graph charging technique only yields
the superexponential bound qp,(N) = (N/log N)°W),
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