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Abstract

We show that for m points and n lines in R
2, the number of distinct distances between

the points and the lines is Ω(m1/5n3/5), as long as m1/2 ≤ n ≤ m2. We also show that
for any m points in the plane, not all on a line, the number of distances between these
points and the lines that they span is Ω(m4/3). We reduce the problem of bounding the
number of distinct point-line distances to the problem of bounding the number of tangent
pairs among a finite set of lines and a finite set of circles in the plane. We believe that
this latter question is of independent interest. We also show that n circles in the plane
determine at most O(n3/2) points where two or more circles are tangent. This improves
the best previously known bound of O(n3/2 log n). Finally, we study the higher-dimensional
version of the distinct point-line distances, namely, the number of distinct point-hyperplane
distances in R

d.

1 Introduction

In 1946 Paul Erdős [4] posed the following two problems, which later became extremely in-
fluential and central questions in combinatorial geometry: the so-called repeated distances and
distinct distances problems. The first problem deals with the number of repeated distances,
namely the number of pairs of points at some fixed distance, in the plane. The best known
upper bound is O(n4/3) [12], but the best known lower bound, attained by the

√
n×√

n grid,

is only Ω(n
1+ c

log logn ) [4]. The second problem asks at least how many distinct distances are
determined by a set of n points in the plane? In a recent breakthrough, Guth and Katz [7]
proved that the number of distinct distances is Ω(n/ log n) for any set of n points in the plane.
This bound is nearly tight in the worst case, since an upper bound O(n/

√
log n) is attained by

the
√
n×√

n grid [4].

In this paper we consider questions similar to those above, but for distances between points
and lines.

Let P be a set of m distinct points and L a set of n distinct lines in the plane. Let I(P,L)
denote the number of incidences between P and L. Namely, the number of pairs (p, ℓ) ∈ P ×L
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such that the point p lies on the line ℓ. The classical result of Szemerédi and Trotter [14] asserts
that

I(P,L) = O
(

m2/3n2/3 +m+ n
)

. (1)

This bound is best possible in general, by constructions due to Erdős and to Elekes. See the
survey of Pach and Sharir [9] for more details on geometric incidences.

The point-line incidence setup can be viewed as a special instance of a repeated distance
problem between points and lines. Specifically, the Szemerédi-Trotter result provides a sharp
bound on the number of point-line pairs such that the point is at distance 0 from the line. As
a matter of fact, the same bound holds if we consider pairs (p, ℓ) ∈ P × L that have any fixed
positive distance, say 1. Indeed, replace each line ℓ ∈ L by a pair ℓ+, ℓ− of lines parallel to ℓ
and at distance 1 from it. Then any point p ∈ P at distance 1 from ℓ must lie on one of these
lines. Hence the number of point-line pairs at distance 1 is at most the number of incidences
between the m points of P and the 2n lines ℓ+, ℓ−, for ℓ ∈ L. (Actually, a line in the shifted set
might arise twice, but this does not affect the asymptotic bound.) This proves that the number
of times a single distance can occur between m points and n lines is O

(

m2/3n2/3 +m+ n
)

.

Distinct point-line distances. Our first main result concerns distinct distances between m
points and n lines in the plane. In contrast with the repeated distances question, as discussed
above, the distinct distances variant seems harder than for point-point distances, and the lower
bound that we are able to derive is inferior to that of [7]. Nevertheless, deriving this bound
is not an easy task, and follows by a combination of several advanced tools from incidence
geometry. We hope that our work will trigger further research into this problem.

We write D(m,n) for the minimum number of point-line distances determined by a set of
m points and a set of n lines in R

2. Our first main theorem is the following lower bound for
D(m,n).

Theorem 1.1. For m1/2 ≤ n ≤ m2, the minimum number D(m,n) of point-line distances
between m points and n lines in R

2 satisfies

D(m,n) = Ω
(

m1/5n3/5
)

.

Our proof also yields a stronger statement: For any set P of m points, and any set L of n
lines in the plane, there always exists a point p ∈ P such that the number of distinct distances
from p to L satisfies the bound in Theorem 1.1.

In order to derive the above bound, we study the problem of bounding the number of
tangencies between n lines and k circles; see Theorem 1.3 below.

We note that the upper bound D(m,n) ≤ ⌈n/2⌉ is easy to achieve by the following con-
struction. Place n parallel lines, say the horizontal lines y = j for integers j = 1, . . . , n. Place
all points on the line y = n/2+1/2. Since all points on the median line have the same distance
from any given horizontal line, the number of possible distinct point-lines distances is ⌈n/2⌉.
Note that this upper bound does indeed dominate the bound in Theorem 1.1, because m1/2 ≤ n.

Distinct distances between points and their spanned lines. We also study the number
of distinct point-line distances between a finite set of non-collinear points (that is, not all points
lie on a common line) and the set of lines that they span. This question has a different flavor,
because the number of lines spanned by m non-collinear points varies from m to

(

m
2

)

. When
the points span many lines, Theorem 1.1 provides a reasonable bound, which can get as high
as Ω(m7/5), but when the points span few lines, we use a different approach to obtain a better
overall bound.
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We write H(m) for the minimum number of distances between m points in R
2, not all

collinear, and the lines spanned by these points. Note that the distance between a point p and
the line spanned by two points q, r equals the height to qr in the triangle pqr. Thus H(m) is also
the minimum number of heights occuring in the triangles determined by a set of m non-collinear
points.

Theorem 1.2. The minimum number H(m) of point-line distances between m non-collinear
points and their spanned lines satisfies

H(m) = Ω
(

m4/3
)

.

An upper boundH(m) ≤ m2 follows from a simple construction. Placem−1 points on a line,
and one point off the line. This configuration spans only m lines, and therefore it determines
at most m2 point-line distances. The same bound also holds for other constructions, like the
vertex set of a regular polygon, or an integer grid.

The lower bound in Theorem 1.2 is most likely not tight, but it currently seems hard to
improve, because in the extreme configuration with m− 1 points on a line, say the x-axis, and
one point off the line, say at (0, 1), it corresponds to a lower bound on the number of distinct
values of the rational function f(x, y) = (x− y)2/(1+ y2), with x, y from a set S ⊂ R of size m.
Even for simpler functions, such as bivariate polynomials in x, y, no better bound than Ω(m4/3)
is known (see, e.g., [10]).

Tangencies involving lines and circles. As mentioned, our proof of Theorem 1.1 is based
on an analysis of the number of tangencies between lines and circles. We believe this question
to be of independent interest, and we now consider it in more detail.

Given a finite set L of lines and a finite set C of circles, we write T (L,C) for the number
of tangencies between lines from L and circles from C, i.e. the number of pairs (ℓ, c) ∈ L × C
such that the line ℓ is tangent to the circle c. We prove the following upper bound.

Theorem 1.3. Let L be a set of n distinct lines and C a set of k distinct circles in the plane.
Then

T (L,C) = O
(

n2/3k2/3 + n6/11k9/11 log2/11 k + k + n
)

.

From this theorem we can deduce a lower bound on D(m,n), but the resulting bound (see
Corollary 2.2 below) is weaker than that in Theorem 1.1. In the proof of Theorem 1.1 we
improve this bound by exploiting the specific structure of the problem.

It is natural to consider the corresponding question for tangencies between circles: Given n
circles in the plane, how many pairs of circles can be tangent? This is related to the problem
of bounding the number of pairwise non-overlapping lenses in an arrangement of n circles in
the plane, which is of central significance in the derivation of the best bound on the number of
point-circle incidences; see [1]. The best known upper bound for lenses is O(n3/2 logn) (see [8]),
and the best known lower bound is Ω(n4/3), for both versions. The analogy between tangencies
and lenses is not tight, since one can easily construct n circles, all pairs of which are tangent to
each other at a common point.1 Nevertheless, under the restructions imposed in the following
two theorems, we can slightly improve the upper bound to O(n3/2) for the tangency problem.

Theorem 1.4. Let C be a family of n circles in R
2 with arbitrary radii. Assume that no three

circles of C are mutually tangent at a common point. Then C has at most O(n3/2) pairs of
tangent circles.

1In such a case, any slight perturbation of the circles generates only O(n) pairwise non-overlapping lenses
near the previous common tangency point.
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We also consider the following variant of this question, which bounds the number of tangency
points without any conditions on the circles.

Theorem 1.5. Given a family C of n circles in R
2 with arbitrary radii, there are O(n3/2)

points where (at least) two circles of C are tangent.

Distinct point-hyperplane distances. Finally, we consider higher-dimensional variants of
the question about distinct point-line distances. Theorem 1.7 gives a lower bound on the number
of distances between points and hyperplanes in any dimension, where certain configurations have
to be excluded. Theorem 1.6 gives an improvement on this bound in R

3.

Due to lack of space, we have moved the proofs of these theorems, and further introductory
remarks, to Appendix A. The definitions of the excluded configurations can also be found in
Appendix A.

Theorem 1.6. Let P be a set of m distinct points and let Π be a set of n distinct planes in R
3.

Assume that there is no cone or cylinder configuration of three points and three planes. Then
the number of distinct point-plane distances determined by P and Π is

Ω(m1/3n1/3),

unless m = O(1) or m = Ω(n2).

Theorem 1.7. Let P be a set of m distinct points and let Π be a set of n distinct hyperplanes
in R

d. Assume that these points and hyperplanes determine no cone or cylinder configuration of
k points and k hyperplanes, for some constant k. Then the number of distinct point-hyperplane
distances determined by P and Π is

Ω
(

m
1
d
−

1
d2 n

1
d
−ε

)

,

for any ε > 0, unless m = O(1) or m = Ω(n2), where the implied constant of proportionality
depends on d and ε.

2 Distinct distances between points and lines

In this section we provide a lower bound on the minimum number D(m,n) of distinct point-line
distances determined by m points and n lines in the plane. In Subsection 2.1, we prove an
upper bound on the number of tangencies between a set of lines and a set of circles, and as
a corollary we obtain an initial weaker lower bound on D(m,n). To do this we dualize this
problem to an incidence problem between points and algebraic curves, to which we can apply a
known bound. In Subsection 2.2, we use the special structure of the problem to derive a better
bound on D(m,n), as given in Theorem 1.1.

2.1 A bound on line-circle tangencies

Recall that, given a set L of lines and a set C of circles, T (L,C) denotes the number of pairs
(ℓ, c) ∈ T × C such that the line ℓ is tangent to the circle c. We restate Theorem 1.3 for the
convenienve of the reader.

Theorem 2.1. Let L be a set of n lines and C a set of k circles in the plane. Then

T (L,C) = O
(

n2/3k2/3 + n6/11k9/11 log2/11 k + k + n
)

.
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Proof. We dualize the lines and circles as follows. We rotate the plane so that no line of L
is vertical, and then we map a line y = ax + b to the dual point (a, b). Under this map, an
algebraic curve is mapped to the set of points that are dual to the non-vertical tangent lines
of the curve; these dual points form an algebraic curve, called the dual curve. We refer to the
original xy-plane as the primal plane, and to the ab-plane as the dual plane. Applying this to
our setting, the set L of n lines in the primal plane is mapped to a set L∗ of n points in the
dual plane, and, as we next argue, the set C of k circles in the primal plane is mapped to a set
C∗ of k hyperbolas in the dual plane.

Indeed, the dual curve c∗ of a circle c is the locus of all points (a, b) dual to lines that are
tangent to c. If c is centered at a point p = (p1, p2) and has radius r, then the equation in a, b
that defines c∗ is

|p2 − p1a− b|√
1 + a2

= r, or (p2 − p1a− b)2 − r2(1 + a2) = 0,

which is indeed the equation of a hyperbola.

We treat each branch of c∗ as a separate curve, and obtain a collection C∗ of 2k such curves.
Standard considerations show that one of the two branches of c∗ is the locus of points dual to
the lines tangent to c from above, and the other branch is the locus of points dual to the lines
tangent to c from below.

Each tangency between a line ℓ and a circle c corresponds to an incidence between the
dual hyperbola c∗ and the point ℓ∗. It is easily checked that any two hyperbola branches in
C∗ intersect at most twice, so they are pseudo-parabolas. Moreover, the curves in C∗ admit a
3-parameter algebraic representation, because the circles in C have such a representation. Then
the desired bound follows from Agarwal et al. [1, Theorem 6.6].

We now deduce a lower bound on distinct point-line distance from the line-circle tangency
bound above. In Subsection 2.2, we will significantly improve on this corollary.

Corollary 2.2. The minimum number D(m,n) of point-line distances between m points and n
lines in R

2 satisfies

D(m,n) = Ω
(

m2/9n5/9 log−2/9m
)

,

provided that m1/2/ log1/2m ≤ n ≤ m5 log4m, and that m is at least some sufficiently large
constant.

Proof. Let P be a set of m points and let L be a set of n lines in the plane. Let t be the number
of distinct distances between points of P and lines of L. For each point p ∈ P , draw at most t
circles centered at p with radii equal to the (at most t) distances from p to the lines in L. We
obtain a family C of at most mt (distinct) circles.

We double count T (L,C). On the one hand, we trivially have T (L,C) = mn, since for each
of the mn point-line pairs (p, ℓ) ∈ P × L, there is exactly one tangency between the line ℓ and
the circle centered at p whose radius is the distance from p to ℓ. On the other hand, we can
apply Theorem 2.1 with |C| ≤ mt and |L| = n to obtain

mn = T (L,C) = O
(

n2/3(mt)2/3 + n6/11(mt)9/11 log2/11(mt) +mt+ n
)

.

Eliminating t from this inequality yields

t = Ω
(

min
{

m1/2n1/2, n5/9m2/9 log−2/9m, n
})

,

assuming that m is at least some sufficiently large constant. The minimum is attained by the
second term, unless either n > m5 log4m or n < m1/2/ log1/2m.

5



2.2 Proof of Theorem 1.1

In this section we prove Theorem 1.1, which we restate below as Theorem 2.3. We start, as in
the proof of Corollary 2.2, by reducing the problem to counting line-circle tangencies, and then
dualize. Instead of directly using an incidence bound for the dual curves, we derive a better
bound by taking a closer look at the structure of the problem. In particular, we make use of
the fact that in the set of circles there are many concentric circles. Our approach is similar to
that used by Székely [13] to prove the bound Ω(m4/5) on the number of distinct point-point
distances determined by m points.

Theorem 2.3. For m1/2 ≤ n ≤ m2, the minimum number D(m,n) of point-line distances
between m points and n lines in R

2 satisfies

D(m,n) = Ω
(

m1/5n3/5
)

.

Proof. Let P be a set of m distinct points and L be a set of n distinct lines in the plane. Again,
let t denote the number of distinct point-line distances, draw at most t circles around every
point of P , and denote the resulting set of circles by C. As before, we have T (L,C) = mn.

In the dual plane we have a set L∗ of n points. Recall that the dual curve c∗ of a circle c is
a hyperbola. As before, we treat each branch of the hyperbola as a separate curve, and we let
C∗ be the set of these 2mt hyperbola branches.

To bound the number I(L∗, C∗) of incidences between L∗ and C∗, we draw a topological
(multi-)graph G = (L∗, E) in the dual plane. We assume without loss of generality that each
hyperbola branch in C∗ contains at least two points of L∗. Indeed, we can discard all curves of
C∗ containing at most one point of L∗, thereby discarding at most 2mt incidences.

For every curve in C∗, we connect each pair of consecutive points of L∗ on that curve by an
edge drawn along the portion of the curve between the two points. Write E for the set of edges
in this graph. The number of edges on each curve of C∗ is exactly one less than the number of
points on it, so overall the number of edges in G satisfies

|E| ≥ I(L∗, C∗)− 2mt.

Note that an edge can have high multiplicity, when many curves of C∗ pass through its two
endpoints, and the endpoints are consecutive on each of these curves. This situation corresponds
to the case in the primal plane where we have many circles touching a pair of lines, and the
corresponding tangencies are consecutive on each of the circles.

We define a parameter s, to be chosen later. Let E1 denote the set of edges with multiplicity
at most s and let E2 denote the set of edges with multiplicity larger than s. In order to bound
|E1| we use the crossing lemma (see [13]), which states that a graph G with n vertices, e edges,
and maximum edge multiplicity s, has at least Ω(e3/sn2) edge crossings in any drawing, unless
e < 4ns. We apply it to the graph with vertex set L∗ and edge set E1. Since any pair of these
hyperbola branches intersect at most twice, the total number of crossings between curves in C∗

is at most 2 ·
(

mt
2

)

= O(m2t2). Combining the two bounds on the number of crossings, we get

m2t2 = Ω

( |E1|3
sn2

)

,

so, taking also into account the alternative case |E1| < 4ns,

|E1| = O(m2/3n2/3t2/3s1/3 + ns). (2)
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Next, we consider the edges of E2. If an edge with endpoints ℓ∗1, ℓ
∗

2 has multiplicity larger
than x, then the lines ℓ1 and ℓ2 in the primal plane have x common tangent circles. The centers
of these circles lie on the two angular bisectors defined by ℓ1, ℓ2, so there must be at least x/2
incidences between the m points and one of the bisectors of ℓ1, ℓ2.

We charge each edge of E2 to the incidence between the angular bisector and the center of
the circle c dual to the curve that the edge lies on. We claim that each such incidence can be
charged at most 2t times. Indeed, in the primal plane, consider such an incidence between a
point p and and an angular bisector ℓ. There are at most t distinct circles with the same center
p, and each of these circles can have at most two pairs of tangent lines such that the angular
bisector of those lines is ℓ, and such that the tangencies are consecutive. (In this argument, we
acknowledge the possibility that ℓ might be the angular bisector of many pairs of lines, all of
which are tangent to the same circle.)

It follows from the Szemerédi-Trotter theorem (see (1)) that the number of lines containing
at least s/2 of the m points is O(m2/s3 +m/s) (as long as s/2 > 1), and that the number of
incidences between these m points and O(m2/s3 +m/s) lines is O(m2/s2 +m). Thus we have

|E2| = O

(

m2t

s2
+mt

)

. (3)

To balance (2) and (3), we choose s = O(m4/7t1/7/n2/7), noting that, with a proper choice
of the constant of proportionality, we have s > 2. Indeed, this amounts to requiring that
n = O(m2t1/2), which holds since m ≥ n1/2. Adding together (2) and (3) gives

|E| = O
(

m6/7n4/7t5/7 +m4/7n5/7t1/7 +mt
)

.

Thus the same bound holds for T (L,C). Combining this with T (L,C) = mn, we get t =
Ω(m1/5n3/5) from the first term, t = Ω(m3n2) from the second term, and t = Ω(n) from the
third term. Thus

t = Ω
(

m1/5n3/5
)

,

using the assumption m ≤ n2. This completes the proof of Theorem 1.1.

Note that in the proof above we could set t to be the maximum number of distances from
one of the m points to the n lines. We can therefore conclude that there is a single point from
which the number of distances satisfies the bound. We note here that the proof of Theorem 1.2
that is provided in Section 3 below (restated as Theorem 3.1) does not lead to such a stronger
conclusion.

3 Distances between points and spanned lines

We now consider the problem of bounding from below the number of distinct distances between
a point set P and the set of lines spanned by P . Equivalently, we want to bound from below the
number of distinct heights of triangles spanned by P . Write ℓbc for the line spanned by points
b and c, write

H(P ) =

∣

∣

∣

∣

∣

{d(a, ℓbc) | a, b, c ∈ P}
∣

∣

∣

∣

∣

for the number of distances between points of P and lines spanned by P , and write H(m) for
the minimum value of H(P ) over all non-collinear point sets P of size m.
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For point sets with not too many points on a line, a better bound than that below follows
from our Theorem 1.1. Our goal here is to provide a reasonably good bound that holds also
when many points are collinear. To prove this, we reduce it to showing that the rational function

f(x, y) =
(x− y)2

1 + y2

is “expanding”, in the sense that f(x, y) takes Ω(m4/3) distinct values for x, y in any set of
m real numbers. If f were a polynomial, this would follow directly from a result of Raz et
al. [10]. However, for rational functions in general the only known result is that of Elekes and
Rónyai [5], which says that the number of values is superlinear (both these statements have
certain exceptions). To extend the bound Ω(m4/3) to the rational function f , we use the same
approach as in [10], which originated in Sharir, Sheffer, and Solymosi [11].

Theorem 3.1. The minimum number H(m) of distances between m points and their spanned
lines satisfies

H(m) = Ω(m4/3).

Proof. By a theorem of Beck [2, Theorem 3.1] (sometimes referred to as “Beck’s two extremities
theorem”), there is a constant c such that either the points of P span at least cm2 distinct lines,
or at least cm points of P are collinear.

In the first case, Theorem 1.1 gives

H(P ) ≥ D(m, cm2) = Ω
(

m7/5
)

.

Consider the second case, when k = cm of the points are collinear; we can assume that k is an
integer. Since not all the points are collinear, at least one other point q ∈ P does not belong
to this line. By translating, rotating, and scaling, we can assume that q = (0, 1) and that the k
collinear points lie on the x-axis, and by removing at most half the points we can assume that
they all lie in the positive x-axis. We denote them by pi = (xi, 0) for i = 1, . . . , k, with all xi
positive, and we set W = {x1, . . . , xk}.

The distance d(pi, ℓpjq) from a point pi to the line ℓpjq spanned by pj and q is easily seen to

be
|xi − xj |
√

1 + x2j

. Thus, putting

f(x, y) =
(x− y)2

1 + y2
,

we get that f(xi, xj) = d2(pi, ℓpjq). Hence, in order to obtain a lower bound for the number
of point-line distances, it suffices to find a lower bound for the cardinality of the set f(W ) =
{f(x, y) | x, y ∈ W}.

Following the setup in [11], we define the set of quadruples

Q = {(x, y, x′, y′) ∈ W 4 | f(x, y) = f(x′, y′)}.

Writing f−1(a) = {(x, y) ∈ W 2 | f(x, y) = a} and using the Cauchy-Schwarz inequality, we
have

|Q| =
∑

a∈f(W )

|f−1(a)|2 ≥ k4

|f(W )| .

Thus a lower bound for |f(W )| will follow from an upper bound on |Q|.
We define algebraic curves Cij in R

2, for i, j = 1, . . . , k, by

Cij = {(z, z′) ∈ R
2 | f(z, xi) = f(z′, xj)}.
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We have (xk, xl) ∈ Cij if and only if (xk, xi, xl, xj) ∈ Q. Thus, denoting by Γ the set of curves
Cij , and by S = W 2 the set of pairs (xk, xl), we have

|Q| = |I(S, Γ )|.

It is not hard to show that the curves Cij with i = j contribute at most O(k2) quadruples,
which is a negligible number, so in the rest of the proof we will assume that i 6= j. The equation
f(z, xi) = f(z′, xj) is equivalent to (z − xi)

2/(1 + x2i ) = (z′ − xj)
2/(1 + x2j ), or

z′ − xj = ±Aij · (z − xi),

where
Aij =

√

(1 + x2j )/(1 + x2i ).

Every curve Cij is thus the union of two lines in the zz′-plane, given by

L+
ij : z′ = Aijz + (xj −Aijxi), L−

ij : z′ = −Aijz + (xj +Aijxi).

Therefore, we need only consider the two families Γ+ = {L+
ij | i 6= j} and Γ− = {L−

ij | i 6= j}
and bound I(S, Γ+ ∪ Γ−). Some of the lines in Γ+ and Γ− may coincide, but the maximum
multiplicity of a line is at most 2. Indeed, given the equation z′ = αz + β of a line, say with
α > 0, we have Aij = α and xj − αxi = β. This leads to a quadratic equation in xi (or xj),
which has at most two solutions.

We thus have an incidence problem for points and lines, with k2 points and O(k2) distinct
lines, each with multiplicity at most six. The Szemerédi-Trotter theorem (see (1)) gives

|I(S, Γ+ ∪ Γ−)| = O((k2)2/3(k2)2/3 + k2 + k2) = O(k8/3).

Taking into account the discarded quadruples, we have

|Q| = |I(S, Γ+ ∪ Γ−)|+O(k2) = O(k8/3),

so

|f(W )| ≥ k4

|Q| = Ω(k4/3) = Ω(m4/3),

completing the proof of Theorem 1.2.

4 A bound on tangencies between circles

In this section we study tangencies between circles. We need a lemma about the “problem
of Apollonius”, which asks for a circle tangent to three given circles. All solution sets to
this problem have been classified; see for instance [3]. The lemma below follows from this
classification.

Lemma 4.1. Given three circles in R
2 that are not mutually tangent at a common point, there

are at most eight other circles tangent to all three.

We use the following incidence bound due to Zahl [15]. We state it in a slightly different
form that is convenient for us, and that follows from the proof given in [15]. Given a set P of
points and a set S of geometric objects, the incidence graph of P × S is the bipartite graph
with vertex set P ∪ S, and an edge between p ∈ P and S ∈ S if p ∈ S.

9



Theorem 4.2 (Zahl). Let P ⊂ R
3 be a set of m points and let S be a set of n irreducible

algebraic surfaces in R
3 whose degree is bounded by a constant. Let I be a subgraph of the

incidence graph of P × S that contains neither KM,3 nor K3,M , for some constant parameter
M . Then

|E(I)| = O
(

m3/4n3/4 +m+ n
)

,

where E(I) denotes the set of edges of the graph I, and where the constant of proportionality
depends on the maximum degree of the surfaces and on M .

Theorem 4.3. Given a family C of n circles in R
2 with arbitrary radii, there are at most

O(n3/2) points where (at least) two circles of C are tangent.

Proof. Let the tangency graph of C be the bipartite graph whose vertex classes are two copies
of C, with an edge between a circle from one copy and a (different) circle of the other copy if
the two circles are tangent.

First we modify the tangency graph by removing certain edges. For any point where three
or more circles are mutually tangent, we remove all but (an arbitrary) one of the corresponding
edges from the tangency graph, and we call the resulting subgraph T . Then an upper bound
on the number of edges of T will still be an upper bound on the number of tangency points.
Moreover, the graph T contains no K3,9 or K9,3: If three circles are mutually tangent, at some
point q, then there exist two of them, C, C ′, such that C ′ contains C in its interior, except for
q (or vice versa). Any common neighbor of C and C ′ must be tangent to both of them at q,
but then, by construction, at most one of the corresponding edges belongs to T . Otherwise, the
three circles have at most eight common neighbors by Lemma 4.1.

For each circle c ∈ C, with center (a, b) and radius r, we define a point pc = (a, b, r) ∈ R
3

and two surfaces in R
3 given by

σ+
c = {(x, y, z) | (x− a)2 + (y − b)2 = (z + r)2},

σ−

c = {(x, y, z) | (x− a)2 + (y − b)2 = (z − r)2}.

Note that these surfaces are cones. Put P = {pc | c ∈ C} and Σ = {σ+
c | c ∈ C}∪{σ−

c | c ∈ C}.
Two circles c1, c2 ∈ C are tangent if and only if the point pc1 is incident to one of the surfaces

σ+
c2 , σ

−

c2 . Thus the tangency graph of C has the same number of edges as the incidence graph
of P and Σ . Let I be the subgraph of the incidence graph corresponding to the subgraph T ,
i.e., an incidence is in I if the corresponding tangency is in T . As noted, I does not contain a
copy of K3,9 or K9,3. It follows from Theorem 4.2 that the number of tangency points is

|E(T )| = |E(I)| = O
(

n3/4n3/4
)

= O
(

n3/2
)

.

This completes the proof.

Theorem 4.4. Let C be a family of n circles in R
2 with arbitrary radii. Assume that no three

circles of C are mutually tangent at a common point. Then C has at most O(n3/2) pairs of
tangent circles.

Proof. We proceed exactly as in the proof of Theorem 4.3, but now we do not need to remove
any edges. By Lemma 4.1 and the condition on the circles, the tangency graph contains no K3,9

or K9,3. Then Theorem 4.2 gives the upper bound O(n3/2) for the number of tangent pairs.
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[14] E. Szemerédi and W.T. Trotter, Extremal problems in discrete geometry, Combinatorica
3 (1983), 381–392.

[15] J. Zahl, An improved bound on the number of point-surface incidences in three dimensions,
Contrib. Discrete Math. 8 (2013), 100–121.

11



A Distinct distances between points and hyperplanes in R
d

In this section we provide a lower bound on the number of distinct distances between m points
and n hyperplanes in R

d, under appropriate non-degeneracy assumptions.

We first note that, without further assumptions, there is no non-trivial lower bound on
the number of distinct distances determined by m points and n hyperplanes, in any dimension
d ≥ 3. Indeed, let Π be a set of n distinct hyperplanes all containing a line ℓ, and let P be a set
of m points on that common line. Obviously, every point is at distance 0 from any hyperplane,
so this configuration determines only one distance. The construction can be modified to yield
a set P of m points and a set Π of n hyperplanes, with only one positive point-hyperplane
distance, by placing all the points of P on the axis of a cylinder C, and by making all the
hyperplanes of Π tangent to C. Note also that the same example demonstrates that there is no
non-trivial upper bound on the number of repeated point-hyperplane distances (without further
assumptions).

Given a finite set Π of (hyper-)planes and a finite set S of (hyper-)spheres, we write T (Π,S)
for the number of pairs (π, s) ∈ Π × S such that π is tangent to s, and we define the tangency
graph to be the bipartite graph whose vertex classes are Π and S, with an edge between π and
s if π is tangent to s.

A.1 Distinct point-plane distances

We first consider the problem in three dimensions, where a better lower bound can be obtained.
Before proceeding to the lower bound analysis, we need an analogue of Theorem 2.1 that bounds
plane-sphere tangencies.

Lemma A.1. Let Π be a set of n planes and let S be a set of k spheres in R
3. Assume that the

tangency graph of Π × S contains no KM,3 or K3,M , for some constant parameter M . Then

T (Π,S) = O
(

n3/4k3/4 + n+ k
)

,

where the constant of proportionality depends on M .

Proof. The proof is similar to the proof of Theorem 2.1. We apply a rotation so that all planes in
Π are non-vertical. We map a plane π ∈ Π defined by z = ax+by+c to the point π∗ = (a, b, c).
We map each sphere s ∈ S to the surface s∗ which is the locus of all points π∗ dual to planes π
tangent to s. The surface s∗ dual to the sphere s with center (x, y, z) and radius r is the set of
points (a, b, c) satisfying

|z − ax− by − c|√
1 + a2 + b2

= r, or (z − ax− by − c)2 − r2(1 + a2 + b2) = 0,

which is a smooth quadric (specifically, a hyperboloid of two sheets) in R
3.

Denote the set of resulting points by Π∗ = {π∗ | π ∈ Π}, and the family of resulting
hyperboloids by S∗ = {s∗ | s ∈ S}. Notice that every pair (π, s) that is counted in T (Π,S)
corresponds to an incidence between the point π∗ and the surface s∗, and the tangency graph
of Π × S is the same as the incidence graph of Π∗ × S∗. Thus applying Theorem 4.2 to
I(Π∗, S∗) = T (Π,S) gives the stated bound.

We call a configuration of points and planes a cone configuration (resp., a cylinder configu-
ration) if all the points lie on a line ℓ, and the planes are all tangent to the same cone (resp.,
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cylinder) with axis ℓ. A cylinder configuration is exactly the kind of configuration, mentioned
above, that gives only one point-plane distance. A cone configuration determines as many dis-
tances as it has points on the axis, no matter how many planes there are. In both types of
configurations, there is a complete bipartite graph in the tangency graphs between the planes
and the spheres around the points that are tangent to the cone or cylinder.

Corollary A.2. Let Π be a set of n planes and S a set of k spheres in R
3, such that there is

no cone or cylinder configuration of three planes and three centers of the spheres. Then

T (Π,S) = O
(

n3/4k3/4 + n+ k
)

.

Proof. Any sphere tangent to three given planes must have a center that lies on one of four lines
(this is easily seen to hold in both cases, where the planes either intersect at a point, or are all
parallel to some line), and a given sphere center (on one of these lines) uniquely determines the
tangent sphere. Hence, the tangency graph does not contain K3,9. (Micha says: And what

about the other direction?!)

Theorem A.3. Let P be a set of m points and let Π be a set of n planes in R
3. Assume that

there is no cone or cylinder configuration of three points and three planes. Then the number of
distinct point-plane distances determined by P and Π is

Ω(m1/3n1/3),

unless m = O(1) or m = Ω(n2).

Proof. The proof is analogous to the proof of Corollary 2.2. Let t denote the total number of
distinct distances between points in P and planes in Π. We place at most t spheres centered at
each p ∈ P according to the occurring distances from p to the planes in Π. Let S denote the
resulting family of at most mt distinct spheres.

As in the proof of Corollary A.2, the tangency graph of the planes of Π and the spheres of
S contains no K3,9, because this would lead to a 3× 3 cone or cylinder configuration. (Micha
says: And the other direction?)

On the one hand, the number of tangencies satisfies T (Π,S) = mn. On the other hand,
applying Lemma A.1 to S and Π leads to

mn = T (Π,S) = O
(

n3/4(mt)3/4 + n+mt
)

.

The second term gives m = O(1) and the third term gives t = Ω(n). Thus we have

t = Ω
(

m1/3n1/3
)

,

unless m = O(1) or m = Ω(n2).

As in the case of point-line distances, our proof yields a stronger statement: Under the same
assumptions, there is a point p ∈ P with at least Ω(m1/3n1/3) distinct distances from p to the
planes in Π.

A.2 Distinct point-hyperplane distances

To obtain higher-dimensional analogues, we will use the following incidence bound from Fix et
al. [6]. We refer to [6] for the relevant definitions.
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Theorem A.4 (Fox-Pach-Sheffer-Suk-Zahl). Let G be a semialgebraic bipartite graph that has
bounded complexity, with parts A ⊂ R

d1 and B ⊂ R
d2. If G is Kk,k-free, then

|E(G)| = O

(

|A|
d2(d1−1)
d1d2−1

+ε|B|
d1(d2−1)
d1d2−1 + |A|+ |B|

)

,

for any ε > 0, where the constant of proportionality depends on d1, d2, k, ε, and the description
complexity of the graph.

We define cylinder and cone configurations analogously to the definitions in Subsection A.1.

Theorem A.5. Let P be a set of m points and let Π be a set of n hyperplanes in R
d. Assume

that these points and hyperplanes determine no cone or cylinder configuration of k points and
k hyperplanes, for some constant k. Then the number of distinct point-hyperplane distances
determined by P and Π is

Ω
(

m
1
d
−

1
d2 n

1
d
−ε

)

,

for any ε > 0, where the constant of proportionality depends on ε, unless m = O(1) or m =
Ω(n2).

Proof. Let A = Π∗ ⊂ R
d be the set of dual points corresponding to the hyperplanes in Π.

Again let t be the total number of distinct point-hyperplane distances and draw t (hyper-
)spheres around each point with radii equal to these distances. Let B ⊂ R

d+1 be the set of at
most mt points (p, r) corresponding to the spheres with center p and radius r.

Let G be the bipartite graph with parts A and B, where a hyperplane and a sphere are
connected by an edge if they are tangent. We claim that this is a (semi-)algebraic graph
of bounded description complexity, a property that follows from the same formula for point-
hyperplane distance that we used above.

Thus we get

mn = |E(G)| = O

(

n
(d+1)(d−1)
d(d+1)−1

+ε
(mt)

d2

d(d+1)−1 + n+mt

)

= O

(

m
d2

d2+d−1n
d2−1

d2+d−1
+ε

t
d2

d2+d−1 + n+mt

)

,

so
t = Ω

(

m
d−1
d2 n

1
d
−ε

)

,

for any ε > 0, unless m = O(1) or m = Ω(n2).

Note that Zahl’s theorem corresponds to the case in Theorem A.4 with d1 = d2 = 3 (except
for the ε). The reason for the weaker bound in Theorem A.5 (for d = 3) is that, in order to
apply Theorem A.4, we had to “lift” the spheres to points in R

d+1, rather than work directly
with the spheres as surfaces in R

d, as we were able to do in the three-dimensional case.
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