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Abstract

We present an optimal-time algorithm for computing (an implicit representation of)
the shortest-path map from a fixed source s on the surface of a convex polytope P in
three dimensions. Our algorithm runs in O(n log n) time and requires O(n log n) space,
where n is the number of edges of P . The algorithm is based on the O(n log n) algorithm
of Hershberger and Suri for shortest paths in the plane [22], and similarly follows the
continuous Dijkstra paradigm, which propagates a “wavefront” from s along ∂P . This
is effected by generalizing the concept of conforming subdivision of the free space
used in [22], and by adapting it for the case of a convex polytope in R

3, allowing the
algorithm to accomplish the propagation in discrete steps, between the “transparent”
edges of the subdivision. The algorithm constructs a dynamic version of Mount’s data
structure [32] that implicitly encodes the shortest paths from s to all other points of the
surface. This structure allows us to answer single-source shortest-path queries, where
the length of the path, as well as its combinatorial type, can be reported in O(log n)
time; the actual path can be reported in additional O(k) time, where k is the number
of polytope edges crossed by the path.

The algorithm generalizes to the case of m source points to yield an implicit rep-
resentation of the geodesic Voronoi diagram of m sites on the surface of P , in time
O((n+m) log(n+m)), so that the site closest to a query point can be reported in time
O(log(n + m)).

Although several key ingredients of the algorithm are adapted from [22], this adap-
tation is quite challenging, and its implementation requires several additional nontrivial
techniques.
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1 Introduction

1.1 Background

The problem of determining the Euclidean shortest path on the surface of a convex polytope
in R

3 between two points is a classical problem in geometric optimization, which is moti-
vated by many applications, such as robotics, terrain navigation, and industrial automation.
This problem is a special case of the following basic general problem: Given a collection
of obstacles (of known shapes and locations), find a Euclidean shortest obstacle-avoiding
path between two given points, or, more generally, compute a compact representation of all
such paths that emanate from a fixed source point. A much broader collection of specific
problems, under various assumptions involving the dimension, metric, shape of the obstacles,
and additional constraints on the path, are discussed in the survey of Mitchell [29]; here we
mention only the results that are most relevant to our specific problem.

The first paper in computational geometry that has studied the single source shortest
path problem on a single convex polytope P in R

3 is by Sharir and Schorr [40]. Their
algorithm runs in O(n3 log n) time, where n is the number of vertices (or, in view of Euler’s
polyhedral formula, the number of edges or facets) of P . The algorithm constructs a planar
layout of the shortest path map, and then the length and combinatorial type of the shortest
path from the fixed source point s to any given query point q can be found, using point
location, in O(log n) time; the path itself can be reported in O(k) additional time, where k is
the number of edges of the polytope that are traversed by the shortest path from s to q. Soon
afterwards, Mount [31] gave an improved algorithm for convex polytopes with running time
O(n2 log n). Moreover, in [32], Mount has shown that the problem of storing shortest path
information can be treated separately from the problem of computing it, presenting a data
structure of O(n log n) space that supports O(log n)-time shortest-path queries. However,
the question whether this data structure can be constructed in subquadratic time, has been
left open.

For a general, possibly nonconvex polyhedral surface, O’Rourke et al. [36] gave an O(n5)-
time algorithm for the single source shortest path problem. Subsequently, Mitchell et al. [30]
presented an O(n2 log n) algorithm, extending the technique of Mount [31]. All algorithms
in [30, 31, 40] use the same general approach, called “continuous Dijkstra”, first formalized
in [30]. The technique keeps track of all the points on the surface whose shortest path
distance to the source s has the same value t, and maintains this “wavefront” as t increases.
It is easily seen that the wavefront consists of a collection of circular arcs, which can change
combinatorially when one of the arcs hits a vertex or edge of P , when two different arcs
run into each other, or when an arc shrinks to a point and is then eliminated by its two
neighboring arcs. The continuous Dijkstra approach maintains a priority queue of future
critical events where the wavefront undergoes such combinatorial changes, where the priority
of an event is its shortest path distance from s. The approach treats certain elements of ∂P
(vertices, edges, or other elements) as nodes in a graph, and follows Dijkstra’s algorithm [13]
to extract the unprocessed element currently closest to s and to propagate from it, in a
continuous manner, shortest paths to other elements. The same general approach is also
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used in our algorithm.

Chen and Han [10] use a rather different approach (for a not necessarily convex polyhedral
surface). Their algorithm builds a shortest path sequence tree, using an observation that
they call “one angle one split” to bound the number of branches, maintaining only O(n)
nodes in the tree in O(n2) total running time. The algorithm of [10] also constructs a planar
layout of the shortest path map (which is “dual” to the layout of [40]), which can be used
similarly for answering shortest path queries in O(log n) time (or O(k + log n) time for path
reporting). (Their algorithm is somewhat simpler for the case of a convex polytope P ,
relying on the property, established by Aronov and O‘Rourke [7], that this layout of P does
not overlap itself.) In [11], Chen and Han follow the general idea of Mount [32] to solve the
problem of storing shortest path information separately, for a general, possibly nonconvex
polyhedral surface. They obtain a tradeoff between query time complexity O(d log n/ log d)
and space complexity O(n log n/ log d), where d is an adjustable parameter. Again, the
question whether this data structure can be constructed in subquadratic time, has been left
open.

The problem has been more or less “stuck” after Chen and Han’s paper, and the quadratic-
time barrier seemed very difficult to break. For this and other reasons, several works [2, 3,
4, 5, 20, 21, 27, 28, 42] have presented approximate algorithms for the 3-dimensional short-
est path problem. Nevertheless, the major problem of obtaining a subquadratic, or even
near-linear, exact algorithm has remained open.

In 1999, Kapoor [24] has announced such an algorithm for the shortest path problem on an
arbitrary polyhedral surface P (see also a review of the algorithm in O’Rourke’s column [33]).
The algorithm follows the continuous Dijkstra paradigm, and claims to be able to compute
a shortest path from the source s to a single target point t in O(n log2 n) time (so it does
not preprocess the surface for answering shortest path queries). Facets of P are unfolded
into the plane of the face of s, and the main claim of the algorithm is that, using a set of
complicated data structures (that represent convex hulls of pieces of the wavefront W , as
well as convex hulls of pieces of the boundary B of the yet unexplored region that contains
the target t, and the associations between the waves of W with their nearest neighbors in B),
the total number of times that the data structures need to be updated in order to simulate
the wavefront propagation is linear (and that each update can be performed in O(log2 n)
time, amortized).

However, as far as we know, the details of Kapoor’s algorithm have not yet been pub-
lished, which makes it impossible to ascertain the correctness and the time complexity of
the algorithm. Moreover, as it is presented, there seem to be several difficulties that remain
to be solved in Kapoor’s approach. We list a few of these difficulties in Appendix B. As it
is presented, we feel that the algorithm of Kapoor [24] has many issues to address and to fill
in before it can be judged at all.
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1.2 The algorithm of Hershberger and Suri for polygonal domains

A dramatic breakthrough on a loosely related problem has taken place in 1995,1 when Her-
shberger and Suri [22] obtained an O(n log n)-time algorithm for computing a shortest path
between two points in the plane in the presence of polygonal obstacles (where n is the num-
ber of obstacle vertices). The algorithm actually computes a shortest path map from a fixed
source point to all other (non-obstacle) points of the plane, which can be used to answer
single-source shortest path queries in O(log n) time.

Since our algorithm uses (adapted variants of) many of the ingredients of Hershberger
and Suri’s algorithm, we provide a brief overview of their technique. The algorithm of
[22] uses the continuous Dijkstra method — that is, propagation of the wavefront amid
the obstacles, where each wave emanates from some obstacle vertex already covered by the
wavefront. See Figure 1(a) for an illustration. During the wavefront propagation, critical
events that change the wavefront topology are processed: wavefront-wavefront collisions,
wavefront-obstacle collisions, and wave elimination within a single wavefront.

s s

(b)(a)

Figure 1: The planar case: (a) The wavefront propagated from s, at some fixed time t. (b) The
conforming subdivision of the free space.

1A preliminary (symposium) version has appeared in 1993; the last version was published in 1999.
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The key new ingredient in Hershberger and Suri’s algorithm, which makes the wavefront
propagation efficient, is a quad-tree-style subdivision of the plane, of size O(n), on the
vertices of the obstacles (temporarily ignoring the obstacle edges). See Figure 1(b) for an
illustration. Each cell of this conforming subdivision is bounded by O(1) axis-parallel straight
line edges (called transparent edges), contains at most one obstacle vertex, and satisfies the
following crucial “conforming” property: For any transparent edge e of the subdivision, there
are only O(1) cells within distance 2 |e| of e. Then the obstacle edges are inserted into the
subdivision, while maintaining both the linear size of the subdivision and its conforming
property — except that now a transparent edge e has the property that there are O(1) cells
within shortest path distance 2 |e| of e. These transparent edges form the elements on which
the Dijkstra-style propagation is performed — at each step, the wavefront is ascertained to
(completely) cover some transparent edge, and is then advanced into O(1) nearby cells and
edges. Since each cell has constant descriptive complexity, the wavefront propagation inside
a cell can be implemented efficiently. The conforming nature of the subdivision guarantees
the crucial property that each transparent edge e needs to be processed only once, in the
sense that no path that reaches e after the simulation time at which it is processed can be a
shortest path, so the Dijkstra style of propagation works correctly for the transparent edges.

During the propagation, the algorithm collects the wavefront collision data, from which
the edges and vertices of the final map can be constructed. Inside a cell, a wavefront-obstacle
collision event is relatively easy to handle; however, a wavefront-wavefront collision is more
complex, especially when the colliding waves are not neighbors in the wavefront. The collision
of neighboring waves occurs when a wave is eliminated by its two neighbors, which is easy
to detect and process. To process collisions between non-neighboring waves another idea is
introduced in [22] — the approximate (or one-sided) wavefront.

Propagating the exact wavefront that reaches a transparent edge e appears to be ineffi-
cient; instead, the algorithm maintains two separate “approximate” wavefronts approaching
e from opposite sides. Together, this pair of one-sided wavefronts carry all the information
needed to compute the exact wavefront at e. A limited interaction between this pair of wave-
fronts at e allows the algorithm to eliminate some of the superfluous waves and (implicitly)
detect all wavefront-wavefront collisions (that constitute the vertices of the true shortest
path map) when processing transparent edges that lie in a small neighborhood of the actual
collision location. In other words, a superfluous wave that should have been eliminated in
some cell may survive for a while, but it will travel through only O(1) adjacent cells before
being “caught” and destroyed, so the damage that it may have entailed till this point does
not cause the asymptotic performance of the algorithm to deteriorate.

To track all the changes of the wavefront during the propagation, it is implemented as
a persistent data structure that requires O(log n) space for each update, resulting in an
algorithm with O(n log n) storage.

At the end of the propagation phase, all the collision information is collected, and then
Voronoi diagram techniques are used to compute exactly the vertices of the shortest path
map within each cell. The vertices in all the cells are then combined into a single map using
standard plane sweeping and some additional tricks. Processing the resulting map for point
location completes the algorithm.
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1.3 An overview of our algorithm

Our algorithm follows the general outline of the technique of [22]: It constructs a conforming
subdivision of the boundary ∂P of the given convex polytope P and applies the continuous
Dijkstra propagation technique to the resulting transparent edges. However, extending the
ideas of [22] to our case is quite involved, and requires special constructs, careful imple-
mentation, and finer analysis. In particular, many additional technical steps that address
the 3-dimensional (non-flat) nature of the problem are introduced. To aid readers familiar
with [22], the structure of our paper closely follows that of [22], although each part that
corresponds to a part of [22] is quite different in technical details.

We begin with an overview of our algorithm. As in [22], we construct a conforming
subdivision of ∂P to control the wavefront propagation. We first construct an oct-tree-like
3-dimensional axis-parallel subdivision S3D, only on the vertices of ∂P . Then we intersect
S3D with ∂P , to obtain a conforming surface subdivision S. (We use the term “facet” when
referring to a triangle of ∂P , and we use the term “face” when referring to the square faces
of the 3-dimensional cells of S3D. Furthermore, each such face is subdivided into square
“subfaces”.) In our case, a transparent edge e may traverse many facets and edges of P ,
but we still want to treat it as a single simple entity. To this end, we first replace each
actual intersection ξ of a subface of S3D with ∂P by the shortest path on ∂P that connects
the endpoints of ξ and traverses the same facet sequence of ∂P as ξ, and make those paths
our transparent edges. (If these shortened paths cross each other, we split them into sub-
edges at the crossing points.) We associate with each such transparent edge e the polytope
edge sequence that it crosses, which is stored in compact form and is used to unfold e to
a straight segment. To compute the unfolding efficiently, we preprocess ∂P into a surface
unfolding data structure, that allows us to compute, in O(log n) time, the image of any query
point q ∈ ∂P in any unfolding formed by a contiguous sequence of polytope edges crossed
by an axis-parallel plane that intersects the facet of q. This is a nontrivial addition to the
machinery of [22]. (In contrast, in the planar case the transparent edges are simply straight
segments, which are trivial to represent and to manipulate.)

Similarly to [22], we maintain a simulation timer to control the propagation of the wave-
front from one transparent edge e of S to O(1) transparent edges of nearby cells. Before
doing so, we first consolidate the wavefronts that have already reached e, constructing a
representation of the true wavefront at e at a time when e is ascertained to have been com-
pletely covered by the wavefront, but before the wavefront covers other transparent edges
further from the source to which we want to propagate from e. (This representation uses
one-sided wavefronts, as in [22] — see below.) The last transparent edges from which the
contributing wavefronts were propagated to e bound the so-called well-covering region R(e)
of e, which has similar properties to those in [22]. A key difference is that in our case shortest
paths “fold” over ∂P , and need to be unfolded onto some plane (on which they look like
straight segments). We cannot afford to perform all these unfoldings explicitly — this would
right away degrade the storage and running time to quadratic in the worst case. Instead we
maintain partial unfolding transformations at the nodes of our structure, composing them
on the fly (as rigid transformations of 3-space) to perform the actual unfoldings whenever
needed (the same is done when unfolding the transparent edges themselves).
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We maintain two one-sided wavefronts instead of one exact wavefront at each transparent
edge e. We enforce the invariant that, for any point p ∈ e, the true shortest path distance
from s to p is the smaller of the two distances to p encoded in the two one-sided wavefronts.
Unlike [22], we do not apply any explicit interaction between the one-sided wavefronts.
(However, there is still an implicit interaction between them, in the sense that a wave,
reaching a transparent edge e later than e was ascertained to have been completely covered
by an opposite one-sided wavefront, will not be propagated further.)

The need to unfold shortest paths onto a plane creates additional difficulties. On top of
the main problem that a surface cell may intersect many (up to Ω(n)) facets of P , it can
in general be unfolded in more than one way, and such an unfolding may overlap itself (see
[34, 45] for description of this problem).

To overcome this difficulty, we introduce a Riemann structure that efficiently represents
the unfolded regions of the polytope surface that the algorithm processes. This representation
subdivides each surface cell into O(1) simple building blocks that have the property that
a planar unfolding of such a block (a) is unique, and (b) is a simply connected polygon
bounded by O(1) straight line segments (and does not overlap itself). A global unfolding is
a concatenation of unfolded images of a sequence, or more generally a tree, of certain blocks.
It may overlap itself, but we ignore these overlaps, treating them as different layers of a
Riemann surface. Each building block appears a constant number of times in the Riemann
structure (of a fixed cell), and the overall structure has the property that it contains the
shortest paths from the source to all the points of ∂P .

In summary, each step of the wavefront propagation phase picks up a transparent edge e,
constructs each of the one-sided wavefronts at e by merging the wavefronts that have already
reached e from a fixed side, and propagates from e each of its two one-sided wavefronts to
O(1) nearby transparent edges f , following the general scheme of [22]. Each propagation
that reaches f from e proceeds along a fixed sequence of building blocks that connect e to f .
Thus each propagation traces paths from a fixed homotopy class — they can be deformed
into one another (inside the well-covering region where they are currently propagated), while
continuing to trace the same edge and facet sequences of ∂P (as well as the same sequence
of transparent edges). We call such a propagation topologically constrained, and denote the
resulting wavefront that reaches f as W (e, f), omitting for convenience the corresponding
block sequence (or homotopy class). For a fixed edge e, there are only O(1) successor
transparent edges f and only O(1) block sequences for any of those f ’s.

During each propagation, we keep track of combinatorial changes that occur within the
wavefront, as it is being propagated from some predecessor edge g to e: At each of these
events, we either split a wave into two waves when it hits a vertex, or eliminate a wave
when it is “overtaken” by its two neighbors. Following a modified variant of the analysis
of [22], we show that the algorithm encounters a total of only O(n) “events”, and processes
each event in O(log n) time. To achieve the latter property, we represent each wavefront by
a tree structure, as in [22], which supports standard tree operations (including split and
concatenate), priority queue operations (on the distances from each generator in W to
the point where its wave is eliminated by its neighbors), and, a novelty of the structure,
unfolding operations (that are constantly needed to trace and manipulate shortest paths as

6



unfolded straight segments). The collection of the “unfolding fields” in the resulting data
structure is actually a dynamic version of the incidence data structure of Mount [32] that
stores the incidence information between m nonintersecting geodesic paths and n polytope
edges, and supports O(log(n + m))-time shortest-path queries, using O((n + m) log(n + m))
space. Our data structure has similar space requirements and query-time performance; the
main novelty is the optimal preprocessing time of O((n + m) log(n + m)) (Mount constructs
his data structure in time proportional to the number of intersections between the polytope
edges and the geodesic paths, which is Θ(nm) in the worst case). In this sense, we combine
the benefits of the data structure of [22] with those of [32].

When all wavefronts, propagated from predecessor transparent edges, have reached e, we
merge them into two one-sided wavefronts at e, similarly to the corresponding procedure
in [22]. This happens at some simulation time te, which is an upper bound on the time at
which e has been completely covered by the true wavefront. The main reason for maintaining
one-sided wavefronts is that merging them is easy: As in [22], two such (topologically con-
strained) wavefronts W (f, e), W (g, e) cannot interleave along e, and each of them “claims”
a contiguous portion of e (this property is false when merging wavefronts that reach e from
different sides, or that are not topologically constrained). This allows us to perform the
mergings in a total of O(n log n) time.

After the wavefront propagation phase, we perform further preprocessing to facilitate
efficient processing of shortest path queries. This phase is rather different from the shortest
path map construction in [22], since we do not provide, nor know how to construct, an
explicit representation of the shortest path map on P in o(n2) time.2 However, our implicit
representation of all the shortest paths from the source suffices for answering any shortest
path query in O(log n) time. Informally, we retrieve O(1) candidates for the shortest path,
and select the shortest among them. The query “identifies” the path combinatorially. It can
produce right away the length of the path (assuming the real RAM model of computation),
and the direction at which it leaves s to reach the query point. An explicit representation
of the path takes O(k) additional time, where k is the number of polytope edges crossed by
the path.

The paper is organized as follows (again, we keep the paper structure as similar to [22] as
possible). Section 2 provides some preliminary definitions and describes the construction of
the conforming surface subdivision using an already constructed conforming 3D-subdivision
S3D, while the construction of S3D, which is slightly more involved, is deferred to Section 6.
While the construction of S3D is very similar to the 2D construction given in [22], the
construction in Section 2 is new and involves many ingredients that cater to the spatial
structure of convex polytopes. Section 3 also has no parallel in [22]. It presents the Riemann
structure and other constructs needed to unfold the polytope surface for the implementation
of the wavefront propagation phase. Section 4 describes the wavefront propagation phase

2An explicit representation is tricky in any case, because the map, in its folded form, has quadratic
complexity in the worst case. Our representation is actually an improved (dynamic) version of the com-
pact implicit representation of [32], which, before the availability of our algorithm, was not known to be
constructible in subquadratic time. There exist other compact implicit representations [10, 11] that allow
various tradeoffs between the query time and the space complexity; however, so far (even with the availability
of our algorithm) none of them is known to be constructible in subquadratic time.
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itself. The data structures and the implementation details of the algorithm, as well as the
final phase of the preprocessing for shortest path queries, are presented in Section 5. We
close in Section 7 with a discussion, which includes the extension to the construction of
geodesic Voronoi diagrams on ∂P , and with several open problems.

2 A Conforming Surface Subdivision

The input to our shortest path problem is a convex polytope P with n vertices and a source
point s ∈ ∂P . Without loss of generality, we assume that s is a vertex of P and that all
facets of P are triangles, since more complex polytope facets can be triangulated in overall
O(n) time, and the number of edges introduced is linear in the number of vertices. We also
assume that no edge of P is axis-parallel, since otherwise the polytope can be rotated in
O(n) time to enforce this property. Our model of computation is the real RAM.

A key ingredient of the algorithm is a special subdivision S of ∂P into cells, so that each
cell c ∈ S is bounded by O(1) subdivision edges, and the unfolding of each subdivision edge
e ∈ ∂c, at the polytope edges that it traverses, is a straight segment; see Section 2.1 for
precise definitions.

We construct S in two steps. The first step builds a rectilinear oct-tree-like subdivision
S3D of R

3 by taking into account only the vertices of P (and the source point s); the second
step intersects ∂P with the subfaces of S3D. These intersections define (though do not
coincide with) the surface subdivision edges, thereby yielding an (implicit) representation of
S.

The algorithm for the first step (constructing a “conforming” 3-dimensional subdivision
for a set of points) is somewhat complicated on one hand, and very similar to the corre-
sponding construction in [22] on the other hand (except for the modifications needed to
handle the spatial situation). It is also quite independent of the main part of the shortest
path algorithm, and so we postpone its presentation to Section 6 at the end of the paper.
In the present section, we only state the properties that S3D should satisfy, assume that
it is already available, and describe how to use it for constructing S. We start with some
preliminary definitions.

2.1 Preliminaries

We borrow some definitions from [30, 39, 40]. A geodesic path π is a simple (that is, not self-
intersecting) path along ∂P that is locally optimal, in the sense that, for any two sufficiently
close points p, q ∈ π, the portion of π between p and q is the unique shortest path that
connects them on ∂P . Such a path π is always piecewise linear; its length is defined as the
sum of the lengths of all its straight segments, and is denoted as |π|. For any two points
a, b ∈ ∂P , a shortest geodesic path between them is denoted by π(a, b). Generally, π(a, b) is
unique, but there are degenerate placements of a and b for which there exist several geodesic
shortest paths that connect them. For convenience, the word “geodesic” is omitted in the
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rest of the paper. For any two points a, b ∈ ∂P , at least one shortest path π(a, b) exists
[30]. We use the notation Π(a, b) to denote the set of shortest paths connecting a and b. The
length of any path in Π(a, b) is the shortest path distance between a and b, and is denoted
as dS(a, b). We occasionally use dS(X,Y ) to denote the shortest path distance between two
compact sets of points X,Y ⊆ ∂P , which is the minimum dS(x, y), over all x ∈ X and
y ∈ Y . We use d3D(x, y) to denote the Euclidean distance in R

3 between two points x and
y, and d3D(X,Y ) is also occasionally used to denote the (analogously defined) Euclidean
distance in R

3 between two sets of points X,Y . When considering points x, y on a plane, we
sometimes denote d3D(x, y) by d(x, y). The notation d∞(x, y) denotes the distance between
x and y under the L∞ norm.

If facets f and f ′ share a common edge χ, the unfolding of f ′ onto (the plane containing)
f is the rigid transformation that maps f ′ into the plane containing f , effected by an appro-
priate rotation about the line through χ, so that f and the image of f ′ lie on opposite sides
of that line. Let F = (f0, f1, . . . , fk) be a sequence of distinct facets such that fi−1 and fi

have a common edge χi, for i = 1, . . . , k. We say that F is the corresponding facet sequence
of the edge sequence E = (χ1, χ2, . . . , χk), and that E is the corresponding edge sequence of
F . The unfolding transformation UE is the transformation of 3-space that represents the
rigid motion that maps f0 to the plane of fk, through a sequence of unfoldings at the edges
χ1, χ2, . . . , χk. That is, for i = 1, . . . , k, let ϕi be the rigid transformation of 3-space that
unfolds fi−1 to the plane of fi about χi. The unfolding UE is then the composed transfor-
mation ΦE = ϕk ◦ ϕk−1 ◦ . . . ◦ ϕ1. The unfolding of an empty edge sequence is the identity
transformation.

However, in what follows, we will also use UE to denote the collection of all partial
unfoldings Φ

(i)
E

= ϕk ◦ϕk−1 ◦ . . . ◦ϕi, for i = 1, . . . , k. Thus Φ
(i)
E

is the unfolding of fi−1 onto
the plane of fk. The domain of UE is then defined as the union of all points in f0, f1, . . . , fk,
and the plane of the last facet fk is denoted as the destination plane of UE . See Figure 2.

UE(f2)UE(f1)

χ1

χ2

χ3

f1

f2

UE(f0)

f0

f3 = UE(f3)

Figure 2: Side view: the unfolding of the facet sequence F = (f0, f1, f2, f3). The corresponding
edge sequence is E = (χ1, χ2, χ3), and we denote by UE the following collection of transformations:
(i) ϕ3 that unfolds f2 to the plane of f3 about χ3, (ii) ϕ3 ◦ ϕ2, where ϕ2 unfolds f1 to the plane of
f2 about χ2, and (iii) ϕ3 ◦ ϕ2 ◦ ϕ1, where ϕ1 unfolds f0 to the plane of f1 about χ1.

Each rigid transformation in R
3 can be represented as a 4 × 4 matrix,3 so the entire

sequence ΦE = Φ
(1)
E

, Φ
(2)
E

, . . . , Φ
(k)
E

can be computed in O(k) time.

3Specifically, assume that the current coordinate frame C is centered at a vertex u of P , so that the x-axis
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The unfolding UE(F) of the facet sequence F is the union
⋃k

i=0 Φ
(i+1)
E

(fi) of the unfoldings
of each of the facets fi ∈ F , in the destination plane of UE (here the unfolding transformation
for fk is the identity). The unfolding UE(π) of a path π ⊂ ∂P that traverses the edge sequence
E , is the path consisting of the unfolded images of all the points of π in the destination plane
of UE .

Note that our definition of unfolding is asymmetric, in the sense that we could equally
unfold into the plane of any of the other facets of F . We sometimes ignore the exact choice of
the destination plane, since the appropriate rigid transformation that moves between these
planes is easy to compute.

Remark: In the general case, the unfolded image of a facet sequence (or of a path) might
overlap itself. To maintain correctly the geometry of the unfolded image, we treat the
unfolded surface as a Riemann surface, where the overlapping does not occur, because points
that overlap lie in different “layers” of the surface. See Section 3 for a detailed discussion of
this issue.

The following properties of shortest paths are proved in [10, 30, 39, 40].

(i) A shortest path π on ∂P does not traverse any facet of P more than once; that is, the
intersection of π with any facet f of ∂P is a (possibly empty) line segment.

(ii) If π traverses the edge sequence E , then the unfolded image UE(π) is a straight line
segment.

(iii) A shortest path π never crosses a vertex of P (but it may start or end at a vertex).

(iv) For any three distinct points a, b, c ∈ ∂P , either one of the shortest paths π(a, b), π(a, c)
is a subpath of the other, or these two paths meet only at a. For any four distinct points
a, b, c, d ∈ ∂P , the shortest paths π(a, b), π(c, d) intersect in at most one point, unless
one of these paths is a subpath of the other, or their intersection is a shortest path
between one of the points a, b and one of the points c, d. In other words, two shortest

contains the polytope edge uw and the facet f = △uvw is contained in the xy-plane. Denote by C(p) the 4-
vector of the homogeneous coordinates of a point p in the frame C. Let C ′ be a new coordinate frame centered
at v so that the new x-axis contains the polytope edge vw and the new xy-plane contains the other facet f ′

bounded by vw. Then C ′(p) = FC(p), where F = R(x, θ)R(z, α)T (v), θ is the angle of rotation about the
line through vw, so that f ′ and the image of f become coplanar and lie on opposite sides of that line, α is

the angle ∡uwv, and R(x, θ), R(z, α), T (v) are the following matrices: R(x, θ) =









1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1









rotates by θ around the (current) x-axis, R(z, α) =









cos α − sin α 0 0
sin α cos α 0 0

0 0 1 0
0 0 0 1









rotates by α around the

(current) z-axis, and T (v) =









1 0 0 −vx

0 1 0 −vy

0 0 1 0
0 0 0 1









translates C(p) by the vector vu =









vx

vy

0
0









. See [37] for

details.
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paths from the same source point s, so that none of them is an extension of the other,
cannot intersect each other except at s and, if they have the same destination point,
possibly at that point too.

2.1.1 The elements of the shortest path map

In this subsection we discuss the structure of the shortest path map, which our algorithm
aims to compute (implicitly).

We consider the problem of computing shortest paths from a fixed source point s ∈ ∂P
to all points of ∂P . A point z ∈ ∂P is called a ridge point if there exist at least two distinct
shortest paths from s to z. The shortest path map with respect to s, denoted SPM(s),
is a subdivision of ∂P into at most n connected regions, called peels, whose interiors are
vertex-free, and contain neither ridge points nor points belonging to shortest paths from
s to vertices of P , and such that for each such region Φ, there is only one shortest path
π(s, p) ∈ Π(s, p) to any p ∈ Φ, which also satisfies π(s, p) ⊂ Φ.

The following properties of ridge points are proved in [40].

(i) A shortest path from s to any point in ∂P cannot pass through a ridge point (but it
may end at such a point).

(ii) The set of all ridge points is the union of O(n2) straight segments.

(iii) The set of all vertices of P and ridge points is a tree having (some of) the vertices of
P as leaves (there are degenerate cases where a vertex of P is an internal node in the
tree).

See Figure 3 for an illustration.

s

Figure 3: Peels are bounded by thick lines (dashed and solid). The bisectors (the set of all the
ridge points) are the thick solid lines, while the dashed solid lines are the virtual edges of SPM(s)
that lead to the vertices of P .

Remark: Property (ii) suggests that in the worst case, the space complexity of an explicit
representation of SPM(s) might be quadratic. Indeed, this may be the case when every peel
intersects Ω(n) facets of ∂P , a situation that is easy to realize. Hence, to keep the complexity
of our algorithm close to linear, SPM(s) is never computed explicitly. Instead, the algorithm
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collects data that represents SPM(s) implicitly, while still allowing us to answer shortest
path queries (with respect to s) efficiently — see Sections 4 and 5 for details.

There are two types of vertices of SPM(s):

(i) A ridge point that is incident to three or more peels.

(ii) A vertex of P , including s.

The boundaries of the peels form the edges of SPM(s). There are two types of edges (see
Figure 3):

(i) A maximal connected polygonal path of ridge points between two vertices of SPM(s),
that does not contain any vertex of SPM(s), is called a bisector.

(ii) A shortest path from s to a vertex of P , is called a virtual edge of SPM(s). (Assuming
general position, each vertex of P has a unique shortest path from s.)

It is proved in [40] that SPM(s) has only O(n) vertices and (folded) edges (each of these
edges potentially breaks down, when folded, into O(n) straight segments).

Remark: An explicit representation of the folded SPM(s) can have Θ(n2) complexity, which
we definitely do not want to produce. In contrast, an explicit representation of the unfolded
map (let us call it a semi-explicit representation) has only O(n) complexity, and could be
useful for various purposes. Our algorithm does not produce such a semi-explicit represen-
tation (its implicit representation is looser — see Section 5.4), but we believe that it can be
modified to construct the “unfolded SPM(s)” as a byproduct, by adapting the idea of Her-
shberger and Suri [22] of explicitly detecting all wave collisions using “artificial wavefronts”.
We leave it as an interesting open question whether such a semi-explicit representation can
be further processed in near-linear time to enable efficient shortest-path queries.4

Denote by Ei the maximal polytope edge sequence crossed by a shortest path from s to
a vertex of a peel Φi inside Φi. (Notice that a maximal polytope edge sequence of a given
peel is unique, since a peel does not contain polytope vertices in its interior.) Denote by si

the unfolded source image UEi
(s); for the sake of simplicity, we use the same notation si to

also denote the unfolded source image UE ′

i
(s), for any prefix E ′

i of Ei. A bisector between two
adjacent peels Φi, Φj is denoted by b(si, sj). It is the locus of points q equidistant from si

and sj (on some common plane), so that there are at least two shortest paths in Π(s, q) —
one, completely contained in Φi, traverses a prefix of the polytope edge sequence Ei, and the
other, completely contained in Φj, traverses a prefix of the polytope edge sequence Ej.

Note that for two maximal polytope edge sequences Ei, Ej, the bisector b(si, sj) between
the source images si = UEi

(s) and sj = UEj
(s) satisfies both the following properties:

UEi
(b(si, sj)) ⊂ UEi

(Fi), and UEj
(b(si, sj)) ⊂ UEj

(Fj), where Fi,Fj are the corresponding
facet sequences of Ei, Ej, respectively.

4In [11] this is done in at least quadratic time.
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2.2 The 3-dimensional subdivision and its properties

We begin by introducing the subdivision S3D of R
3, whose construction is given in Section 6.

The subdivision is composed of 3D-cells, each of which is either a whole axis-parallel cube or
an axis-parallel cube with a single axis-parallel cube-shaped hole (we then call it a perforated
cube). The boundary face of each 3D-cell is divided into either 16 × 16 or 64 × 64 square
subfaces with axis-parallel sides.5 See Figure 4 for an illustration.

(b)(a)

Figure 4: Two types of a 3D-cell: (a) A whole cube, where the subdivision of three of its faces is
shown. (b) A perforated cube. Each of its faces (both inner and outer) is subdivided into subfaces
(not shown).

Let l(h) denote the edge length of a square subface h.

The crucial property of S3D is the well-covering of its subfaces. Specifically, a subface h
of S3D is said to be well-covered if the following three conditions hold:

(W1) There exists a set of O(1) cells C(h) ⊆ S3D such that h lies in the interior of their
union R(h) =

⋃

c∈C(h) c. The region R(h) is called the well-covering region of h (see

Figure 5 for an illustration).

(W2) The total complexity of the subdivisions of the boundaries of all the cells in C(h) is
O(1).

(W3) If g is a subface on ∂R(h), then d3D(h, g) ≥ 16 max{l(h), l(g)}.

A subface h is strongly well-covered if the stronger condition (W3’) holds:

(W3’) For any subface g so that h and g are portions of nonadjacent (undivided) faces of
the subdivision, d3D(h, g) ≥ 16 max{l(h), l(g)}.

5With some care, one can improve the constants to 12 × 12 and 48 × 48, respectively, by a trivial
modification of the construction of S3D. However, this will require more work on the 3D-cells that contain
the vertices of P , to keep the minimum vertex clearance property, defined below; we therefore skip this
optimization for the sake of simplicity.
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Remark: The wavefront propagation algorithm described in Sections 4, 5 requires the
subfaces of S3D to be only well-covered, but not necessarily strongly well-covered. The
stronger condition (W3’) of subfaces of S3D is only needed in the construction of the surface
subdivision S, described in the next subsection.

Figure 5: The well-covering region of the darkly shaded face h contains, in this example, a total of
39 3D-cells (nine transparent large cells on the back, five lightly shaded large cells on the front, and
25 small cells, also on the front). Each face of the boundary of each 3D-cell in this figure is further
subdivided into smaller subfaces (not shown). The well-covering region of each of the subfaces of
h coincides with R(h).

Let V denote the set of vertices of the polytope (including the source vertex s). A 3D-
subdivision S3D is called a (strongly) conforming 3D-subdivision for V if the following three
conditions hold.

(C1) Each cell of S3D contains at most one point of V in its closure.

(C2) Each subface of S3D is (strongly) well-covered.

(C3) The well-covering region of every subface of S3D contains at most one vertex of V .

Remarks:

(i) The subdivision is called conforming because conditions (C1) and (C3) force it to “con-
form” to the distribution of points in V , encapsulating each point in a separate cell, which
are “reasonably far” from each other.

(ii) The 3D-subdivision S3D is similar to a (compressed) oct-tree in that all its faces are axis-
parallel and their sizes grow by factors of 4. However, the cells of S3D may be nonconvex
and the union of the surfaces of the 3D-subdivision itself may be disconnected.

(iii) We actually require property (C2) to hold only for each internal subface of S3D, that
is, only for subfaces that bound two 3D-cells (rather than one). This is because the external
subfaces do not intersect P , and therefore are not involved in the construction of the surface
subdivision S. However, in the rest of the paper we ignore this minor detail, for the sake of
simplicity.

S3D also has the following minimum vertex clearance property :
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(MVC) For any point v ∈ V and for any subface h, d3D(v, h) ≥ 4l(h).

As mentioned, the algorithm for computing a strongly conforming 3D-subdivision of V
is presented in Section 6. We state the main result shown there.6

Theorem 2.1 (Conforming 3D-subdivision Theorem). Every set of n points in R
3

admits a strongly conforming 3D-subdivision S3D of O(n) size, that also satisfies the mini-
mum vertex clearance property. In addition, each input point is contained in the interior of
a distinct whole cube cell. Such a 3D-subdivision can be constructed in O(n log n) time.

2.3 Computing the surface subdivision

We form the surface subdivision S from the 3D-subdivision S3D, as follows. We intersect
the edges of S3D with ∂P : Points where those edges cross ∂P are called the transparent
endpoints of S. Then, we use the transparent endpoints to define the edges of S. Informally
(a formal treatment follows shortly), we replace each intersection ξ of a subface of S3D with
∂P by a shortest among all paths on ∂P that connect the endpoints of ξ and traverse the
same facet sequence as ξ. Thus, when appropriately unfolded, transparent edges become
straight segments. As a result, we get two types of edges on ∂P : the edges of the surface-
subdivision S, that we call transparent edges, in accordance with the notation of [22], and
the original polytope edges. (We usually use the letters e, f, g to denote transparent edges,
and the letter χ to denote polytope edges.) The algorithm uses the transparent edges as
“stepping stones” for the Dijkstra-style wavefront propagation process, where each step in
this process propagates wavefronts from a transparent edge to O(1) other transparent edges
of nearby cells. A major technical issue that our algorithm has to face, which is absent in the
planar algorithm of [22], is that a transparent edge may traverse many (up to Θ(n)) facets
of P , but we still want to treat it as a single entity. This will force the algorithm to use
a compact representation of transparent edges, which will be described later. In contrast,
in the planar case the transparent edges are simply straight segments, which are trivial to
represent and to manipulate.

The transparent edges of S induce a partition of ∂P into 2-dimensional connected regions,
called the surface cells of S. Each surface cell of S originates from a 3D-cell of S3D. We
use the term “originate”, because the boundary of a surface cell c is close to (in the sense
explained later in this section), but not identical to, the corresponding intersection of ∂P
with the 3D-cell that c originates from. A surface cell originates from exactly one 3D-cell of
S3D, but a 3D-cell may have more than one surface cell originating from it. See Figure 6 for
a schematic illustration of this phenomenon.

We first describe the construction of S using the conforming 3D-subdivision S3D. Then
we analyze and establish several properties of S. The running time of the construction,
which is O(n log n), is established later in Lemma 2.11.

Transparent edges. We intersect the subfaces of S3D with ∂P . Each maximal connected
portion ξ of the intersection of a subface h of S3D with ∂P induces a surface-subdivision

6Note that we do not assume that the points of V are in convex position.
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c3D
∂P

c3

c2c1

Figure 6: A two-dimensional illustration of three surface cells c1, c2, c3 originating from a single
3D-cell c3D.

(transparent) edge e of S with the same pair of endpoints. (We emphasize again that e is in
general different from ξ. The precise construction of e is detailed below.) A single subface
h can therefore induce up to four transparent edges (since P is convex and h is a square,
and the construction of S3D ensures that none of its edges is incident to a polytope edge; see
Figure 7). Isolated points of such an intersection are ignored in the construction (in fact,
assuming general position, no isolated points will arise). If ξ is a closed cycle fully contained
in the interior of h, we break it at its x-rightmost and x-leftmost points (or y-rightmost and
y-leftmost points, if h is perpendicular to the x-axis). These two points are regarded as two
new endpoints of transparent edges. These endpoints, as well as the endpoints of the open
connected intersection portions ξ, are referred to as transparent endpoints.

∂P
h

ξ1 ξ2

ξ3

Figure 7: A subface h and three maximal connected portions ξ1, ξ2, ξ3 that constitute the inter-
section h ∩ ∂P .

Let ξ(a, b) be a maximal connected portion of the intersection of a subface h of S3D

with ∂P , bounded by two transparent endpoints a, b. Let E = Ea,b denote the sequence of
polytope edges that ξ(a, b) crosses from a to b, and let F = Fa,b denote the facet sequence
corresponding to E . We define the transparent edge ea,b as the shortest path from a to b
within the union of F (a priori, UE(ea,b) needs not be a straight segment, but we will shortly
show that it is). We say that ea,b originates from the cut ξ(a, b). Obviously, its length |ea,b| is
equal to |UE(ea,b)| ≤ |ξ(a, b)|. See Figure 8 for an illustration. Note that in general position
(in particular, if no polytope edge is axis-parallel), ea,b = ξ(a, b) if and only if ξ(a, b) is
contained in exactly one facet of P . (This initial collection of transparent edges may contain
crossing pairs, and each initial transparent edge will be split into sub-edges at the points
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where other edges cross it — see below.)

c2

a b

ξ(a, b)

ea,b

c1

Figure 8: The 3D-cells c1 and c2 are denoted by dotted lines. The cuts of their boundaries with
∂P are denoted by thin solid lines, and the dashed lines denote polytope edges. (To simplify the
illustration, it is ignored in this figure that the faces of S3D are actually subdivided into smaller
subfaces.)

Lemma 2.2. No polytope vertex can be incident to transparent edges. That is, for each
transparent edge ea,b, the unfolded path UE(ea,b) is a straight segment.

Proof: By the minimum vertex clearance property, for any subface h of S3D and for any
v ∈ V , we have d3D(h, v) ≥ 4l(h). Let ea,b be a transparent edge originating from ξ(a, b) ⊂
h∩ ∂P . Then |ea,b| ≤ |ξ(a, b)|, by definition of transparent edges, and |ξ(a, b)| ≤ 4l(h), since
ξ(a, b) ⊆ h is convex, and h is a square of side length l(h). Therefore d3D(a, v) ≥ |ea,b|, which
shows that ea,b cannot reach any vertex v of P . ¤

Lemma 2.3. A transparent endpoint is incident to at least two and at most O(1) transparent
edges.

Proof: A transparent edge endpoint x either delimits two portions of a cyclic cut, or, in
general position, is incident to exactly one edge e3D of S3D. In the former case x is incident to
exactly two transparent edges; in the latter case e3D bounds between two and four subfaces
that intersect ∂P at x, and the claim follows. (It is easy to see that even without the general
position assumption x is still incident to only O(1) edges of S3D.) ¤

Lemma 2.4. Each transparent edge that originates from some face φ of S3D, meets at most
O(1) other transparent edges that originate from faces of S3D adjacent to φ (or from φ itself),
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and does not cross any other transparent edges (that originate from faces of S3D not adjacent
to φ).

Proof: Let ea,b be a transparent edge originating from the cut ξ(a, b), and let ec,d be a
transparent edge originating from the cut ξ(c, d). Let h, g be the subfaces of S3D that contain
ξ(a, b) and ξ(c, d), respectively. Since a, b ∈ h, the 3D-distance from any point of ea,b to h is
at most 1

2
|ea,b| ≤

1
2
|ξ(a, b)| ≤ 2l(h). Similarly, the 3D-distance from any point of ec,d to g is

no larger than 2l(g). Recall that S3D is a strongly conforming 3D-subdivision. Therefore, if
h, g are incident to non-adjacent faces of S3D, then, by (W3’), d3D(h, g) ≥ 16 max{l(h), l(g)},
hence ea,b does not intersect ec,d. There are only O(1) faces of S3D that are adjacent to the
facet of h, and each of them contains O(1) subfaces g. Hence there are at most O(1) possible
choices of g for each h, and the first part of the claim follows. ¤

Splitting intersecting transparent edges. Crossing transparent edges are illustrated in
Figure 9. We first show how to compute the intersection points; then, each intersection point
is regarded as a new transparent endpoint, splitting each of the two intersecting edges into
sub-edges.

x
c

ec,d

ξ(a, b)

b

ξ(c, d)

a

ea,bd

Figure 9: Subfaces are bounded by dotted lines, polytope edges are dashed, the cuts of ∂P ∩ S3D

are thin solid lines, and the two transparent edges ea,b, ec,d are drawn as thick solid lines. The edges
ea,b, ec,d intersect each other at the point x ∈ ∂P ; the shaded region of ∂P (including the point x

on its boundary) lies in this illustration beyond the plane that contains the cut ξ(c, d).

Lemma 2.5. A maximal contiguous facet subsequence that is traversed by a pair of inter-
secting transparent edges e, e′ contains either none or only one intersection point of e ∩ e′.
In the latter case, it contains an endpoint of e or e′ (see Figure 10).

Proof: Consider some maximal common facet subsequence F̃ = (f0, . . . , fk) that is traversed
by e and e′, so that the union R of the facets in F̃ contains an intersection point of e ∩ e′.
Since F̃ is maximal, no edge of ∂R is crossed by both e and e′; in particular, F̃ cannot be a
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x
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e
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Figure 10: A top view of two examples of intersecting transparent edges e, e′ (thin solid lines); the
corresponding original cuts (thick solid lines) never intersect each other. The maximal contiguous
facet subsequences that are traversed by both e, e′ and contain an intersection point of e ∩ e′ are
shaded. In the second example, the “hole” of ∂P between the facet sequence traversed by e and
the facet sequence traversed by e′ is hatched.

single triangle, so k ≥ 1. Since e and e′ are shortest paths within R, they cannot cross each
other (within R) more than once, which proves the first part of the lemma.

(a)

R′e′

e

R′

(b)

ξ

ξ′

f0 v
v

fku u

Figure 11: R is the union of all the facets. (a) e′ divides R into two regions, one of which, R′

(shaded), contains neither u nor v. (b) If R′ contains v but not u, ξ′ (crossing the same edge
sequence as e′) intersects ξ (which must cross the bold dashed edges, since R is maximal).

To prove the second claim, assume the contrary — that is, R does not contain any
endpoint of e and of e′. Denote by u (resp., v) the vertex of f0 (resp., fk) that is not incident
to f1 (resp., fk−1). We claim that e′ divides R into two regions, one of which contains both u
and v, and the other, which we denote by R′, contains neither u nor v. Indeed, if each of the
two subregions contained exactly one point from {u, v} then, by maximality of F̃ , e and e′

would have to traverse facet sequences that “cross” each other, which would have forced the
corresponding original cuts ξ, ξ′ also to cross each other, contrary to the construction; see
Figure 11. The transparent edge e intersects ∂R in exactly two points that are not incident
to R′. Since e intersects e′ in R, e must intersect ∂R′ ∩ e′ in two points — a contradiction.
¤

By Lemma 2.4, each transparent edge e has at most O(1) candidate edges that can
intersect it (at most four times, as follows from Lemma 2.5). For each such candidate edge
e′, we can find each of the four possible intersection points, using Lemma 2.5, as follows.
First, we check for each of the extreme facets in the facet sequence traversed by e, whether it
is also traversed by e′, and vice versa (if all the four tests are negative, then e and e′ do not
intersect each other). We describe in the proof of Lemma 2.11 below how to perform these
tests efficiently. For each positive test — when a facet f that is extreme in the facet sequence
traversed by one of e, e′, is present in the facet sequence traversed by the other — we unfold
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both e, e′ to the plane of f , and find the (image in the plane of f of the) intersection point
of e ∩ e′ that is closest to f (among the two possible intersection points).

Surface cells. After splitting the intersecting transparent edges, the resulting transpar-
ent edges are pairwise openly disjoint and subdivide ∂P into connected (albeit not neces-
sarily simply connected) regions bounded by cycles of transparent edges, as follows from
Lemma 2.3. These regions, which we call surface cells, form a planar (or, rather, spherical)
map S on ∂P , which is referred to as the surface subdivision of P that is induced by S3D.
Each surface cell is bounded by a set of cycles of transparent edges that are induced by some
3D-cell c3D, and possibly also by a set of other 3D-cells adjacent to c3D whose originally
induced transparent edges split the edges originally induced by c3D.

Corollary 2.6. Each 3D-cell induces at most O(1) (split) transparent edges.

Proof: Follows immediately from the property that the boundary of each 3D-cell consists
of only O(1) subfaces, from the fact that each subface induces up to four transparent edges,
and from Lemmas 2.4 and 2.5. ¤

Corollary 2.7. For each surface cell, all transparent edges on its boundary are induced by
O(1) 3D-cells.

Proof: Follows immediately from Lemma 2.4. ¤

Corollary 2.8. Each surface cell is bounded by O(1) transparent edges.

Proof: Follows immediately from Corollaries 2.6 and 2.7. ¤

In particular, Corollary 2.8 also shows that the boundary of each surface cell consists of
only O(1) cycles (connected components) of transparent edges. In fact, it is easy to check
that there can be at most six (resp., eight) such cycles of edges that are induced by the outer
(resp., inner) boundary of a 3D-cell; although we do not prove it formally, the explanation
is illustrated in Figure 12.

Well-covering. We require that all transparent edges be well-covered in the surface sub-
division S (compare to the well-covering property of the subfaces of S3D), in the following
modified sense.

(W1S) For each transparent edge e of S, there exists a set C(e) of O(1) cells of S such
that e lies in the interior of their union R(e) =

⋃

c∈C(e) c, which is referred to as the
well-covering region of e.

(W2S) The total complexity of all the cells in C(e) is O(1).

(W3S) Let e1 and e2 be two transparent edges of S such that e2 lies on the boundary of
the well-covering region R(e1). Then dS(e1, e2) ≥ 2 max{|e1| , |e2|}.

As the next theorem shows, our surface subdivision S is a conforming surface subdivision
for P , in the sense that the following three properties hold.
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c3D

c3D

(a) (b)

Figure 12: P (shaded) intersects: (a) the outer boundary of a 3D-cell c3D (white), forming at most
six cycles of edges; (b) the inner boundary of a perforated cube c3D, forming at most eight cycles
of edges.

(C1S) Each cell of S is a region on ∂P that contains at most one vertex of P in its closure.

(C2S) Each edge of S is well-covered.

(C3S) The well-covering region of every edge of S contains at most one vertex of P .

Theorem 2.9 (Conforming Surface-Subdivision Theorem). Each convex polytope P
with n vertices in R

3 admits a conforming surface subdivision S of O(n) size, constructed as
described above.

Proof: The properties (C1S), (C3S) follow from the properties (C1), (C3) of S3D, respec-
tively, and from the fact that each cycle C of transparent edges that forms a connected
component of the boundary of some cell of S traverses the same polytope edge sequence as
the original intersections of S3D with ∂P that induce C.

To show well-covering of edges of S (property (C2S)), consider an original transparent
edge ea,b (before the splitting of intersecting edges). The endpoints a, b are incident to some
subface h which is well-covered in S3D, by a region R(h) consisting of O(1) 3D-cells. We
define the well-covering region R(e) of every edge e, obtained from ea,b by splitting, as the
connected component containing e, of the union of the surface cells that originate from the
3D-cells of R(h). There are clearly O(1) surface cells in R(e), since each 3D-cell of S3D

induces at most O(1) (transparent edges that bound at most O(1)) surface cells. R(e) is
not empty and it contains e in its interior, since all the surface cells that are incident to e
originate from 3D-cells that are incident to h and therefore are in R(h). For each transparent
edge e′ originating from a subface g that lies on the boundary of (or outside) R(h), dS(h, g) ≥
d3D(h, g) ≥ 16 max{l(h), l(g)}. The length of e satisfies |e| ≤ |ea,b| ≤ |ξ(a, b)| ≤ 4l(h), and,
similarly, |e′| ≤ 4l(g). Therefore, for each p ∈ e we have d3D(p, h) ≤ 2l(h), and for each
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q ∈ e′ we have d3D(q, g) ≤ 2l(g). Hence, for each p ∈ e, q ∈ e′, we have dS(p, q) ≥ d3D(p, q) ≥
(16 − 4) max{l(h), l(g)}, and therefore dS(e, e′) ≥ 2 max{|e| , |e′|}.7 ¤

We next simplify the subdivision by deleting each group of surface cells whose union
completely covers exactly one hole of a single surface cell c and contains no vertices of P ,
thereby eliminating the hole and making it part of c. See Figure 13 for an illustration. This
optimization clearly does not violate any of the properties of S proved above, and can be
performed in O(n) time. After the optimization, each hole of a surface cell of S must contain
a vertex.

(b)(a)

Figure 13: Simplifying the subdivision (dashed edges denote polytope edges, and solid edges
denote transparent edges). (a) None of the cells is discarded, since, although the shaded cells are
completely contained inside a single hole of another cell, one of them contains a vertex of P . (b)
All the shaded cells are discarded, and become part of the containing cell.

The following lemma sharpens a simple property of S, which is used later in the analysis
of surface unfoldings (see Section 3).

Lemma 2.10. Let χ be a polytope edge, and let e be some transparent edge of S. Then e
and χ intersect in at most one point.

Proof: Follows immediately from the fact that e is a shortest path (within the union of a
facet sequence). ¤

2.4 The surface unfolding data structure

In this subsection we present the surface unfolding data structure, which we define and use
for designing an efficient procedure for the construction of the surface subdivision. This data
structure is also used in Section 3 to construct more complex data structures for wavefront
propagation and in Section 5 for the wavefront propagation algorithm.

7In fact, we even have dS(e, e′) ≥ 3max{|e| , |e′|}; the gap between the required and the actual (tighter)
bound follows from the fact that, as mentioned above, our 3D-subdivision contains more subfaces than
necessary, which can be optimized with some care.
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Sort the vertices of P in ascending z-order, and sweep a horizontal plane ζ upwards
through P . At each height z of ζ, the cross section P (z) = ζ ∩ P is a convex polygon,
whose vertices are intersections of some polytope edges with ζ. The cross-section remains
combinatorially unchanged, and each of its edges retains a fixed orientation, as long as ζ
does not pass through a vertex of P . When ζ crosses a vertex v, the polytope edges incident
to v and pointing downwards are deleted (as vertices) from P (z), and those that leave v
upwards are added to P (z).

We can represent P (z) by the circular sequence of its vertices, namely the circular se-
quence of the corresponding polytope edges. We use a linear, rather than a circular, sequence,
starting with the x-rightmost vertex of P (z) and proceeding counterclockwise along ∂P (z).
(It is easy to see that the rightmost vertex of P (z) does not change as long as we do not
sweep through a vertex of P .) We use a persistent search tree Tz (with path-copying, as
in [23], for reasons detailed below) to represent the cross section. Since the total number of
combinatorial changes in P (z) is O(n), the total storage required by Tz is O(n log n), and it
can be constructed in O(n log n) time.

We construct, in a completely symmetric fashion, two additional persistent search trees
Tx and Ty, by sweeping P with planes orthogonal to the x-axis and to the y-axis, respectively.
They too use a total of O(n log n) storage and are constructed in O(n log n) time.

We can use the trees Tx, Ty, Tz to perform the following type of queries: Given an axis-
parallel subface h of S3D (or, more generally, any axis-parallel rectangle), compute efficiently
the convex polygon P ∩ h, and represent its boundary in compact form (without computing
P ∩ h explicitly). Suppose, without loss of generality, that h is horizontal, say h = [a, b] ×
[c, d] × {z1}. We access the value Tz(z1) of Tz at z = z1 (which represents P (z1)), and
compute, in O(log n) time, the intersection points of the line x = a, z = z1 with P (that is,
with P (z1)); there are at most two such intersection points. Similarly, we find the intersection
points of each of the three other lines, supporting the edges of h, with P . It is easily seen
that this can be done in a total of O(log n) time. We obtain at most eight intersection
points, which partition ∂P (z1) into at most eight portions, and every other portion in the
resulting sequence is contained in h. Since these are contiguous portions of ∂P (z1), each
of them can be represented as the disjoint union of O(log n) subtrees of Tz(z1), where the
endpoints of the portions (the intersection points of ∂h with ∂P (z1)) do not appear in the
subtrees, but can be computed explicitly in additional O(1) time. Hence, we can compute,
in O(log n) time, the polytope edge sequence of the intersection P ∩ h, and represent it as
the disjoint concatenation of O(log n) canonical sequences, each formed by the edges stored
in some subtree of Tz. The trees Tx, Ty are used for handling, in a completely analogous
manner, subfaces h orthogonal to the x-axis and to the y-axis, respectively.

We can also use Tz for another (simpler) type of query: Given a facet f of ∂P , locate the
endpoints of f ∩ P (z) (which must be stored at two consecutive leaves in the cyclic order of
leaves of Tz), or report that f ∩ P (z) = ∅. As noted above, the slopes of the edges of P (z)
do not change when z varies, as long as P (z) does not change combinatorially. Moreover,
these slopes increase monotonically, as we traverse P (z) in counterclockwise direction from
its x-leftmost vertex vL to its x-rightmost vertex vR, and then again from vR to vL. This
allows us to locate f in the sequence of edges of P (z) by a binary search in the sequence of
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their slopes, which takes O(log n) time. This search procedure is defined analogously in Tx

and Ty.

However, the most important part of the structure is as follows. With each node ν of
Tz, we precompute and store the unfolding Uν of the sequence Eν of polytope edges stored
at the leaves of the subtree of ν. This is done in an easy bottom-up fashion, exploiting the
following obvious observation. Denote by Fν the corresponding facet sequence of Eν . If ν1, ν2

are the left and the right children of ν, respectively, then the last facet in Fν1
coincides with

the first facet of Fν2
. Hence Uν = Uν2

◦ Uν1
, from which the bottom-up construction of all

the unfoldings Uν is straightforward. Each node stores exactly one rigid transformation, and
each combinatorial change in P (z) requires O(log n) transformation updates, along the path
from the new leaf (or from the deleted leaf) to the root. (The rotations that keep the tree
balanced do not inflate the time complexity; maintaining the unfolding information while
rebalancing the tree is performed in a manner similar to that used in another related data
structure, described in Section 5.1.) Hence the total number of transformations stored in
Tz is O(n log n) (for all z, including the nodes added to the persistent tree with each path-
copying), and they can all be constructed in O(n log n) time. Analogous constructions apply
to Tx, Ty.

Let F = (f0, f1, . . . , fk) denote the corresponding facet sequence of the edge sequence
that consists of the edges stored at the leaves of Tz at some fixed z. We next show how
to use the tree Tz to perform another type of query: Compute the unfolded image U(q) of
some point q ∈ fi ∈ F in the (destination) plane of some other facet fj ∈ F (which is not
necessarily the last facet of F), and return the (implicit representation of) the corresponding
edge sequence Eij between fi and fj. If i = j, then Eij = ∅ and U(q) = q. Otherwise, we
search for fi and fj in Tz (in O(log n) time, as described above). Denote by Ui (resp., Uj)
the unfolding transformation that maps the points of fi (resp., fj) into the plane of fk. Then
U(q) = U−1

j Ui(q).

We describe next the computation of Ui, and Uj is computed analogously. If fi equals
fk, then Ui is the identity transformation. Otherwise, denote by νi the leaf of Tz that stores
the polytope edge fi ∩ fi+1, and denote by r the root of Tz. We traverse, bottom up, the
path P from νi to r, and compose the transformations stored at the nodes of P , initializing
Ui as the identity transformation and proceeding as follows. We define a node ν of P to be
a left turn (resp., right turn) if we reach ν from its left (resp., right) child and proceed to its
parent ν ′ so that ν is the right (resp., left) child of ν ′. When we reach a left (resp., right)
turn ν that stores Uν , we update Ui := UνUi (resp., Ui := U−1

ν Ui). If we reach r from its
right child, we do nothing; otherwise we update Ui := UrUi, where Ur is the transformation
stored at r. See Figure 14 for an illustration.

Thus, Ui (and Uj) can be computed in O(log n) time, and so U(q) = U−1
j Ui(q) can be

computed in O(log n) time. (It is possible to slightly optimize the procedure by computing
U(q) directly without the explicit computation of Ui, Uj; that is, U(q) can be computed by
traversing the paths from νi, νj up to their common ancestor instead of traversing all the way
to r. However, this optimization does not speed up our algorithm asymptotically.) Handling
analogous queries at some fixed x or y is done similarly, using the trees Tx or Ty, respectively.

Hence we can compute, in O(log n) time, the image of any point q ∈ ∂P in any unfolding
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Figure 14: Constructing Ui by traversing the path from the polytope edge succeeding the facet fi

to the root r of Tz. (a) The nodes ν1, ν3 are the left turns, and the nodes ν2, ν4 are the right turns
in this example. (b) Composing the corresponding transformations stored at ν1, . . . , ν4 and at r.

formed by a contiguous sequence of polytope edges crossed by an axis-parallel plane that
intersects the facet of q. The surface unfolding data structure that answers these queries
requires O(n log n) space and O(n log n) preprocessing time.

Lemma 2.11. Given the 3D-subdivision S3D, the conforming surface subdivision S can be
constructed in O(n log n) time and space.

Proof: First, we construct the surface unfolding data structure (the enhanced persistent
trees Tx, Ty, and Tz) in O(n log n) time, as described above. Then, we use this data structure
to compute the endpoints of all the transparent edges in O(n log n) time, as follows.

For each subface h of S3D, we use the data structure to find P ∩ h in O(log n) time. If
P ∩h is a single component, we split it at its rightmost and leftmost points into two portions
as described in the beginning of Section 2.3 — it takes O(log n) time to locate the split
points using a binary search.

To split the intersecting transparent edges, we check each pair of such edges (e, e′) that
might intersect, as follows. First, we find, in the surface unfolding data structure, the
edge sequences E and E ′ traversed by e and e′, respectively (by locating the cross sections
P ∩ h, P ∩ h′, where h, h′ are the respective subfaces of S3D that induce e, e′). Denote by
F = (f0, . . . , fk) (resp., F ′ = (f ′

0, . . . , f
′
k′)) the corresponding facet sequence of E (resp., E ′).

We search for f0 in F ′, using the unfolding data structure. If it is found, that is, both e and
e′ intersect f0, we unfold both edges to the plane of f0 and check whether they intersect each
other within f0. We search in the same manner for fk in F ′, and for f ′

0 and f ′
k′ in F . This

yields up to four possible intersections between e and e′ (if all searches fail, e does not cross
e′), by Lemma 2.5. Each of these steps takes O(log n) time. As follows from Lemma 2.4,
there are only O(n) candidate pairs of transparent edges, which can be found in a total of
O(n) time; hence the whole process of splitting transparent edges takes O(n log n) time.

Once the transparent edges are split, we combine their pieces to form the boundary cycles
of the cells of the surface subdivision. This can easily be done in time O(n).

The optimization that deletes each group of surface cells whose union completely covers
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exactly one hole of a single surface cell and contains no vertices of P also takes O(n) time
(using, e.g., DFS on the adjacency graph of the surface cells), since, during the computation
of the cell boundaries, we have all the needed information to find the transparent edges to
be deleted.

Hence, all the steps in the construction of S take a total of O(n log n) time, and this
concludes the proof of the lemma. ¤

This completes the description and analysis of the conforming surface subdivision. The
shortest path algorithm, described in Section 4, heavily relies on the well-covering property
of this subdivision. But first, in Section 3, we establish some key geometric properties of
shortest paths and define data structures for surface unfoldings, which are needed for our
algorithm.

3 Surface Unfoldings and Shortest Paths

In this section we derive several properties of the surface subdivision S, and use them to
design procedures that unfold ∂P efficiently, which will be required by the shortest path
algorithm described in Sections 4 and 5. In the process, we show how to represent the
unfolded regions of ∂P used in our shortest path algorithm as Riemann structures (defined
in detail later in this section). Informally, this representation consists of planar “flaps”, all
lying in a common plane of unfolding, that are locally glued together without overlapping,
but may globally have some overlaps, which however are ignored, since we consider the
corresponding flaps to lie at different “layers” of the unfolding. The basic units of this
structure are the building blocks (the “flaps”) defined in Section 3.1.

3.1 Building blocks and contact intervals

Maximal connecting common subsequences. Let e and e′ be two transparent edges,
and let E = (χ1, χ2, . . . , χk) and E ′ = (χ′

1, χ
′
2, . . . , χ

′
k′) be the respective polytope edge

sequences that they cross. We say that a common (contiguous) subsequence Ẽ of E and E ′

is connecting if none of its edges χ̃ is intersected by a transparent edge between χ̃ ∩ e and
χ̃ ∩ e′; see Figure 15(a). We define G(e, e′) to be the collection of all maximal connecting
common subsequences of E and E ′. The subsequences of G(e, e′) do not share any polytope
edge.

Let e and E be as above, and let v be a vertex of P . Denote by E ′ = (χ′
1, χ

′
2, . . . , χ

′
k′) the

cyclic sequence of polytope edges that are incident to v, in their counterclockwise order about
v. We regard E ′ as an infinite cyclic sequence, and we define G(e, v) to be the collection of
maximal connecting common subsequences of E and E ′, similarly to the definition of G(e, e′).
See Figure 15(b). Here too the elements of G(e, v) are pairwise disjoint.

Remark: Note that if there are two subsequences Ẽ1, Ẽ2 in G(e, e′) or in G(e, v) that are
separated because of some transparent edge e′′ that violates condition (2) for in-between
edges, then e′′ must be part of a transparent edge cycle (that “separates” Ẽ1 and Ẽ2) that
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Figure 15: Maximal connecting common subsequences of polytope edges (drawn as thin solid lines)
in (a) G(e, e′), and (b) G(e, v). The transparent edges are drawn thick, and the interiors of the
transparent boundary edge cycles that separate Ẽ1 and Ẽ2 are shaded.

contains a vertex of P (the shaded squares illustrated in Figure 15 (a) and (b)), since each
group of surface cells whose union completely covers exactly one hole of a single surface cell
and contains no vertices of P is deleted during the optimization of S.

We say that each subsequence in G(e, e′) connects the two transparent edges e, e′. The
notion is symmetric (by definition), i.e., G(e, e′) = G(e′, e). Similarly, each subsequence in
G(e, v) is said to connect the transparent edge e and the vertex v.

The building blocks. Let c be a cell of the surface subdivision S. Denote by E(c) the
set of all the transparent edges on ∂c. Denote by V (c) the set of (zero or one) vertices of P
inside c (recall the properties of S). Define G(c) to be the union of all collections G(x, y) so
that x, y are distinct elements of E(c) ∪ V (c).

Fix such a pair of distinct elements x, y ∈ E(c) ∪ V (c). Let Ex,y ∈ G(x, y) be a maximal
subsequence that connects x and y, and let F = (f0, f1, . . . , fk) be its corresponding facet
sequence. We define the shortened facet sequence of Ex,y to be F \ {f0, fk} (see Figure 16),
and note that the shortened sequence can be empty.

We define the following four types of building blocks of a surface cell c.

Type I: Let f be a facet of ∂P that contains at least one endpoint of some transparent edge
of ∂c in its closure. Any connected component of the intersection region c∩f that meets the
interior of f and has an endpoint of some transparent edge of ∂c in its closure is a building
block of type I of c. See Figure 17 for an illustration.

Type II: Let v be the unique vertex in V (c) (assuming it exists), e a transparent edge in

27



f0

fk

Figure 16: A facet sequence and its shortened facet sequence (shaded).

∂c, and Ee,v ∈ G(e, v) a maximal connecting subsequence between e and v. Then the region
B, between e and v in the shortened facet sequence of Ee,v, if nonempty, is a building block of
type II of c. More precisely, B is the union, over all facets f in the shortened facet sequence,
of the portion of f between e ∩ f and v (which is a vertex of f). We say that the maximal
connecting edge sequence Ee,v defines B. See Figure 18(a) for an illustration of an unfolded
building block of type II (the unfolding of a building block is defined below).

Type III: Let e, e′ be two distinct transparent edges in ∂c, and let Ee,e′ ∈ G(c) be a maximal
connecting subsequence between e and e′. The region B between e and e′ in the shortened
facet sequence of Ee,e′ , if nonempty, is a building block of type III of c. (Again, this can be
defined more precisely as in the case of type II blocks.) We say that the maximal connecting
edge sequence Ee,e′ defines B (although in this case the sequence alone does not define B
uniquely; for this e and e′ must also be specified). See Figure 18(b) for an illustration of an
unfolded building block of type III.

Type IV: Let f be a facet of ∂P . Any connected component of the region c∩ f that meets
the interior of f , does not contain endpoints of any transparent edge, and whose boundary
contains a portion of each of the three edges of f , is a building block of type IV of c. See
Figure 19 for an illustration. (Note that if the region meets only two edges of f then it must
be a (portion of a) building block of type II or III.)

Figure 17: Two examples of building blocks of type I (shown shaded), each contained in a single
facet of ∂P (the dashed triangle).

We associate with each building block one or two edge sequences along which it can be
unfolded. For blocks B contained in a single facet, we associate with B the empty sequence.
For other blocks B (which must be of type II or III), the maximal connecting edge sequence
E = (χ1, . . . , χk) that defines B contains at least two polytope edges. Then we associate with
B the two shortened (possibly empty) sequences (χ2, . . . , χk−1) and (χk−1, . . . , χ2). In either
case, none of the sequences associated with B can be cyclic, and if there are two associated
sequences E1, E2, then the unfolded images UE1

(B), UE2
(B) are congruent.
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Figure 18: (a) The unfolding of a building block of type II. (b) The unfolding of a building block
of type III. The unfolded block is shaded in both cases.
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Figure 19: Two examples of building blocks B of type IV (shown shaded): (a) B is a pentagon
containing a vertex v of P . (b) B is a hexagon containing no vertices of P .

We say that two distinct points p, q ∈ ∂P overlap in the unfolding UE of some edge
sequence E , if UE(p) = UE(q). We say that two sets of surface points X,Y ⊂ ∂P overlap in
UE , if there are at least two points x ∈ X and y ∈ Y so that UE(x) = UE(y).

Lemma 3.1. Let c be a surface cell of S, and let B be a building block of c. Let E be an
edge sequence associated with B. Then no two points p, q ∈ B overlap in UE .

Proof: We prove the lemma separately for each type of building block.

For blocks of types I, IV, UE(p) = p 6= q = UE(q).

Let B be a block of type II. By definition, B is bounded by a portion of a transparent
edge e and two portions of edges of P . By Lemma 2.2, UE(e) is a straight segment, and
obviously the unfolded images of edges of P are straight segments either. Hence, each of
the three boundary segments of B can meet any other segment in exactly one point, and
therefore UE(B) is a triangle. It follows that, by linearity of the unfolding transformation,
no two points of B overlap in the unfolded image.

Finally, let B be a block of type III. Then B is bounded by a pair of transparent edges
e, e′ and a pair of polytope edges χ, χ′, which are the extreme edges in the connecting
subsequence Ee,e′ ∈ G(c). The unfolded image of each of these four boundary portions is a
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straight segment; from this and from the linearity of the unfolding transformation follows
that UE(B) may only overlap itself if B is composed of two adjacent regions B1, B2, so that
B1 (resp., B2) is bounded by e and χ (resp., e′ and χ′), and UE(B1) overlaps UE(B2). That
is, there is a line b̃ = B1 ∩ B2 that intersects B (connecting e ∩ χ′ and e′ ∩ χ), so that in a
close vicinity of b̃, points of B from one side of b̃ overlap, in UE , the points of B from the
other side of b̃. However, this contradicts either the fact that the unfolded image of a single
facet cannot intersect itself, or the definition of the unfolding of a facet sequence, since B
is the shortened facet sequence of Ee,e′ , and no two subsequent facets of an unfolded facet
sequence may overlap each other. ¤

Lemma 3.2. Let B be a building block of type IV of a surface cell c, and let f be the facet that
contains B. Then either (a) B is a convex pentagon, bounded by portions of the three edges
of f , a vertex of f , and portions of two transparent edges, or (b) B is a convex hexagon,
whose boundary alternates between portions of the edges of f and portions of transparent
edges. In the latter case, B contains no vertices of P (i.e., of f).

Proof: The boundary of B cannot contain two or three vertices of f , by construction of S.

Suppose first that ∂B contains a vertex v of f , incident to the edges χ1, χ2 of f ; see
Figure 19(a). Transparent edges are not incident to vertices of P , by definition. Hence, there
is a boundary segment of B that is a portion of χ1, delimited by v and by an intersection
point of χ1 with some transparent edge e1. Similarly, there is a boundary portion of B that
is a segment of χ2, delimited by v and by an intersection point of χ2 with some transparent
edge e2. Denote the edge of f that is opposite to v by χ3. By definition of building blocks of
type IV, ∂B also contains a portion of χ3, so that e1 6= e2. Transparent edges do not cross,
and there are no transparent edge endpoints in B, by definition. Hence e1 and e2 intersect
χ3, from which claim (a) follows, as is easily seen.

Suppose then that ∂B does not contain a vertex of f . Let χ1 be an edge of f . Then there
exist two transparent edges e2, e3 that intersect χ1, so that the portion of χ1 delimited by
these two intersection points is a segment of ∂B. See Figure 19(b) for an illustration. There
are no transparent edge endpoints in B, by definition, so each of these two transparent edges
intersects some other edge of f , different from χ1. Denote by χ2 the edge of f intersected by
e2, and by χ3 the edge of f intersected by e3. If χ2 = χ3, then one of the edges of f does not
contribute to ∂B, contrary to the definition of building blocks of type IV. Therefore χ2 6= χ3,
and since ∂B contains no vertices of f , there is a portion of χ2, delimited by e2 ∩ χ2 and by
the intersection point with some other transparent edge e′, which thus contains a segment
of ∂B. Similarly, there is a portion of χ3, delimited by e3 ∩ χ3 and by the intersection point
with some other transparent edge e′′. However, we must have e′ = e′′, for otherwise either
e′ and e′′ intersect, or one of them terminates inside f , both of which cases are impossible.
Hence claim (b) holds, and the proof of the lemma is completed. ¤

Corollary 3.3. Let B be a building block of type II, III, or IV, and let E be an edge sequence
associated with B. Then UE(B) is convex.

Proof: If B is of type II, then UE(B) is a triangle, by definition and by Lemma 3.1. If B is
of type IV, then by Lemma 3.2, UE(B) is a convex pentagon or hexagon. If B is of type III,
then UE(B) is convex by the proof of Lemma 3.1. ¤
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Corollary 3.4. There are no holes in building blocks.

Proof: Immediate for blocks of type II, III, IV, and follows for blocks of type I from the
optimization procedure described after the proof of Theorem 2.9. ¤

Lemma 3.5. Any surface cell c has only O(1) building blocks.

Proof: There are O(1) transparent edges in c (by construction of S), and therefore O(1)
transparent endpoints, and each endpoint can be incident to at most one building block of
c of type I.

There are O(1) transparent edges and at most one vertex of P in c, by construction of
S. Therefore there are at most O(1) pairs (e′, v) in c so that e′ is a transparent edge and
v is a polytope vertex. Since there are at most O(1) transparent edge cycles in ∂c (that do
not include e′) that intersect polytope edges delimited by v and crossed by e′, and since each
such cycle can split the connecting sequence of polytope edges between e′ and v at most
once, there are at most O(1) maximal connecting common subsequences in G(e′, v). Hence,
there are O(1) building blocks of type II of c.

Similarly, there are O(1) pairs of transparent edges (e′, e′′) in c. There are at most O(1)
other transparent edges and at most one vertex of P in c that can lie between e′ and e′′,
resulting in at most O(1) maximal connecting common subsequences in G(e′, e′′). Hence,
there are O(1) building blocks of type III of c.

(b)(a)

B1

B2

B1

B2

ve1 e2 e1 e2e3

Figure 20: The triple, of (a) two transparent edges and a vertex of P , or (b) three transparent
edges, contributes to two building blocks B1, B2. The corresponding graphs K3,2 are illustrated
by dotted lines. If the triple contributed to three building blocks, we would have obtained an
impossible plane drawing of K3,3.

By Lemma 3.2, the boundary of a building block B of type IV contains either two
transparent edge segments and a polytope vertex or three transparent edge segments. In
either case, we say that this triple of elements (either two transparent edges and a vertex of
P , or three transparent edges) contributes to B. We claim that one triple can contribute to
at most two building blocks of type IV (see Figure 20). Indeed, if a triple, say, (e1, e2, e3),
contributed to three type IV blocks B1, B2, B3, we could construct from this configuration
a plane drawing of the graph K3,3 (as is implied in Figure 20), which is impossible. There
are O(1) transparent edges and at most one vertex of P in c, by construction of S; therefore
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there are at most O(1) triples that contribute to at most O(1) building blocks of type IV of
c. ¤

Lemma 3.6. The interiors of the building blocks of a surface cell c are pairwise disjoint.

Proof: Observe that the polytope edges subdivide c into pairwise disjoint components (each
contained in a single facet of P ). Each building block of type I or IV contains (and coincides
with) exactly one such component, by definition. Each building block of type II or III
contains one or more such components, and each component is fully contained in the block.
Hence it suffices to show that no two distinct blocks can share a component.

If B1, B2 are both of type I, then either they lie in different facets, or they are different
connected components of c within the same facet, by definition. If B1 is of type I and B2 is of
another type, then B1 is a component that contains at least one transparent edge endpoint,
while B2 contains no components that contain transparent edge endpoints, by construction.
(It is here, and in the last paragraph of the proof, that we use the fact that blocks of types
II, III are constructed from shortened facet sequences.) Hence the claim holds if at least one
of B1, B2 is of type I.

If B1, B2 are both of type II, then denote by Ẽ1 = Ẽe1,v and Ẽ2 = Ẽe2,v the maximal
connecting sequences corresponding to B1 and B2, respectively (recall that c contains at
most one vertex of P ). Each component of B1 is a triangle bounded by e1, v, and two
polytope edges, and similarly for B2. Hence if B1, B2 contained a common component Q,
then we must have e1 = e2. Moreover, in this case the shortened facet sequences of Ẽ1 and
Ẽ2 must overlap (at the facet containing Q), contradicting the construction of blocks of type
II. Hence the lemma holds if B1, B2 are both of type II.

By similar arguments, the lemma holds for B1, B2 if they are both of type III or one of
them is of type II and the other of type III.

If B1, B2 are both of type IV, then, by Lemma 3.2 and by definition, they lie in different
facets. If B1 is of type IV and B2 is of type II or III, then B1 is a single component (as
defined in the beginning of this proof) that contains segments of three different polytope
edges on its boundary, while no component in B2 has this property, by definition.

This completes the proof of the lemma. ¤

Let B be a building block of a surface cell c. A contact interval of B is a maximal
straight segment of ∂B that is incident to one polytope edge χ ⊂ ∂B and is not intersected
by transparent edges, except at its endpoints. See Figures 17–19 for an illustration (contact
intervals are drawn as dashed segments on the boundary of the respective building blocks).
Our propagation algorithm considers portions of shortest paths that traverse a surface cell c
from one transparent edge bounding c to another such edge. Such a path, if not contained in
a single building block, traverses a sequence of such blocks, and crosses from one such block
to the next through a common contact interval.

Lemma 3.7. Let c be a surface cell, and let B be one of its building blocks. Then B has
at most O(1) contact intervals. If B is of type II or III, then it has exactly two contact
intervals, and if B is of type IV, it has exactly three contact intervals.
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Proof: If B is of type I, then B is a (simply connected) polygon contained in a single facet f ,
so that every segment of ∂B is either a transparent edge segment or a segment of a polytope
edge bounding f (transparent edges cannot overlap polytope edges, by Lemma 2.10). Every
transparent edge of c can generate at most one boundary segment of B, since it intersects
∂f at most twice. There are O(1) transparent edges, and at most one vertex of P in c, by
construction of S. Since each contact interval of B is bounded either by two transparent
edges or by a transparent edge and a vertex of P , it follows that B has at most O(1) contact
intervals.

If B is of type II, denote by E one of the edge sequences associated with B. Then the
unfolded region UE(B) is a triangle bounded by two images of polytope edges and one image
of a transparent edge. Hence B has exactly two contact intervals.

If B is of type III, denote by E one of the edge sequences associated with B. Then the
unfolded region UE(B) is a quadrilateral bounded by two images of polytope edges and two
images of transparent edges. Hence B has exactly two contact intervals.

If B is of type IV, then it has three contact intervals by construction. ¤

Corollary 3.8. Let I1 6= I2 be two contact intervals of any pair of building blocks. Then
either I1 and I2 are disjoint, or their intersection is a common endpoint.

Proof: By definition. ¤

Lemma 3.9. Let c be a surface cell. Then each point of c that is not incident to a contact
interval of any building block of c, is contained in exactly one building block of c.

Proof: Although the proof is straightforward from the definition of basic blocks, we give it
in detail for the sake of completeness. Lemma 3.6 implies that no such point can belong to
(the interior of) more than one building block. What the current lemma claims is that the
union of the closures of the building blocks covers c. Fix a point p ∈ c, and denote by f the
facet that contains p. Denote by Q the connected component of c ∩ f that contains p. If Q
contains in its closure at least one endpoint of some transparent edge of ∂c, then p is in a
building block of type I, by definition.

Otherwise, Q must be a convex polygon, bounded by portions of transparent edges and by
portions of edges of f ; the boundary edges alternate between transparent edges and polytope
edges, with the possible exception of a single pair of consecutive polytope edges that meet
at the unique vertex v of f that lies in c. Thus only the following cases are possible:

(i) Q is a triangle bounded by the two edges χ1, χ2 of f that meet at v and by a transparent
edge e. See Figure 21(a). The subsequence (χ1, χ2) connects e and v, hence p is in a
building block of type II (f clearly lies in the shortened facet sequence).

(ii) Q is a quadrilateral bounded by the two edges χ1, χ2 of f and by two transparent edges
e1, e2. See Figure 21(b). Then (χ1, χ2) connects e1 and e2, hence p is in a building
block of type III (again, f lies in the shortened facet sequence).
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(iii) Q is a pentagon bounded by the two edges χ1, χ2 of f incident to v, by two transparent
edges, and by the third edge χ3 of f . See Figure 21(c). Then, by definition, p lies in a
building block of type IV.

(iv) Q is a hexagon bounded by all three edges of f and by three transparent edges. See
Figure 21(d). Again, by definition, p lies in a building block of type IV.

v

(c)

e

(d)

e1

(a) (b)

e2

v

χ2χ1

χ1

χ3

χ2χ1 χ2

Figure 21: If Q (shaded) does not contain a transparent endpoint, it must be of one of the
depicted forms. In (a) Q is a portion of a building block of type II. In (b), Q is a portion of a
building block of type III. In (c) and (d), Q is a building block of type IV.

This (and the disjointness of building blocks established in Lemma 3.6) completes the
proof of the lemma. ¤

Corollary 3.10. Let c be a surface cell, and let I be a contact interval of a building block
of c. Then there are exactly two different building blocks B1, B2 of c so that I ⊂ ∂B1 and
I ⊂ ∂B2, each on an opposite side of I.

Proof: Immediate from the preceding analysis. ¤

The following two auxiliary lemmas (Lemma 3.11 and Lemma 3.12) are used in the proof
of Lemma 3.13, which gives an efficient algorithm for computing (the boundaries of) all the
building blocks of a single surface cell.

Lemma 3.11. Let c be a surface cell. We can compute the boundaries of all the building
blocks of c of type I in O(log n) total time.

Proof: We process one-by-one all the transparent edge endpoints of c. While there is an
endpoint a of a transparent edge of c that is not processed yet, do the following. We construct
a list L of the vertices of the building block of type I that contains a, and initialize it to
L := (a). Denote by f the facet that contains a (which is known from the construction of a),
and denote by e one of the transparent edges of ∂c that share a. If e does not intersect ∂f ,
let b be the second endpoint of e, update L := L||(b) (concatenation of L and (b)), set e to be
the other transparent edge of ∂c that is incident to b, and repeat this step until either we find
an intersection of e with ∂f or we return back to b = a. In the latter case, the whole surface
cell c is a single building block of type I (since, by Corollary 3.4, there are no holes inside
building blocks). In the former case, denote by x the point of the intersection e∩∂f . Update
L := L||(x). Denote by χ the polytope edge that contains x. Find another transparent edge
e′ of c that intersects χ∩ c at a point y closest to x, so that xy ⊂ c (the requirement that we
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stay within c defines y uniquely). If there is such a transparent edge, update L := L||(y).
Otherwise, χ must lead to the unique vertex v of P inside c. We update L := L||(v), and
denote by χ′ the other edge of f that is incident to v. Find the transparent edge e′ of ∂c that
intersects χ′ at a point y closest to v. We now continue this tracing procedure from y along
e′, as above, and continue until we finally get back to a, thereby obtaining the boundary of
the type I block containing a.

Since, by Corollary 3.4, there are no holes inside building blocks, after each iteration of
the loop we compute one building block of type I of c. Hence, by Lemma 3.5, there are O(1)
iterations. In each iteration we process O(1) segments of the current building block boundary.
Processing each segment takes O(log n) time, since it involves O(1) updates of constant-
length lists and sets, unfolding O(1) transparent edges and finding O(1) intersections of
transparent edges with the facet boundary. (Although we work in a single facet f , each
transparent edge that we process is represented relative to its destination plane, which might
be incident to another facet of P . Thus we need to unfold it to obtain its portion within
f .) Unfolding of a single transparent edge takes O(log n) time using the surface unfolding
data structure (defined in Section 2.4), and computing the intersection point of two straight
segments takes O(1) time. Hence the whole procedure takes O(log n) time. ¤

Lemma 3.12. We can compute the boundaries of all the building blocks that are incident to
vertices of P in total O(n log n) time.

Proof: Let c be a surface cell that contains some (unique) vertex v of P in its interior.
Denote by Fv the cyclic sequence of facets that are incident to v. Compute all the building
blocks of type I of c in O(log n) time, applying the algorithm of Lemma 3.11. Denote by
H the set of facets in Fv that contain building blocks of c of type I that are incident to
v. Denote by F the set of maximal contiguous subsequences that constitute Fv \ H. To
compute F , we locate each facet of H in Fv, and then extract the contiguous portions of Fv

between those facets. To traverse Fv around each vertex v of P takes a total of O(n) time
(since we traverse each facet of P exactly three times).

We process F iteratively. Each step picks a nonempty sequence F ∈ F and traverses it,
until a building block of type II or IV is found and extracted from F .

Let F be a sequence in F . Since there are no cyclic transparent edges, by construction,
H ∩ Fv 6= ∅, and therefore F is not cyclic. Denote the facets of F by f1, f2, . . . , fk, with
k ≥ 1. Denote by (χ1, χ2, . . . , χk−1) the corresponding polytope edge sequence of F (if k = 1,
it is an empty sequence). If k > 1, denote by χ0 the edge of f1 that is incident to v and does
not bound f2, and denote by χk the edge of fk that is incident to v and does not bound fk−1.
Otherwise (k = 1), denote by χ0, χ1 the polytope edges of f1 that are incident to v. Among
all the O(1) transparent edges of ∂c, find the transparent edge e that intersects χ0 closest
to v (by unfolding all these edges and finding their intersections with χ0). We traverse F
either until it ends, or until we find a facet fi ∈ F so that e intersects χi−1 but does not
intersect χi (that is, e intersects the polytope edge χ ⊂ ∂fi that is opposite to v).

In the former case (see Figure 22(a)), mark the region of ∂P between e, χ0, and χk as
a building block of type II, delete F from F , and terminate this iteration of the loop. In
the latter case, there are two possible cases. If i > 1 (see Figure 22(b)), mark the region
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Figure 22: Transparent edges are thin solid lines, polytope edges are drawn dashed. Extracting
from F building blocks (drawn shaded) of type II (cases (a, b)) or IV (case (c)).

of ∂P between e, χ0, and χi−1 as a building block of type II, delete f1, f2, . . . , fi−1 from F ,
and terminate this iteration of the loop. Otherwise (fi = f1), denote by x the intersection
point e ∩ χ, and denote by χ′ the portion of χ whose endpoint is incident to χ1. Among all
transparent edges of ∂c, find the transparent edge e′ that intersects χ′ closest to x (such an
edge must exist, or else c would contain two vertices of P ). The edge e′ must intersect χ1,
since otherwise fi would contain a building block of type I incident to v, and thus would
belong to H. See Figure 22(c) for an illustration. Mark the region bounded by χ0, χ1, χ, e, e′

as a building block of type IV, and delete f1 from F .

At each iteration we compute a single building block of c, hence there are only O(1)
iterations. We traverse the facet sequence around v twice (once to compute F , and once
during the extraction of building blocks), which takes O(n) total time for all vertices of P .
At each iteration we perform O(1) unfoldings (as well as other constant-time operations),
hence the total time of the procedure for all the cells of S is O(n log n). ¤

Lemma 3.13. We can compute (the boundaries of) all the building blocks of all the surface
cells of S in total O(n log n) time.

Proof: Let c be a surface cell. Compute the boundaries of all the (unfoldings of the)
building blocks of c of types I and II, and the building blocks of type IV that contain the
single vertex v of P in c, applying the algorithms of Lemmas 3.11 and 3.12. Denote the set
of all these building blocks by H. (Note that H cannot be empty, because ∂c contains at
least two transparent edges, which have at least two endpoints that are contained in at least
one building block of type I.) Construct the list L of the contact intervals of all the building
blocks in H. For each contact interval I that appears in L twice, remove both instances of
I from L. If L becomes (or was initially) empty, then H contains all the building blocks
of c. Otherwise, each interval in L is delimited by two transparent edges, since all building
blocks that contain v are in H. Each contact interval in L bounds two building blocks of c,
one of which is in H (it is either of type I or contains a vertex of P in its closure), and the
other is not in H and is either of type III or a convex hexagon of type IV. The union of all
building blocks of c that are not in H consists of several connected components. Since there
are no blocks of H among the blocks in a component, neither transparent edges nor polytope
edges terminate inside it; therefore such a component is not punctured (by boundary cycles
of transparent edges or by a vertex of P ), and its boundary alternates between contact
intervals in L and portions of transparent edges. For each contact interval I in L, denote by
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limits(I) the pair of transparent edges that delimit it. Denote by Y the partition of contact
intervals in L into cyclic sequences, so that each sequence bounds a different component,
and so that each pair of consecutive intervals in the same sequence are separated by a single
transparent edge. By construction, each contact interval in Y appears in a unique cycle. Let
Y = (I1, I2, . . . , Ik) be a cyclic sequence in Y (with Izk+l = Il, for any l = 1, . . . , k and any
z ∈ Z). Then, for every pair of consecutive intervals Ij, Ij+1 ∈ Y , limits(Ij)∩ limits(Ij+1) is
nonempty, and consists of one or two transparent edges (two if the cyclic sequence at hand
is a doubleton). Obviously, any cyclic sequence in Y contains two or more contact intervals.

We process Y iteratively. Each step picks a sequence Y ∈ Y , and, if necessary, splits it
into subsequences, each time extracting a single building block of type III or IV, as follows.

If Y contains exactly two contact intervals, they must bound a single building block of
type III, which we can easily compute, and then discard Y . Otherwise, let Ij−1, Ij, Ij+1

be three consecutive contact intervals in Y , and denote by χj−1, χj, χj+1 the (distinct)
polytope edges that contain Ij−1, Ij and Ij+1, respectively. Define the common bound-
ing edge ej = limits(Ij) ∩ limits(Ij+1) (there is only one such edge, since |Y| > 2), and
denote by Ej the polytope edge sequence intersected by ej between χj and χj+1, inclu-
sive. Define Ej−1 similarly, as the polytope edge sequence traversed by the transparent edge
ej−1 = limits(Ij−1)∩ limits(Ij), delimited by χj−1 and χj, inclusive. Without loss of gener-
ality, assume that both Ej−1 and Ej are directed from χj, to χj−1 and to χj+1, respectively.
See Figure 23. Using binary search, find the last polytope edge in the maximal subsequence
Ē = Ej−1 ∩ Ej that starts from χj, and denote this edge by χ.

Ij

χ

χj−1 χj+1

(a)

Ij

χj−1 χj+1

(b)

χj = χχj

ej+1

Ij+1Ij−1

ej+1

Ij+1

ej−1 ej ej−1 ej

Ij−1

ej−2 ej−2

χ′ χ′′

Figure 23: The unfolded images of transparent edges are solid, while the images of the polytope
edges are dashed. The images of the contact intervals are bold dashed segments. There are two
possible cases: (a) There is more than one edge in Ē , hence a building block of type III (whose
unfolded image is shown shaded) can be extracted. (b)

∣

∣Ē
∣

∣ = 1 (that is, χj = χ), therefore there
must be a building block of type IV (whose image is shown shaded) that can be extracted.

If χ 6= χj, then we find the unfoldings UĒ(ej) and UĒ(ej−1) and compute a new contact
interval I ′

j, which is the portion of χ bounded by ej and ej−1. See Figure 23(a). The
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quadrilateral bounded by UĒ(ej), UĒ(ej−1), UĒ(I
′
j) and UĒ(Ij) is the unfolded image of a

building block of type III. Delete Ij from Y and replace it by I ′
j.

Otherwise, χ = χj. See Figure 23(b). Denote by χ′ the second edge in Ej−1, and denote
by χ′′ the second edge in Ej (clearly, χ′ 6= χ′′). Since all building blocks that contain either
a vertex of P or a transparent edge endpoint are in H, the edges χj, χ

′, χ′′ bound a single
facet, and there is a transparent edge that intersects both χ′ and χ′′ (otherwise the block
of type IV that we are extracting would be bounded by at least four polytope edges — a
contradiction). Denote by e the transparent edge that intersects both χ′ and χ′′ nearest to
χj or, rather, nearest to ej−1 and to ej, respectively (in Figure 23(b) we have e = ej−2).
The region bounded by χj, χ

′, χ′′ and ej−1, ej, e is a hexagonal building block of type IV.
Compute its two contact intervals that are contained in χ′ and χ′′, and insert them into Y
instead of Ij. If χ′ contains Ij−1 and χ′′ contains Ij+1, Y is exhausted, and we terminate its
processing. If χ′ contains Ij−1 and χ′′ does not contain Ij+1, we remove Ij and Ij−1 from Y
and replace them by the portion of χ′′ between e and ej. Symmetric actions are taken when
χ′′ contains Ij+1 and χ′ does not contain Ij−1. Finally, if χ′ does not contain Ij−1, nor does
χ′′ contain Ij+1, we split Y into two new cyclic subsequences, as shown in Figure 24, and
insert them into Y instead of Y .

χ′ χ′′χ′′Ijχ′

(a) (b)

I ′ I ′′B

Figure 24: (a) Before the extraction of the building block B (shaded), the sequence Y contains
five contact intervals (bold dashed segments). (b) After the extraction of B, Y has been split into
two new (cyclic) sequences Y ′,Y ′′ containing the respective contact intervals I ′, I ′′. The contact
interval Ij is no longer contained in any sequence in Y .

In each iteration we compute the boundary of a single building block of type III or
IV, hence there are O(1) iterations. To compute one building block boundary, we compute
O(1) unfoldings, perform O(1) binary searches, and O(1) operations on constant-length lists.
Each unfolding calculation and each binary search takes O(log n) time, hence the time bound
follows. ¤

3.2 Block trees and Riemann structures

In this subsection we combine the building blocks of a single surface cell into more complex
structures.
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Let e be a transparent edge on the boundary of some surface cell c, and let B be a
building block of c so that e appears on its boundary. The block tree TB(e) is a rooted tree
whose nodes are building blocks of c, which is defined recursively as follows. The root of
TB(e) is B. Let B′ be a node in TB(e). Then its children are the blocks B′′ that satisfy the
following conditions.

(1) B′ and B′′ are adjacent through a common contact interval;

(2) B′′ does not appear as a node on the path in TB(e) from the root to B′, except possibly
as the root itself (that is, we allow B′′ = B if the rest of the conditions are satisfied);

(3) if B′′ = B, then (a) it is of type II or III (that is, if a root is a building block of type I
or IV, it cannot appear as another node of the tree), and (b) it is a leaf of the tree.

Note that a block may appear more than once in TB(e), but no more than once on each
path from the root to a leaf, except possibly for the root B, that may also appear at leaves
of TB(e) if it is of type II or III. However, B cannot appear in any other internal node of the
tree. See Figure 25 for an illustration.
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Figure 25: (a) A surface cell c containing a single vertex of P and bounded by four transparent
edges (solid lines) is partitioned in this example into ten building blocks (whose shadings alternate):
B1, B3, B7, B9 are of type I, B, B2, B4, B6 are of type II, B8 of type III and B5 of type IV. Adjacent
building blocks are separated by contact intervals (dashed lines; other polytope edges are also drawn
dashed). (b) The tree TB(e) of building blocks of c, where e is the (thick) transparent edge that
bounds the building block B.

Remark: The crucial property of TB(e), as proved in the following lemmas of this subsection,
is that each subpath (contained in c) of a shortest path from s to some point in c that enters
c through B ∩ e and does not leave c must traverse a sequence of blocks along some path in
TB(e) (starting at the root). Here is a motivation for the somewhat peculiar way of defining
TB(e) (reflected in properties (2) and (3)). Since each building block is either contained in
a single facet (and a single facet is never traversed by a shortest path in more than one
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connected segment), or has exactly two contact intervals (and a single contact interval is
never crossed by a shortest path more than once), a shortest path π(s, q) to a point q in a
building block B may traverse B through its contact intervals in no more than two connected
segments. Moreover, B may be traversed (through its contact intervals) in two such segments
only if the following conditions hold:

(i) π(s, q) must enter B through a point p on a transparent edge on ∂c,

(ii) B consists of components of at least two facets, and p and q are contained in two
distinct facets, relatively “far” from each other in B, and

(iii) π(p, q) exits B through one contact interval and then re-enters B through another
(before reaching q).

See Figure 26 for an illustration. This shows that the initial block B through which a
shortest path from s enters a cell c may be traversed a second time, but only if it is of type II
or III. After the second time, the path must exit c right away, or end inside B. This explains
the way TB(e) is defined; see Corollary 3.18 and the preceding auxiliary lemmas below for
the exact statements and proofs.8

B

I2

q

e f
s

p
I1

Figure 26: The shortest path π(s, q) enters the (shaded) building block B through the transparent
edge e at the point p, leaves B through the contact interval I1, and then reenters B through the
contact interval I2.

We denote by T (e) the set of all block trees TB(e) of e (constructed from the building
blocks of both cells containing e on their boundaries). Note that each block tree in T (e)
contains only building blocks of one cell. We call T (e) the Riemann surface structure of e;
it will be used in Section 5 for wavefront propagation block-by-block from e in all directions
(this is why we include in it block trees of both surface cells that share e on their boundaries;
see Section 5 for details). This structure is indeed similar to standard Riemann surfaces (see,
e.g., [44]); its main purpose is to handle effectively (i) the possibility of overlap between
distinct portions of ∂P when unfolded onto some plane, and (ii) the possibility that shortest

8This is not just being too cautious; it is easy to construct concrete examples where such a situation does
arise.
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paths may traverse a cell c in “homotopically inequivalent” ways (e.g., by going around a
vertex or a hole of c in two different ways — see below).

Let us first discuss in some detail the issue of overlaps. We use the Riemann structure
in Section 5, in order to be able to propagate wavefronts across cells of S without having to
worry about overlaps inside a single block. Without this structure, unfolding an arbitrary
portion of ∂P may result in a self-overlapping planar region, making it difficult to apply the
propagation algorithm, as described in Sections 4 and 5. It is known that unfolding a convex
polytope by cutting it along some of its edges and flattening the boundary of the polytope
along the remaining edges may result in a polygonal region that overlaps itself — see [45]
for examples, and [34] for a discussion of this topic. However, there exist schemes of cutting
a polytope along lines other than its edges, which produce a non-overlapping unfolding —
two examples are the star unfolding defined in [1] and in [10] (it is called the outward layout
in [10]; this unfolding is proved to be nonoverlapping in [7]) and the unfolding defined in [40]
(called the input layout in [10]). It is plausible to conjecture that in the special case of
surface cells of S, the unfolding of such a cell does not overlap itself, since S is induced
by intersecting ∂P with S3D (which is contained in an arrangement of three sets of parallel
planes); O’Rourke proves in [35] that an unfolding of the intersection of a plane with a
convex polytope does not overlap itself. This however does not suffice in our case, since (a)
we unfold the entire cell, not just planar cross-sections, and (b) the transparent edges that
bound our cells differ from these planar cross-sections. A related result [6], which also does
not suffice in our case, shows that a specific type of a “band” of the surface of a convex
polytope between two parallel planes can be carefully unfolded without overlapping itself.
We have not succeeded to prove this conjecture, however, and have overcome this difficulty by
employing the above Riemann structure (which also has additional advantages, as discussed
later); we leave this conjecture for further research.

Let c be a surface cell. A block sequence B = (B1, B2, . . . , Bk) of c is a sequence of
building blocks of c, so that for every pair of consecutive building blocks Bi, Bi+1 in B, we
have Bi 6= Bi+1, and their boundaries share a common contact interval. We define EB, the
edge sequence associated with B, to be the concatenation E1||(χ1)||E2||(χ2)|| . . . ||(χk−1)||Ek,
where, for each i, χi is the polytope edge containing the contact interval that connects
Bi with Bi+1, and Ei is the edge sequence associated with Bi that can be extended into
(χi−1)||Ei||(χi) (recall that there may be two oppositely oriented edge sequences associated
with each Bi). Note that, given a sequence B of at least two blocks, EB is unique.

For each block tree TB(e) in T (e), each path in TB(e) defines a block sequence consisting
of the blocks stored at its nodes. Conversely, every block sequence of c that consists of distinct
blocks, with the possible exception of coincidence between its first and last blocks (where
this block is of type II or III), appears as the sequence of blocks stored along some path
of some block tree in T (e). We extend these important properties further in the following
lemmas.

Lemma 3.14. Let e, c and B be as above; then TB(e) has at most O(1) nodes.

Proof: The construction of TB(e) is completed, when no path in TB(e) can be extended
without violating conditions (1–3). In particular, each path of TB(e) consists of distinct
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blocks (except possibly for its leaf). Each building block of c contains at most O(1) contact
intervals and O(1) transparent edge segments in its boundary, hence the degree of every node
in TB(e) is O(1). There are O(1) building blocks of c, by Lemma 3.5, and this completes the
proof of the lemma. ¤

Remark: Although the proof suggests a possibly large (constant) bound, block trees tend to
be rather degenerate, since there is a small number of possible “homotopically inequivalent”
ways to traverse c from B (i.e., around at most one vertex of P and a small number of —
usually at most one — disjoint inner cycles of ∂c) and therefore each building block of c
usually appears only a small number of times in TB(e); Figure 25 is a good example of this
phenomenon, even for a fairly complex cell c.

Note that Lemma 3.14 implies that each building block is stored in at most O(1) nodes
of the block tree TB(e).

Lemma 3.15. Let e, c and B be as above. Then each building block of c is stored in at least
one node of TB(e).

Proof: Let B′ 6= B be a building block of c. By Lemma 3.9, the union of building blocks
covers c, and c is connected, by construction. Moreover, since we assume general position,
the relative interior if c is also connected, and the unique vertex v of P inside c (if there is
one) also lies in the interior of c.

Hence we can connect a point in the relative interior of B to a point in the relative
interior of B′ by a path π that lies fully in the relative interior of c and avoids the vertex v.

Consider the sequence Bπ of building blocks that π traverses. We may assume that Bπ

is finite and contains no repetition: If π visits a block B′′ twice, we can shortcut the portion
of π between these two appearances of B′′, exploiting the fact that B′′ is connected.

Since π lies fully in the interior of c, it avoids all transparent edges, and thus it must
cross between any pair of adjacent blocks in Bπ through (the relative interior of) a contact
interval. Hence, by construction, Bπ appears along some path of TB(e), as asserted. ¤

The following two lemmas together summarize the discussion and justify the use of our
block trees. (Lemma 3.16 establishes rigorously the informal argument, given right after the
block tree definition.)

Lemma 3.16. Let B be a building block of a surface cell c, and let E be an edge sequence
associated with B. Let p, q be two points in c, so that there exists a shortest path π(p, q)
that is contained in c and crosses ∂B in at least two different points. Then UE(π(p, q) ∩ B)
consists of either one or two disjoint straight segments, and the latter case is only possible if
p, q lie in B.

Proof: Since π(p, q) is a shortest path, every connected portion of UE(π(p, q) ∩ B) is a
straight segment.

Suppose first that p, q ∈ B, and assume to the contrary that UE(π(p, q) ∩ B) consists
of three or more distinct segments (the assumption in the lemma excludes the case of a
single segment). Then at least one of these segments is bounded by two points x, y ∈ ∂B
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and is incident to neither p nor q. Neither x nor y is incident to a transparent edge, since
π(p, q) ⊂ c. Hence x and y are incident to two different respective contact intervals Ix and
Iy on ∂B. The segment of UE(π(p, q) ∩ B) that is incident to p is also delimited by a point
of intersection with a contact interval, by similar arguments. Denote this contact interval
by Ip, and define Iq similarly. Obviously, the contact intervals Ix, Iy, Ip, Iq are all distinct.
Since only building blocks of type I might have four contact intervals on their boundary (by
Lemma 3.7), B must be of type I. But then B is contained in a single facet f , and π(p, q)
must be a straight segment contained in f , and thus cannot cross ∂f at all.

Suppose next that at least one of the points p, q, say p, is outside B. Assume that
UE(π(p, q)∩B) consists of two or more distinct segments. Then at least one of these segments
is bounded by two points x, y of ∂B (and is not incident to p). By the same arguments as
above, x and y are incident to two different respective contact intervals Ix and Iy. The
other segment of UE(π(p, q)∩B) is delimited by at least one point of intersection with some
contact interval Iz, by similar arguments. Obviously, the three contact intervals Ix, Iy, Iz are
all distinct. In this case, B is either of type I or of type IV. In the former case, arguing as
above, π(p, q)∩B is a single straight segment. In the latter case, B may have three contact
intervals, but no straight line can meet all of them. Once again we reach a contradiction,
which completes the proof of the lemma. ¤

Lemma 3.17. Let e be a transparent edge bounding a surface cell c, and let B be a building
block of c so that e appears on its boundary. Then, for each pair of points p, q, so that
p ∈ e ∩ ∂B and q ∈ c, if the shortest path π(p, q) is contained in c, then π(p, q) is contained
in the union of building blocks that form a single path in TB(e) (which starts from the root).

Proof: Let p ∈ e∩∂B and q ∈ c be two points as above, and denote by B′ the building block
that contains q. Denote by B the building block sequence crossed by π(p, q). No building
block appears in B more than once, except possibly B if B = B′ (by Lemma 3.16). Hence,
the elements of B form a path in TB(e) from the root node (that stores B) to a node that
stores B′, as asserted. ¤

Corollary 3.18. Let e be a transparent edge bounding a surface cell c, and let q be a point in
c, such that the shortest path π(s, q) intersects e, and the portion π̃(s, q) of π(s, q) between e
and q is contained in c. Then π̃(s, q) is contained in the union of building blocks that define
a single path in some tree of T (e).

Proof: Let e, c and q be as above. Denote by p the (unique) point π(s, q) ∩ e, and denote
by B the building block of c that contains p on its boundary (assuming for the moment that
there is only one such block). The portion of π(s, q) between p and q is the shortest path
from p to q (see Section 2.1), and by Lemma 3.17 it is contained in the union of the building
blocks that define a single path in TB(e). If p lies on a contact interval between two blocks
B,B′, then, as it is easily verified, π̃(s, q) enters only one of these blocks, and the proof
continues as above, using that block. ¤

Lemma 3.19. (a) Let e be a transparent edge; then there are only O(1) different paths
from a root to a leaf in all trees in T (e). (b) It takes O(n log n) total time to construct the
Riemann structures T (e) of all transparent edges e.
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Proof: Let TB(e) be a block tree in T (e). There are O(1) different paths from the root
node to a leaf of TB(e) (see the proof of Lemma 3.14). There are two surface cells that
bound e, by construction of S, and there are O(1) building blocks of each surface cell, by
Lemma 3.5. By Lemma 3.13, we can compute all the boundaries of all the building blocks
in overall O(n log n) time. Hence the claim follows. ¤

For the surface cell c that contains s, we similarly define the set of block trees T (s), so
that the root B of each block tree TB(s) ∈ T (s) contains s on its boundary (recall that s
is also regarded as a vertex of P ). It is easy to see that Corollary 3.18 applies also to the
Riemann structure T (s), in the sense that if q is a point in c, such that the shortest path
π(s, q) is contained in c, then π(s, q) is contained in the union of building blocks that define
a single path in some tree of T (s). It is also easy to see that Lemma 3.19 applies to T (s) as
well.

3.3 Homotopy classes

In this subsection we introduce certain topological constructs that will be used in the analysis
of the shortest path algorithm in Sections 4 and 5.

Let R be a region of ∂P . We say that R is punctured if either R is not simply connected,
so its boundary consists of more than one cycle, or R contains a vertex of P in its interior; in
the latter case, we remove any such vertex from R, and regard it as a new artificial singleton
hole of R. We call these vertices of P and/or the holes of R the islands of R. Let X,Y
be two disjoint connected sets of points in such a punctured region R, let x1, x2 ∈ X and
y1, y2 ∈ Y , and let π(x1, y1), π(x2, y2) be two geodesic paths that connect x1 to y1 and x2 to
y2, respectively, inside R. We say that π(x1, y1) and π(x2, y2) are homotopic in R with respect
to X and Y (see [43]), if one path can be continuously deformed into the other within R,
while their corresponding endpoints remain in X and Y , respectively. (In particular, none of
the deformed paths pass through a vertex of P .) When R is punctured, the geodesic paths
that connect, within R, points in X to points in Y , may fall into several different homotopy
classes, depending on the way in which these paths navigate around the islands of R (see
Figure 27 for an illustration). If R is not punctured, all the geodesic paths that connect,
within R, points in X to points in Y , fall into a single homotopy class.

R π3

π4

Y

X

π1

π2

Figure 27: Two disjoint connected sets of points X, Y (shaded) are contained inside the punctured
region R (its boundary consists of three squares). The four paths π1, . . . , π4 fall into three homotopy
classes within R with respect to X and Y (π2 and π3 are homotopically equivalent).

In the analysis of the algorithm in Sections 4 and 5, we only encounter homotopy classes
of simple geodesic subpaths from one transparent edge e to another transparent edge f , inside
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a region R that is either a well-covering region of one of these edges or a single surface cell
that contains both edges on its boundary. (We call these paths subpaths, since the full paths
to f start from the source point s.)

Since the algorithm only considers shortest paths, we can make the following useful
observation. Consider the latter case (where the region R is a surface cell c), and let B
be a path in some block tree TB(e) within c, that connects e to f . Then all the shortest
paths that reach f from e via the building blocks in B belong to the same homotopy class.
Similarly, in the former case (where R is a well-covering region consisting of O(1) surface
cells), all the shortest paths that connect e to f via a fixed sequence of building blocks,
which itself is necessarily the concatenation of O(1) sequences along paths in separate block
trees (joined at points where the paths cross transparent edges between cells), belong to the
same homotopy class.

Remark: Note also that, for all subpaths from a transparent edge e to a transparent edge
f that belong to a single homotopy class, the polytope edge sequences that they traverse
between e and f are all contiguous subsequences of a fixed maximal edge sequence, as is
easily verified. This remark is further discussed in the beginning of Section 5.3.1.

4 The Shortest Path Algorithm

This section describes the wavefront propagation phase of the shortest path algorithm. Since
this is the core of the algorithm, we present it here in detail, although its high-level description
is very similar to the algorithm of [22]. Most of the problem-specific implementation details
of the algorithm (which are quite different from those in [22]), as well as the final phase of
the preprocessing for shortest path queries, are presented in Section 5.

The algorithm uses the continuous Dijkstra paradigm, which simulates a unit-speed wave-
front expanding from the given source point s, and spreading along the surface of P . How-
ever, to ensure efficiency, we do not simulate the true wavefront, but an implicit represen-
tation thereof, using one-sided wavefronts, as detailed below. At simulation time t, the true
wavefront consists of points whose shortest path distance to s along ∂P is t. The wavefront
is a set of closed cycles. Each cycle is a sequence of circular arcs (of equal radii), called
waves.

Each wave wi at time t (denoted also as wi(t)) is the locus of endpoints of a collection
Πi(t) of shortest paths of length t from s, that satisfy the following condition: There is a
fixed polytope edge sequence Ei crossed by some path π ∈ Πi(t), so that the polytope edge
sequence crossed by any other π′ ∈ Πi(t) is a prefix of Ei. Denote by Fi the corresponding
facet sequence of Ei. The wave wi is centered, in the destination plane of UEi

, at the source
image si = UEi

(s), called the generator of wi. When wi reaches, at some time t during the
simulation, a point p ∈ ∂P , so that no other wave has reached p prior to time t, we say that
si claims p, and put claimer(p) := si. We say that Ei is the maximal polytope edge sequence
of si at time t. For each p ∈ wi(t) there exists a unique shortest path π(s, p) ∈ Πi(t) that
intersects all the edges in the corresponding prefix of Ei, and we denote it as π(si, p). See
Figure 28 for an illustration.
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Figure 28: The true wavefront W (drawn as a cycle of thick circular arcs) at some fixed time t,
generated by eight source images s1, . . . , s8. The surface of the box P (see the 3D illustration in
Figure 29) is unfolded in this illustration onto the plane of the last facet that W reaches; note
that some facets of P are unfolded in more than one way (in particular, the facet that contains s

is unfolded into eight distinct locations). The dashed lines are the bisectors between the current
waves of W , and the dotted lines are the shortest paths to the vertices of P that are already reached
by W .

Note that, left to itself, each point of the wave wi moves along ∂P in a unique well-defined
manner. That is, for any fixed direction from the generator si, the (unfolded) wave expands
in this direction along a straight ray that traverses a well-defined sequence of polytope edges
and facets (unless it reaches a vertex, in which case it stops).

The wave wi has at most two neighbors wi−1, wi+1 in the wavefront, each of which shares
a single common point with wi (if wi−1 = wi+1, it shares two common points with wi; for the
purpose of the following analysis, these points can be regarded as if shared by wi with two
distinct neighbors wi−1 6= wi+1; cf. Figure 29). As t increases and the wavefront expands
accordingly (as well as the edge sequences Ei of its waves), each of the meeting points of wi

with its adjacent waves traces a bisector, which is the locus of points equidistant from the
generators of the two corresponding waves. The bisector of the two consecutive generators
si, si+1 in the wavefront is denoted by b(si, si+1), and its unfolded image is a straight line;
see Section 2.1.1 for details. Figure 29 illustrates the propagation of the true wavefront and
the tracing of the bisectors between its waves.

During the wavefront simulation, the combinatorial structure of the wavefront changes
at certain critical events, which may also change the topology of the wavefront. There are
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Figure 29: The true wavefront (drawn as a cycle of thick circular arcs) generated by s at different
times t: (a) Before any critical event, the wavefront consists of a single wave. (b) After the first
four vertex events the wavefront consists of four (folded) waves. (After the first vertex event,
the wavefront has only two waves that meet cyclically and define a single bisector.) (c) After
four additional vertex events, the wavefront consists of eight waves. (d) After two additional
critical events, that are bisector events, two waves are eliminated. Before the rest of the waves are
eliminated, and immediately after (d), the wavefront disconnects into two distinct cycles.

two kinds of critical events:

(i) Vertex event, where the wavefront reaches either a vertex of P or some other boundary
vertex (an endpoint of a transparent edge) of the Riemann structure through which we
propagate the wavefront. As will be described in Section 5, the wave in the wavefront
that reaches a vertex event splits into two new waves after the event. See Figure 30 for
an illustration. These are the only events when a new wave is added to the wavefront.
Our algorithm detects and processes all vertex events.9

9A split at a vertex of P is a “real” split, because the two new waves continue past v along two different
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(ii) Bisector event, when an existing wave is eliminated by other waves — the bisectors of all
the involved generators meet at the event point. Our algorithm detects and processes
only some of the bisector events, while others are not explicitly detected (recall that
we only compute an implicit representation of SPM(s)). See Section 4.3 for further
details.

sisi

W W2

v v

W

(b)(a)

W1

Figure 30: A vertex event — splitting the wavefront W at the vertex v (the triangles incident to v

are unfoldings of its adjacent facets; notice that the sum of all the facet angles at v is less than 2π).
The thick dashed line emanating from v is the ray from the source image si through v; it replaces
the true bisector between the two new wavefronts, which will later be calculated by the merging
process. Each of the new wavefronts W1, W2 is propagated separately after the event at v (through
a different unfolding of the facet sequence around v — see, e.g., the shaded facets, each of which
has a different image in (a) and (b)).

To recap, the real wavefront behaves as described above. However, we simulate a wave-
front that may differ from the real wavefront, in the sense that it also includes waves that do
not represent shortest paths, because the endpoints of the paths represented by these waves
are claimed by other waves. These spurious waves are eliminated in the real wavefront by
other waves, at bisector events that we do not detect. Each spurious wave is the locus of
endpoints of geodesic paths that traverse the same maximal edge sequence, but they need
not be shortest paths. Still, our description of bisectors, maximal polytope edge sequences,
and critical events that were defined for the true wavefront, also apply to the wavefront
propagated by our algorithm.

At each vertex of SPM(s) either a vertex event, or some bisector event (either detected
by our algorithm or not) takes place (see Section 2.1.1). However, since the algorithm
might propagate more waves than in the true wavefront, some bisector events detected by
the algorithm might not be real vertices of SPM(s). See Figure 29 for an illustration of a
wavefront, and for the critical events that affect its structure.

The shortest path algorithm has two main phases: a wavefront propagation phase, fol-
lowed by a map construction phase. The first phase simulates the wavefront evolution as a
function of t, propagating and merging different portions of the wavefront, and determines

edge sequences. A split at a transparent endpoint is an artificial split, used to facilitate the propagation
procedure; see Section 5 for details.
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the exact locations of some of the real wavefront bisector events (as well as of some “false” bi-
sector events that do not actually occur in SPM(s)). The second phase uses this information
to construct an implicit representation of the (true) shortest path map. In the remaining
part of this section we describe in detail the first phase, but defer the description of the
data structures and implementation details, as well as its detailed complexity analysis, to
Section 5. The second phase is also described mostly in Section 5.

Remark: The actual implementation of the propagation phase in Section 5 is slightly
different from the high-level description given in this section, although it produces the same
output.

4.1 The propagation algorithm

One-sided wavefronts. The algorithm propagates the wavefront through the cells of the
conforming surface subdivision S. The wavefront propagates between transparent edges
across cells of S. Propagating the exact wavefront explicitly appears to be inefficient (for
reasons explained below), so at each transparent edge e we content ourselves with computing
two one-sided wavefronts, passing through e in opposite directions; together, these one-sided
wavefronts carry all the information needed to compute the exact wavefront at e (however,
the one-sided wavefronts generally also carry some superfluous information that is not trivial
to remove, which is the reason why we do not explicitly merge them to compute the exact
wavefront at e).

In more detail, a one-sided wavefront W (e) associated with a transparent edge e (and
a specific side of e, which we ignore in this notation), is a sequence of waves (w1, . . . , wk)
generated by the respective source images s1, . . . , sk (all unfolded to a common plane, which
is the same plane in which we compute the unfolded image of e) with the following properties:

(i) There exists a pairwise openly disjoint decomposition of e into k nonempty intervals
e1, . . . , ek, appearing in this order along e.

(ii) For each i = 1, . . . , k, for any point p ∈ ei, the source image that claims p, among the
generators of waves that reach p from the fixed side of e, is si.

For a fixed side of e, the corresponding wavefront (implicitly) records the times at which
the wavefront reaches the points of e from that side. It is possible that the real shortest
paths to those points reach them from the other side of e. This information will be picked up
by the other wavefront that reaches e from the opposite side. We can interpret the one-sided
wavefronts at an edge e by treating e as two-sided, and by labeling each point p on the edge
with the time at which the one-sided wavefront reaches p from that side. The algorithm
maintains the following crucial true distance invariant (which follows from the definition
of one-sided wavefronts; its proof, i.e., the proof that one-sided wavefronts are computed
correctly, will be given later in Lemma 4.5).

(TD) For any transparent edge e and any point p ∈ e, the true distance dS(s, p)
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is the minimum of the two distances to p from the two source images that claim
it in the two respective one-sided wavefronts for the opposite sides of e.

See Figure 31 for an illustration. Note that, for simplicity, in Figure 31(a) only one
wavefront approaching e from each side is shown; actually, there may be several (but no
more than O(1)) wavefronts reaching e from each side, which are then merged together
(separately for each side) during the construction of the one-sided wavefronts at e itself, as
described later in this section. After both one-sided wavefronts at e are computed, they are
propagated further, transparently crossing one another through e.

(a) (b)

s s

ee

R(e) R(e)W

W ′

W ′(e)

W (e)

Figure 31: (a) Two wavefronts W, W ′ are approaching the transparent edge e from two opposite di-
rections, within the well-covering region R(e) (shaded). (b) Two one-sided wavefronts W (e), W ′(e),
computed at the simulation time when e is completely covered by W, W ′, are propagated further
within R(e). However, some of the waves that are left in W (e) and W ′(e) obviously do not belong
to the true wavefront, since there is another wave in the opposite one-sided wavefront that claims
the same points of e (before they do).

Remarks:

(i) We could, in principle, merge the two one-sided wavefronts at e, and the result would
yield the true shortest path map restricted to e. However, this might take Θ(n) time per
transparent edge e, resulting in overall quadratic algorithm. In contrast, merging wavefronts
that reach e from the same side can be done more efficiently, as will be shown later.

(ii) As will be shown later, the synchronization mechanism of the algorithm provides an im-
plicit interaction between the two opposite one-sided wavefronts on each transparent edge e.
Nevertheless, we could have adapted ideas from [22], and allow a limited explicit interaction
between such wavefronts, discarding some waves that can be ascertained to arrive at e later
than some wave from the opposite wavefront. This interaction (that is called “artificial”
in [22]) does not affect the asymptotic running time of the algorithm (although it might
improve the actual running time, pruning “false” waves closer to the spots where they really
disappear from the true wavefront), and makes the algorithm considerably more involved.
We therefore ignore this potential enhancement; nevertheless, for the sake of completeness,
we provide a detailed description of this artificial interaction in Appendix A.
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(iii) Note that a one-sided wavefront W (e) does not represent a fixed time t — each point
on e is reached by the corresponding wave at a different time. Additional discussion of this
issue will be given later.

The propagation step. The core of the algorithm is a method for computing a one-sided
wavefront at an edge e based on the one-sided wavefronts of nearby edges. The set of these
edges, denoted input(e), is the set of transparent edges that bound R(e), the well-covering
region of e (cf. Section 2.3). To compute a one-sided wavefront at e, we propagate the one-
sided wavefronts from each f ∈ input(e) which has already been processed by the algorithm,
to e inside R(e), and then merge the results, separately on each side of e, to get the two
one-sided wavefronts that reach e from each of its sides. See Figure 32 for an illustration.
The algorithm propagates the wavefronts inside O(1) unfolded images of (portions of) R(e),
using the Riemann structure defined in Section 3.2. The wavefronts are propagated only
to points that can be connected to the appropriate generator by straight lines inside the
appropriate unfolded portion of R(e) (these points are “visible” from the generator); that is,
the shortest paths within this unfolded image, traversed by the wavefront as it expands from
the unfolded image of f ∈ input(e) to the image of e, must not bend (cf. Section 2.1 and
Section 3). Because the image of the appropriate portion of R(e) needs not be convex, its
reflex corners may block portions of wavefronts from some edges of input(e) from reaching e.
The paths corresponding to blocked portions of wavefronts that exit R(e) may then re-enter
it through other edges of input(e). For any point p ∈ e, the shortest path from s to p
passes through some f ∈ input(e) (unless s ∈ R(e)), so constraining the source wavefronts
to reach e directly from an edge in input(e), without leaving R(e), does not lose any essential
information.

We denote by output(e) the set of direct “successor” edges to which the one-sided wave-
fronts of e should be propagated; specifically, output(e) = {f | e ∈ input(f)}.

The size of (number of edges in) input(e), for any edge e, is constant, by construction.
The same holds for output(e):

Lemma 4.1. For any transparent edge e, output(e) consists of a constant number of edges.

Proof: Since |R(f)| = O(1) for all f , and each R(f) is a connected set of cells of S, no edge
e can belong to input(f) for more than O(1) edges f (there are only O(1) possible connected
sets of O(1) cells that contain e on the boundary of their union). ¤

Remark: Note that, as the algorithm propagates a wavefront from an edge f ∈ input(e) to
e, it may cross other intermediate transparent edges g (see Figure 33). Such an edge g will be
processed at an interleaving step, when wavefronts from edges h ∈ input(g) are propagated
to g (and some of the propagated waves may reach g by crossing f first). This “leap-frog”
behavior of the algorithm causes some overlap between propagations, but it affects neither
the correctness nor the asymptotic efficiency of the algorithm. Moreover, in the actual
implementation (see Section 5), propagating from f to e via g will be performed in two (or
more) steps, in each of which the propagation is confined to a single cell of S.
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e

R(e)

s

Figure 32: The well-covering region R(e) is shaded; its boundary consists of two separate cycles.
The transparent edge e and all the edges f in input(e) that have been covered by the wavefront
before time covertime(e), are drawn as thick lines. The wavefronts W (f, e) that contribute to the
one-sided wavefronts at e have been propagated to e before time covertime(e); wavefronts from
other edges of input(e) do not reach e either because of visibility constraints or because they are
not ascertained to be completely covered at time covertime(e) (in either case they do not include
shortest paths from s to any point on e).

R(e)

R(h)
R(g)

e
g

hs f

Figure 33: Interleaving of the well-covering regions. The wavefront propagation from h ⊂ ∂R(g)
to g passes through f , and the propagation from f ⊂ ∂R(e) to e passes through g.

The simulation clock. The simulation of the wavefront propagation is loosely synchro-
nized with the real “propagation clock” (that measures the distance from s). The main
purpose of the synchronization is to ensure that the only waves that are propagated from a
transparent edge e to edges in output(e) are those that have reached e no later than |e| simu-
lation time units after e has been completely covered. This, and the well-covering property of
e (which guarantees that at this time none of these waves has yet reached any f ∈ output(e)),
allow us to propagate further all the shortest paths that cross e by “processing” e only once,
thereby making the algorithm adhere to the continuous Dijkstra paradigm, and consequently
be efficient. See below for full details.

For a transparent edge e, we define the control distance from s to e, denoted by d̃S(s, e),
as follows. If s ∈ R(e), and e contains at least one point p that is visible from s within at
least one unfolded image U(R(e)), for some unfolding U , then e is called directly reachable
(from s), and d̃S(s, e) is defined to be the distance from U(s) to U(p) within U(R(e)). The
point p ∈ e can be chosen freely, unless U(s) and U(e) are collinear within U(R(e)) — then
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p must be taken as the endpoint of e whose unfolded image is closer to U(s). Otherwise
(s /∈ R(e) or e is completely hidden from s in every unfolded image of R(e)), we define
d̃S(s, e) = min{dS(s, a), dS(s, b)}, where a, b are the endpoints of e, and dS(s, a), dS(s, b) refer
to their exact values. Thus, d̃S(s, e) is a rough estimate of the real distance dS(s, e), since
dS(s, e) ≤ d̃S(s, e) < dS(s, e) + |e|.10 The distances dS(s, a), dS(s, b) are computed exactly by
the algorithm, by computing the distances to a, b within each of the one-sided wavefronts
from s to e, and by using the invariant (TD). We compute both one-sided wavefronts for e at
the first time we can ascertain that e has been completely covered by wavefronts from either
the edges in input(e), or directly from s if e is directly reachable. This time is d̃S(s, e) + |e|,
a conservative yet “safe” upper bound of the real time max{dS(s, q) | q ∈ e} at which e is
completely run over by the true (not one-sided) wavefront.

The continuous Dijkstra propagation mechanism computes d̃S(s, e)+|e| on the fly for each
edge e, using a variable covertime(e). Initially, for every directly reachable e, we calculate
d̃S(s, e), by propagating the wavefront from s within the surface cell which contains s, as
described in Section 5, and put covertime(e) := d̃S(s, e) + |e|. For all other edges e, we
initialize covertime(e) := +∞.

The simulation maintains a time parameter t, called simulation clock, which the algorithm
strictly increases in discrete steps during execution, and processes each edge e when t reaches
the value covertime(e). A high-level description of the simulation is as follows:

10In fact, if e is not directly reachable, we even have dS(s, e) ≤ d̃S(s, e) ≤ dS(s, e) + 1
2
|e|.
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Propagation Algorithm

Initialize covertime(e), for all transparent edges e, as described above. Store with each
directly reachable e, the wavefronts that are propagated to e from s (without crossing
edges in input(e)).

while there are still unprocessed transparent edges do

1. Increase clock: Select the unprocessed edge e with minimum covertime(e), and
set t := covertime(e).

2. Merge: Compute the one-sided wavefronts for both sides of e, by merging to-
gether, separately on each side of e, the wavefronts that reach e from that side,
either from all the already processed edges f ∈ input(e) (with covertime(f) <
covertime(e), or equivalently, those that have already propagated their wavefronts
to e in Step 3 below), or directly from s (those wavefronts are stored at e in the
initialization step). Compute dS(s, v) exactly for each endpoint v of e (the mini-
mum of at most two distances to v provided by the two one-sided wavefronts at
e).

3. Propagate: For each edge g ∈ output(e), compute the time te,g at
which one of the one-sided wavefronts from e first reaches an endpoint
of g, by propagating the relevant one-sided wavefront from e to g. Set
covertime(g) := min{covertime(g), te,g + |g|}. Store with g the resulting wave-
front propagated from e, to prepare for the later merging step at g.

endwhile

The following lemma establishes the correctness of the algorithm. That is, it shows that
covertime() is correctly maintained and that the edges required for processing e have already
been processed by the time e is processed. The description of Step 2 appears in Section 4.2
as the wavefront merging procedure; the computation of te,g in Step 3 is a byproduct of the
propagation algorithm as described below and detailed in Section 5. For the proof of the
lemma we assume, for now, that the invariant (TD) is correctly maintained — this crucial
invariant will be proved later in Lemma 4.5.

Lemma 4.2. During the propagation, the following invariants hold for each transparent edge
e:

(a) The final value of covertime(e) (the time when e is processed) is d̃S(s, e)+|e|; for directly
reachable edges, it is at most d̃S(s, e)+ |e|. The variable covertime(e) is set to this value
by the algorithm before or at the time when the simulation clock t reaches this value.

(b) The value of covertime(e) is updated only O(1) times before it is set to d̃S(s, e) + |e|.

(c) If there exists a path π from s that belongs to a one-sided wavefront at e, so that a prefix of
π belongs to a one-sided wavefront at an edge f ∈ input(e), then d̃S(s, f) + |f | < d̃S(s, e) + |e|.
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Proof: (a) For directly reachable edges, this holds by definition of the control distance;
for other edges e, we prove by induction on the (discrete steps of the) simulation clock,
as follows. The shortest path π′ to one of the endpoints of e (that reaches e at the time
|π′| = te = d̃S(s, e)) crosses some f ∈ input(e) at an earlier time tf , where dS(s, f) ≤ tf <
d̃S(s, f) + |f |; we may assume that f is the last such edge of input(e). Note that we must
have te ≥ tf + dS(e, f). By (W3S), dS(e, f) ≥ 2 |f |, and so te ≥ dS(s, f) + 2 |f |. Since
d̃S(s, f) < dS(s, f) + |f |, we have

|π′| = te ≥ dS(s, f) + 2 |f | > d̃S(s, f) + |f | . (1)

By induction and by this inequality, f has already been processed before the simulation
clock reaches te, and so covertime(e) is set, in Step 3, to tf,e + |e| = te + |e| = d̃S(s, e) + |e|
(unless it has already been set to this value earlier), at time no later than te = d̃S(s, e) (and
therefore no later than d̃S(s, e)+ |e|, as claimed). By (TD), the variable covertime(e) cannot
be set later (or earlier) to any smaller value; it follows that e is processed at simulation time
d̃S(s, e) + |e|.

(b) The value of covertime(e) is updated only when we process an edge f such that e ∈
output(f) (i.e., f ∈ input(e)), which consists of O(1) edges, by construction.

(c) Any path π that is part of a one-sided wavefront at e must satisfy dS(s, e) ≤ |π| <
d̃S(s, e) + |e| (π cannot reach e earlier by definition, and if π reaches e later, then, by (a), e
would have been already processed and π would not have contributed to any of the one-sided
wavefronts at e). Since π passes through a transparent edge f ∈ input(e), we can show that
|π| > d̃S(s, f) + |f |, by applying arguments similar to those used to derive (1) in (a). Hence
we can conclude that d̃S(s, f) + |f | < d̃S(s, e) + |e|. ¤

Remark: The above synchronization mechanism assures that if a wave w reaches a trans-
parent edge e later than the time at which e has been ascertained to be completely covered
by the wavefront, then w will not contribute to either of the two one-sided wavefronts at e. In
fact, this important property yields an implicit interaction between the one-sided wavefronts
that reach e from the opposite sides, allowing a wave to be propagated further only if it is
not too “late”; that is, only if it reaches points on e no later than 2 |e| simulation time units
after a wave from the other side of e.

Topologically constrained wavefronts. Let f, e be two transparent edges so that f ∈
input(e), and let H be a homotopy class of simple geodesic paths connecting f to e within
R(e) (recall that when R(e) is punctured, that is, when its boundary is disconnected or
when it contains a vertex of P , there might be multiple homotopy classes of that kind;
see Section 3.3). We denote by WH(f, e) the unique maximal (contiguous) portion of the
one-sided wavefront W (f) that reaches e by traversing only the subpaths from f to e that
belong to the homotopy class H. In Section 5 we regard WH(f, e) as a “kinetic” structure,
consisting of a continuum of “snapshots”, each recording the wavefront at some time t. In
contrast, in the current section we only consider the (static) resulting wavefront that reaches
e, where each point q on (an appropriate portion of) e is claimed by some wave of WH(f, e),
at some time tq. (Note that this static version is not a snapshot at a fixed time of the kinetic
version.) WH(f, e) is indeed contiguous, since otherwise there must be an island within
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the region RH , which is the locus of all points traversed by all (geodesic) paths in H (see
Figure 34) — which contradicts the definition of the homotopy class. We say that WH(f, e)
is a topologically constrained wavefront (by the homotopy class H). To simplify notation,
we omit H whenever possible, and simply denote the wavefront, somewhat ambiguously,
as W (f, e). (The ambiguity is not that bad, though, because there are only O(1) distinct
homotopy classes that “connect” f to e.)

A topologically constrained wavefront WH(f, e) is bounded by a pair of extreme bisectors
of an “artificial” nature, defined in one of the two following ways. We say that a vertex of P
in R(e) or a transparent endpoint x ∈ ∂R(e) is a constraint of H if x lies on the boundary
of RH ; it is easy to see that RH is bounded by e, f , and by a pair of “chains”, each of which
connects f with e, and the unfolded image of which (along the polytope edge sequence
corresponding to H) is a concave polygonal path that bends only at the constraints of H
(this structure is sometimes called an hourglass ; see [18] for a similar analysis).

x

RH

s3

π2π1

R(e)

f

e

v

WH(f, e)

s1 s2

Figure 34: The “hourglass” region RH that is traversed by all paths in H is shaded. The extreme
artificial bisectors of the topologically constrained wavefront WH(f, e) are the paths π1 (from the
extreme generator s1 through the vertex v of P , which is one of the constraints of H) and π2 (from
the generator s2, that became extreme when its neighbor s3 was eliminated at a bisector event x,
through the location of x).

Let s′ be an extreme generator in WH(f, e), and let π be a simple geodesic path (in H)
from s′ that reaches f and touches ∂RH ; see the path π1 in Figure 34. It is easy to see that if
such a path π exists, then it must be an extreme path among all paths encoded in WH(f, e),
since any other path in WH(f, e) cannot intersect π (see Lemma 4.3 below); we therefore
regard π as an extreme artificial bisector of WH(f, e). Another kind of an extreme artificial
bisector arises when, during the propagation of (the kinetic version of) WH(f, e), an extreme
generator s′ is eliminated in a bisector event x, as described below, and the neighbor s′′ of
s′ becomes extreme; then the path π from s′′ through the location of x becomes extreme in
WH(f, e) — see the path π2 in Figure 34 (this elimination of extreme generators may occur
in succession, affecting in a similar fashion the definition of the extreme artificial bisector).11

Thus, the type of an extreme bisector of a wavefront can change during the propagation.

When WH(f, e) is merged, as described in the next subsection, with other topologically
constrained wavefronts that reach e, only the artificial bisectors that are also extreme in

11Note, however, that, even though π is geodesic, it is not a shortest path to any point beyond x; it is only
a convenient (though conservative) way of bounding WH(f, e) without losing any essential information.
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the corresponding resulting one-sided wavefront W (e) “survive” the merging; other artifi-
cial bisectors (of generators that are not extreme in W (e)) are replaced by true bisectors
between the corresponding generators (each of which has been extreme in one of the merged
topologically constrained wavefronts, but is not extreme in W (e)).

To recap, there are O(1) (topologically constrained) wavefronts that reach e from the left,
each of them arrives from one of the O(1) edges f ∈ input(e), and is constrained by one of
the O(1) homotopy classes that connect f to e within R(e). Only those wavefronts that reach
e before covertime(e), or equivalently only those that leave edges f ∈ input(e) satisfying
covertime(f) < covertime(e), are propagated to e. After propagating these wavefronts, we
merge them (at time covertime(e)) into a single one-sided wavefront. The same applies to
wavefronts that reach e from the right. This merging step is described next.

4.2 Merging wavefronts

Fix a transparent edge e. For specificity, orient e from one endpoint a to its other endpoint
b. Consider the computation of the one-sided wavefront W (e) at e that will be propagated
further (through e) to, say, the left of e. The contributing wavefronts to this computation are
all wavefronts W (f, e), for f ∈ input(e), that contain waves that reach e from the right (not
later than at time covertime(e)). If e is directly reachable from s, and a wavefront W (s, e)
has been propagated from s to the right side of e, then W (s, e) is also contributing to the
computation of W (e). The contributing wavefronts for the computation of the one-sided
wavefront reaching e from the left are defined symmetrically.

To simplify notation, in the rest of the paper we assume each transparent edge e to be
oriented, in an arbitrary direction (unless otherwise specified). For the special case s ∈ R(e),
we also treat the direct wavefront W (s, e) from s to e as if s were another transparent edge
f in input(e), unless specifically noted otherwise.

Note that a wavefront W (f) might be split on its way to e into two topologically con-
strained wavefronts WH(f, e),WH′(f, e) (by two respective homotopy classes H,H ′), each of
which may contribute to a different one-sided wavefront at e, as illustrated in Figure 35.

WH(f, e)

W (f)

e

WH′(f, e)

f

Figure 35: W (f) contributes to both (opposite) one-sided wavefronts at e.

The following lemma is a crucial ingredient for the algorithm. It implies that merging
wavefronts on the same side of a transparent edge e can be done efficiently, in time that
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depends on the number of waves that get eliminated during the merge.

Lemma 4.3. Let e be a transparent edge, and let W (f, e) and W (g, e) be two (topologically
constrained) contributors to the one-sided wavefront W (e) that reaches e from the right, say.
Let x and x′ be points on e claimed12 by W (f, e), and let y be a point on e claimed by W (g, e).
Then y cannot lie between x and x′.

Proof: Suppose to the contrary that y does lie between x and x′. Consider a modified
environment in which the paths that reach e from the left are “blocked” at e by a thin high
obstacle, erected on ∂P at e. This modification does not influence the wavefronts W (f, e) and
W (g, e), since no wave reaches e more than once. The simple geodesic paths π(s, x), π(s, x′),
and π(s, y) in the modified environment connect x and x′ to f , and y to g, inside R(e), and
lie on the right side of e locally near x, x′, and y; see Figure 36(a) for an illustration. By
the invariant (TD), the paths π(s, x), π(s, x′), and π(s, y) are shortest paths from s to these
points in the modified environment, and therefore do not cross each other (see Section 2.1).
Since W (f, e),W (g, e) are topologically constrained by different homotopies (within R(e)),
no path traversed by W (g, e) can reach e and be fully contained in the portion Q of ∂P
delimited by f, e, and by the portions of π(s, x), π(s, x′) between f and e (shown shaded
in Figure 36(a)). Therefore, the portion of the shortest path π(s, y) between g and e must
enter the region Q through one of the paths π(s, x), π(s, x′), which is a contradiction. Hence
y cannot be claimed by W (g, e). ¤

Remark: The key property used in the above lemma is that W (f, e) is a topologically
constrained wavefront. The lemma may fail if this is not the case. For example, if g is part
of an inner cycle of ∂R(e) between f and e, so that (the unconstrained) W (f, e) can bypass
g from both sides before it reaches e, then it is possible for W (g, e) to claim an in-between
point y on e; see Figure 36(b). Moreover, if W (g, e) reaches e from the other side of e then
it is possible for W (g, e) to claim portions of xx′ without claiming x and x′. It is this fact
that makes the explicit merging of the two one-sided wavefronts expensive.

Lemma 4.3 is also true if f and g denote two different connected portions of the same
transparent edge (a situation that may arise since we topologically constrain the wavefronts).
We call the set of all points of e claimed by a contributing wavefront W (f, e) the claimed
portion or the claim of W (f, e). Lemma 4.3 implies that this set is a (possibly empty)
connected subinterval of e.

We now proceed to describe the merging process, applied to the (topologically con-
strained) contributing wavefronts that claim portions of a transparent edge e (from a fixed
side); the process results in the construction of the two one-sided wavefronts at e. As men-
tioned above, we defer the detailed description of the implementation of the preceding stage,
in which the contributing wavefronts are propagated from edges of input(e) towards e, to
Section 5; nevertheless, some aspects of this propagation, especially the processing of bisec-
tor events, are also described, in a higher-level style, in Section 4.3. We assume for now that
this propagation has already been correctly executed, so that for each contributing wave-
front W , all the critical events involving the generators of W (and no other generators — see

12We extend (and relax) the definition of a claimer to apply also to contributing wavefronts (previously
this term was used only for generators): W (f, e) claims a point p ∈ e, if W (f, e) reaches p before any other
contributor from the same side of e.
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Figure 36: (a) W (g, e) cannot claim the point y, for otherwise the shortest path π(s, y) (that crosses
the transparent edge g) would have to cross one of the paths π(s, x), π(s, x′), which is impossible
for shortest paths. The region Q delimited by f, e, and the portions of π(s, x), π(s, x′) between f

and e is shaded. (b) If W (f, e) is not topologically constrained, W (g, e) may claim an in-between
point y on e.

Section 4.3 for further discussion) during this propagation have already been detected and
processed. That is, when starting the merging process at simulation clock t = covertime(e),
the correct order of the generators in each contributing wavefront W at time t is known,
and the outermost points of e that W reaches (possibly failing to reach the endpoints of e
because of possible visibility and/or topological constraints) are also known.

Most of the low-level details of the process are embedded in the various procedures
supported by the data structure described in Section 5.1; for now, before proceeding with
Lemma 4.4, we briefly review the basic operations that the merging uses, and assert their
time complexity bounds. Each contributing wavefront W is maintained as a list of generators
in a balanced tree data structure T , where each leaf represents a single generator of W .
The unfolding transformation of each generator is also stored in this data structure (in a
distributed way, over certain nodes of T ), so that we can compute the unfolding of a single
source image to a plane traversed by its wave in time proportional to the depth of T . We
may therefore assume that each of the operations of constructing a single bisector, finding its
intersection point with e, measuring the distance to a point on e from a single generator, and
concatenating the lists representing two wavefront portions into a single list, takes O(log n)
time. This will be further explained and verified in Section 5.

Lemma 4.4. For each transparent edge e and for each f ∈ input(e), we can compute the
claim of each of the wavefront portions W (f, e) that contribute to the one-sided wavefront
W (e) that reaches e from the right, say, in O((1 + k) log n) total time, where k is the total
number of generators in all wavefronts W (f, e) that are absent from W (e).

Proof: For each contributing wavefront W (f, e), we show how to determine the claim of
W (f, e) in the presence of only one other contributing wavefront W (g, e). The (connected)
intersection of these claimed portions, taken over all other O(1) contributors W (g, e), is the
part of e claimed by W (f, e) in W (e). This is repeated for each wavefront W (f, e), and
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results in the algorithm asserted in the lemma. (Some constant speedup is possible if we
merge more than two wavefronts at a time, but we present the process in this way to make
the description simpler.)

Orient e from one endpoint a to the other endpoint b. We refer to a (resp., b) as the
left (resp., right) endpoint of e. We determine whether the claim of W (f, e) is to the left
or to the right of that of W (g, e), as follows. If both W (f, e) and W (g, e) claim a, then, in
O(log n) time, we check which of them reaches it earlier (we only need to check the distances
from a to the first and the last generator in each of the two wavefronts, since we assume that
W (f, e) and W (g, e) only contain waves that reach e). Otherwise, one of W (f, e),W (g, e)
reaches a point p ∈ e (not necessarily a) that is left of any point reached by the other; by
Lemma 4.3, the claim that contains p, by “winning” wavefront, is to the left of the claim of
the other wavefront. To find p, we intersect the first and the last (artificial) bisectors of each
of W (f, e),W (g, e) with e; p is the intersection closest to a.

A basic operation performed here and later in the merging process is to determine the
order of two points x, y along e. To perform this comparison, we compute the polytope edge
sequence Ee crossed by e, and compare UEe

(x) with UEe
(y). Using the surface unfolding data

structure of Section 2.4, this operation takes O(log n) time.

Without loss of generality, assume that the claim of W (f, e) is left of that of W (g, e).
Note that in this definition we also allow for the case where W (g, e) is completely annihilated
by W (f, e).

b(
s 1
, s

2
)

x

g

f

W (g, e)

ba e

W (f, e)
s1

s2

p1 p2

Figure 37: The source image s2 is eliminated from W (e), because its contribution to W (e) must
be to the left of p2 and to the right of x, and therefore does not exist along e.

By Lemma 4.3, we can combine the two wavefronts using only local operations, as follows.
Let s1 denote the generator in W (f, e) that claims the rightmost point on e among all points
claimed by W (f, e); by assumption, s1 is an extreme generator of W (f, e). Let p1 be the left
endpoint of the claim of s1 on UEe

(e) (as determined by W (f, e) alone; it is the intersection of
UEe

(e) and the left bisector of s1). Similarly, let s2 denote the generator in W (g, e) claiming
the leftmost point on e (among all points claimed by W (g, e)), and let p2 be the right endpoint
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of the claim of s2 on UEe
(e) (as determined by W (g, e) alone). We compute the (unfolded)

bisector of s1 and s2, and find its intersection point x with UEe
(e). See Figure 37. If x is to

the left of p1 or x does not exist and the entire e is to the right of b(s1, s2), then we delete

s1 from W (f, e), reset s1 to be the next generator in W (f, e), and recompute p1. If x is to
the right of p2 or x does not exist and the entire e is to the left of b(s1, s2), then we update
W (g, e), s2 and p2 symmetrically. In either case, we recompute x and repeat this test. If
p1 is to the left of p2 and x lies between them, then x is the right endpoint of the claim
of W (f, e) in the presence of W (g, e) and the left endpoint of the claim of W (g, e) in the
presence of W (f, e). Again, the correctness of this process follows from the connectedness
of the claims of W (f, e),W (g, e) on e.

By combining the claimed portions for all contributors W (f, e), we construct the one-
sided wavefront W (e) that reaches e from the right. A fully symmetric procedure is applied
to the wavefront that reaches e from the left.

Consider next the time complexity of this merging process. We merge O(1) pairs W (f, e),
W (g, e) of wavefronts. Merging a pair of wavefronts involves O(1 + k) operations, where k
is the number of generators that are deleted from the wavefronts, and where each operation
either computes a single bisector, or finds its intersection point with e, or measures the
distance to a point on e from a single generator, or deletes an extreme wave from a wavefront,
or concatenates two wavefront portions into a single list. As stated above, and detailed in
Section 5, each of these basic operations can be implemented in O(log n) time. Summing
over all O(1) pairs W (f, e), W (g, e), the bound follows. ¤

We defer the few remaining details that allow efficient implementation of the merging
procedure to Section 5. The following lemma proves the correctness of the process, with the
assumption that the propagation procedure, whose details are not provided yet, is correct.
This assumption is ascertained in the rest of the paper.

Lemma 4.5. (i) Any generator deleted during the construction of a one-sided wavefront at
the transparent edge e does not contribute to the true wavefront at e. (ii) Assuming that
the propagation algorithm deletes a wave from the wavefront not earlier than the time when
the wave becomes dominated by its neighbors, every generator that contributes to the true
wavefront at e belongs to one of the (merged) one-sided wavefronts at e.

Proof: The first part is obvious — each point in the claim of each deleted generator si along
e is reached earlier either by its neighbor generator in the same contributing wavefront or
by a generator of a competing wavefront. It is possible that these generators are further
dominated by other generators in the true wavefront, but in either case si cannot claim any
portion of e in the true wavefront. The second part follows by induction on the order in
which transparent edges are being processed, based on the following two facts. (i) Any wave
that contributes to the true wavefront at e must arrive either directly from s inside R(e),
or through some edge f in input(e) (by the definition of well-covering). (ii) The one-sided
wavefronts at each edge f of input(e) that have been covered before e is processed, have
already been computed (by Lemma 4.2). Hence each generator si that contributes to the
true wavefront at e contributes to the true wavefront at some such edge f , and the induction
hypothesis implies that si belongs to the appropriate one-sided wavefront at f . Since, by
the assumption that is ascertained in the next section, the propagation algorithm from f
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to e deletes from the wavefront only the waves that become dominated by other waves, si

participates in the merging process at e, and, by the first part of the lemma, cannot be fully
eliminated in that process. ¤

4.3 The bisector events

When we propagate a one-sided wavefront W (e) to the edges of output(e), as will be described
in detail in Section 5.2, and when we merge the wavefronts that reach the same transparent
edge, as described in Section 4.2, bisector events may occur, as defined above. We distinguish
between the following two kinds of bisector events.

(i) Bisector events of the first kind are detected when we simulate the advance of
the wavefront W (e) from e to g to compute the wavefront portion W (e, g), for some g ∈
output(e). In any such event, two non-adjacent generators si−1, si+1 become adjacent due to
the elimination of the intermediate wave generated by si; see Figure 38(a) for an illustration.
This event is the starting point of b(si−1, si+1), which reaches g in W (e, g) if both waves
survive the trip. Storing and maintaining these events by their “priorities” (distances from
s), the algorithm processes all such events that occur before g is ascertained to be covered;
that is, before the simulation time covertime(g). When such an event occurs, we compute the
new bisector b(si−1, si+1) and delete the eliminated generator from the wavefront. (Further
algorithmic aspects of detecting and processing these events are provided later in Section 5.)

s1

s2

(b)

x

(c)

s1

s0
s2

x

v

w

x

(a)

si−1 si+1si

Figure 38: When a bisector event of the first kind takes place at x, the wave of the corresponding
generator is eliminated from the wavefront W : (a) The wave of si is eliminated, and the new
bisector b(si−1, si+1) is computed. (b,c) The wave of the leftmost generator s1 in W is eliminated,
and s2 takes its place; the ray from s2 through x becomes the leftmost (artificial) bisector of W ,
instead of the former leftmost bisector, which is either (b) the ray from s1 through a transparent
edge endpoint v (a visibility constraint), or (c) the ray from s1 through the location w of an earlier
bisector event, where s0, the previous leftmost generator of W , has been eliminated.

A bisector event, at which the first generator s1 in the propagated wavefront is eliminated,
is treated somewhat differently; see Figure 38(b,c) for an illustration. In this case s1 is deleted
from the wavefront W and the next generator s2 becomes the first in W . The ray from s2

through the event location becomes the first (that is, extreme), artificial bisector of W ,
meaning that W needs to be maintained only on the s2-side of this bisector (which is a
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conservative bound). Indeed, any point p ∈ ∂P for which the path π(s2, p) crosses b(s1, s2)
into the region of ∂P that is claimed by s1 (among all generators in W ), can be reached
by a shorter path from s1. The case when the last generator of W is eliminated is treated
symmetrically.

(ii) Bisector events of the second kind occur when waves from different topologically
constrained wavefronts collide. Our algorithm does not compute these events, but, for the
sake of completeness, and for better visualization of the wavefront propagation paradigm,
we list them here in some detail.

If a generator si contributes to one of the input wavefronts W (e, g) but not to the merged
one-sided wavefront W (g) at g, then si is involved in at least one bisector event (of the second
kind) on the way from e to g, and there must exist some generator sj in another (topologically
constrained) wavefront W (f, g) approaching g, that eliminates the wave of si.

See Figure 39 for an illustration of the former case. The exact event location and the
bisector b(si, sj) are never explicitly computed by our algorithm. If the claim of si on W (g) is
shortened (but not eliminated) by the wave of a generator sj of another component wavefront,
then si is involved in a bisector event that occurs between e and g, and the new bisector
b(si, sj) emanates from the event point — this bisector is computed by the algorithm during
the merging procedure at g, but the event point itself is not. However, the fact that we
do not explicitly compute these bisector event locations will not harm the later stage of
preprocessing the resulting structure for shortest path queries (see Section 5.4).

Bisector events of the second kind also occur when two opposite one-sided wavefronts of
a transparent edge e collide into each other.

Another case of such an event occurs when a one-sided wavefront W (e) is split during its
propagation inside R(e) (either because of a vertex of P or because of a hole of R(e) that
may contain one or more vertices of P ), and the two portions of the split wavefront partially
collide into each other during their further propagation inside R(e), as distinct topologically
constrained wavefronts, before they reach ∂R(e) — see Figure 40 for an illustration.

The algorithm never encounters these collisions. It simply propagates each of the wave-
fronts separately, and then realizes that “something is wrong” — the wavefronts have been
propagated into a “loop”, namely, into blocks that they have already traversed — and stops
the propagation of both wavefronts. See Section 5.3.1 for details.

Tentatively false and true bisector events. Consider the time t = covertime(e) when
a transparent edge e is processed and the one-sided wavefronts at e are computed. There
may be waves that have reached e before time t (although not earlier than time t−2 |e|), and
some of these waves could have participated in bisector events of the first kind “beyond” e,
which could have taken place before time t. As described in Section 5, the algorithm detects
these (currently considered as) “false” bisector events when the wavefronts from the edges
in input(e) are propagated to e, but the generators that are eliminated in these events are
not deleted from their corresponding contributing wavefronts before time t. This is done
to ensure that the one-sided wavefronts computed at e correctly represent (together) the
true intersection of SPM(s) with e (that is, the invariant (TD) is satisfied); in this sense,
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Figure 39: Examples of bisector events of the second kind, occurring when the waves of W (e, g)
collide with those of W (f, g). The wave of the generator s4 is completely eliminated by s3 and s′2
(after s4 and s′2 eliminate the wave of s′1), hence the events x and y occur somewhere between e, f

and g, but are not computed during the merge at g. The claims of s3 and s′2 on g are shortened by
each other, and the new bisector b(s3, s

′
2) is computed by the merging procedure (but its starting

event point x is not).

W1
e

W (e)

W2

Figure 40: A wavefront W (e) propagated from e is split inside R(e) when it reaches the inner
(top) boundary cycle. Then the two new topologically constrained wavefronts partially collide into
each other, creating a sequence of bisectors (dotted lines, bounded by thick points where bisector
events of the second kind occur), eliminating a sequence of waves in each wavefront.

each of the one-sided wavefronts W (e) at e is not a “real wavefront”, in the sense of being
the locus of waves that traverse a fixed distance from s. Rather, it is a sequence of waves
that claim points q ∈ e, where the distances of these points to s are not constant but vary
continuously along e. However, a bisector event, which has been considered false when it
has been detected beyond e (before e has been ascertained to be fully covered), is detected
again, and considered to be true, when the wavefront is propagated further, after processing
e. This latter propagation from e, can be considered to start at the time when the first
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among such events occurs, which might happen earlier than covertime(e); see Figure 41.
Further details are given in Section 5, where we also show that the number of all “true” and
“false” processed events is only O(n).

w

t

fe

x

t1 t2 t3

Figure 41: The bisector event at x occurs at time t2. It is first detected when the wavefront
is propagated toward the transparent edge e, which has not been fully covered yet. Since x is
beyond e, the event is currently considered false (and the eliminated wave w is not deleted from
the wavefront, so that it shows up on W (e)). When e is ascertained (at time t3 = covertime(e))
to be fully covered, the one-sided wavefront W (e) is computed, and then propagated toward the
transparent edge f , starting from some time t < covertime(e) (e.g., t2). Since w is part of W (e),
the bisector event at x is detected again, and this time it is considered to be true.

Remark: Note that a detected “true” event does not necessarily appear as a vertex of
SPM(s), since it involves only waves from a single one-sided wavefront, and its location x
can actually be claimed by a wave from another wavefront. However, since x belongs to only
O(1) well-covering regions, each of which is traversed by only O(1) wavefronts, we can store
the separate “trace” of each of them through R(e). Then, when a shortest path query point
q is given, we can compare the lengths of the shortest paths to q in each of the “traces” to
obtain the true shortest path from s to q. We also show in Section 5 that there are no true
events of the second kind between the waves of a single topologically constrained wavefront.
From now on, we ignore the bisector events of the second kind, and use the term bisector
event only for the events of the first kind, unless otherwise specified. See the following
discussion and Section 5.4 for further details.

We say that the generators and their waves that are involved in a true bisector event
in a well-covering region R(e) are active in R(e). As we show in the next section, our
algorithm processes only O(n) such events over the entire subdivision. As a result, most
waves pass through R(e) unaffected, and leave an “inactive” trace, consisting of a sequence
of uninterrupted bisectors, whose first and last elements separate between the active and
inactive portions of R(e). That is, we actually subdivide each well-covering region into
portions, so that each portion is traversed only by active or only by inactive waves, but
not by both. Moreover, we construct O(1) such subdivisions, one for each topologically
constrained wavefront that traverses R(e). This will allow us to optimally unite adjacent
portions where no (detected) events occur, and will result in a total of only O(n) portions,
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with O(n) overall complexity, of (the unfolded) ∂P , which therefore makes it possible to
effectively preprocess all regions for point location to answer shortest path queries13 — see
Section 5.4.

The finer details of the propagation algorithm and the merging procedure are described
in Section 5, as well as the preprocessing for, and processing of, shortest path queries.

5 Implementation Details

5.1 The data structures

A one-sided wavefront is an ordered list of generators (source images). Our algorithm per-
forms the following three types of operations on these lists (the first two types are similar to
those in the data structure of Hershberger and Suri [22]):

1. List operations : concatenate, split, insert, and delete. Some of these operations
are different from their standard counterparts, as described below. Each operation
is applied to the list of generators that represents the wavefront at any particular
simulation time.

2. Priority queue operations: We assign to each generator in the list a priority (as defined
below in Section 5.3.1; it is essentially the time at which the generator is eliminated
by its two neighbors), and the data structure needs to update priorities and find the
minimum priority in the list.

3. Source unfolding operations : To compute explicitly each source image si in the wave-
front at time t, we need to perform the unfolding of the maximal polytope edge se-
quence of si at t. The data structure needs to update the unfoldings as the wavefront
advances, and to answer “unfolding queries”, that is, to return the queried source im-
age, appropriately unfolded into a specified plane. Another important operation is a
search in the generator list for a claimer of a given query point (without considering
other wavefronts or possible visibility constraints); see Figure 42 below. That is, the
bisectors between consecutive generators in the list, as long as they do not meet one
another, partition a portion of the plane of unfolding into a linearly ordered sequence
of regions, and we want to locate the region containing the query point. (We can treat
this operation as a variant of standard binary search in a sorted list; see below.)

All these types of operations can be supported by a data structure based on balanced
binary search trees, for example, red-black trees, with the generators stored at the leaves
[8, 19]. In particular, the “bare” list operations (ignoring the maintenance of priorities and
unfolding data) take O(log n) time each, because the maximum list length is O(n). The

13One has to be a little careful here, because well-covering regions can overlap each other. However,
since we implement the propagation inside a well-covering region as a sequence of O(1) propagations inside
the surface cells that it contains, and each cell is contained in at most O(1) well-covering regions, we can
preprocess each cell into at most O(1) separate point location structures.
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s1

s2

s3

s4

W at time t2

W at time t1
p

Figure 42: The wavefront W at simulation times t1 and t2 consists of four source images s1, . . . , s4,
all unfolded to one plane at time t1 and to another plane at time t2; for this illustration, both planes
are the same — this is the plane of the facet that contains the point p. The bisectors of the wavefront
are thick dashed lines (including the two extreme artificial bisectors); in order to determine the
generator of W that claims p, the search operation can be applied to the version of W at time t2,
when p is already claimed by s3.

priority queue operations are supported by adding a priority field to each node of the binary
tree, which records the minimum priority of the leaves in the subtree of that node (and the
leaf with that priority). Each priority queue operation takes O(log n) time (since updating
the priority of a leaf entails the updating of only the nodes on its path to the root, and the
minimum priority leaf is accessible at the root in O(1) time), while the list operations retain
their O(log n) time bound. The details of maintaining the priority fields during all kinds of
tree updates are standard by now (see, e.g., [17] and [22]), and are therefore omitted.

Source unfolding operations. The source unfolding queries are supported by adding an
unfolding transformation field U [v] to each node v of the binary tree, in such a way that,
for any queried generator si, the unfolding of si is equal to the product (composition) of the
transformations stored at the nodes of the path from the leaf storing si to the root. That is,
if the nodes on the path are v1 = root, v2, . . . , vk = leaf storing si, then the unfolding of si is
given by U [v1]U [v2] · · ·U [vk]. We represent each unfolding transformation as a single 4 × 4
matrix in homogeneous coordinates (see [37]), so composition of any pair of transformations
takes O(1) time — see Section 2.1 for details. The unfolding fields have the following
property. For each node v, and for any path v = v1, v2, . . . , vk that leads from v to a leaf,
the product U [v1]U [v2] · · ·U [vk] maps the generator stored at vk to a fixed destination plane
that depends only on v.
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To perform the search operation efficiently, we precompute and store at each internal
node v of the tree its bisector image b[v], defined as follows. Let (v = v1, v2, . . . , vk =
the rightmost leaf of the left subtree of v) denote the sequence of nodes on the path
from v to vk, and let (v = v′

1, v
′
2, . . . , v

′
k′ = the leftmost leaf of the right subtree of v)

denote the sequence of nodes on the path from v to v′
k′ . We store at v the bisector

b[v] = b(U [v1]U [v2] · · ·U [vk](s), U [v′
1]U [v′

2] · · ·U [v′
k′ ](s)), which is the bisector between the

source image stored at the rightmost leaf of the left subtree of v and the source image
stored at the leftmost leaf of the right subtree of v, unfolded into the destination plane of
U [v1]U [v2] · · ·U [vk] (or, equivalently, of U [v′

1]U [v′
2] · · ·U [v′

k′ ]). Note that, for any path π from
v to a leaf in the subtree of v, the destination plane Λ(v) of the resulting composition of
the unfolding transformations stored at the nodes of π, in their order along π, is the same,
and depends only on v (and independent of π). As described below, during any operation
that modifies the data structure, we always maintain the invariant that b[v] is unfolded onto
Λ(v).

The procedure search with a query point q in Λ(root) is performed as follows. We
determine on which side of b[root] q lies, in constant time, and proceed to the left or to the
right child of the root, accordingly. When we proceed from a node v to its child, we maintain
the composition U∗[v] of all unfolding transformations on the path from the root to v (by
initializing U∗[root] := U [root] and updating U∗[w] := U∗[u]U [w] when processing a child w
of a node u on the path). Thus, denoting by b the bisector whose corresponding image b[v]
is stored at v, we can determine on which side of b q lies, by computing the image U∗[v]b[v],
in O(1) time. Since the height of the tree is only O(log n), it takes O(log n) time to search

for the claimer of q.

Initializing the unfolding fields is trivial when the unique singleton wavefront is initialized
at t = 0 at s. In a typical step of updating some wavefront W , we have a contiguous
subsequence W ′ of W , which we want to advance through a new polytope edge sequence E
(given that all the source images in W are currently unfolded to the plane of the first facet of
the corresponding facet sequence of E ; see Section 5.3 for further details). We perform two
split operations that split T into three subtrees T−, T ′, T+, where T ′ stores W ′, and T−

(resp., T+) stores the portion of W that precedes (resp., succeeds) W ′ (either of these two
latter subtrees can be empty). Then we take the root r′ of T ′, and replace U [r′] by UEU [r′]
and b[r′] by UEb[r

′]; see Figure 43 for an illustration. Finally, we concatenate T−, the new
T ′, and T+, into a common new tree T .

Remarks:

(i) The collection of the fields U [v] and b[v] in the resulting data structure is actually a
dynamic version of the incidence data structure of Mount [32], which stores the incidence
information between m nonintersecting geodesic paths and n polytope edges. Mount’s data
structure is a collection of trees, one tree for each polytope edge χ, so that the leaves of the
tree of χ correspond to the geodesic paths that intersect χ. By sharing common subtrees, the
total space requirement is reduced to O((n + m) log(n + m)). Each node v of this structure
stores fields whose roles are similar to our U [v] and b[v], and, by constructing the structure,
using special “tying” procedures, so that each tree has O(log(n + m)) height, Mount’s data
structure [32] supports each search operation (similar to those supported by our data
structure) in O(log(n + m)) time. Our data structure has similar space requirements and
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Figure 43: The tree T is split into three subtrees T−, T ′, T+, where T ′ stores the sub-wavefront
W ′ of W . Then the unfolding fields stored at the root r′ of T ′ are updated.

query-time performance; the main novelty is the dynamic nature of the structure and the
optimal construction time of O((n + m) log(n + m)). (Mount constructs his data structure
in time proportional to the number of intersections between the polytope edges and the
geodesic paths, which is Θ(nm).) In this sense, we combine the benefits of the data structure
of Hershberger and Suri [22] with those of Mount [32].

(ii) We could have stored only the unfolding transformations that support the bisector im-
ages. Specifically, at each node v we could have stored the two transformations U [v1] · · ·U [vk]
and U [v′

1] · · ·U [v′
k′ ], where we follow the preceding notation. Using these fields, we can re-

construct the bisector image at a node v in O(1) time, and retrieve the actual unfolding field
U [v] (if v is not a leaf; otherwise v stores U [v]) also in O(1) time, by computing the product
of the unfolding transformation U [v1]U [v2] · · ·U [vk] stored at v with the inverse of that stored
at its child v2 (or, equivalently, by computing the product of the unfolding transformation
U [v′

1]U [v′
2] · · ·U [v′

k′ ] with the inverse of that stored at its child v′
2).

(iii) The result of the search operation is guaranteed to be correct only if the query point q
is already covered by the wavefront (that is, the bisectors between consecutive generators in
the list do not meet one another closer to s than the location of q). It is the “responsibility”
of the algorithm to provide valid query points (in that sense). Recall also that claiming q
here is only with respect to the waves in the present wavefront.

Split and concatenate operations. Even though the implementation of these operations
are standard by now [19, 41], we discuss them in some detail, to describe how the extra
unfolding fields fit into the scheme. (As mentioned above, the maintenance of the priority
fields is straightforward, and is not described.) We first describe how to concatenate two
trees T1, T2 into a common tree T , so that all the leaves of T1 precede those of T2. Let r1, r2

be the roots of T1, T2, respectively; we assume here that Λ(r1) = Λ(r2). For each node u in a
red-black tree, denote by rank(u) the number of black nodes in a path from u to a leaf, not
including u (by definition, all such paths have an equal number of black nodes). Without
loss of generality, assume that rank(r1) ≥ rank(r2).

We follow right pointers from r1 down the tree T1 until reaching a black node x with
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rank(x) = rank(r2). Let the rightmost path in T1 be r1 = v1, v2, . . . , vj = x, vj+1, . . . , vk =
the rightmost leaf of T1, and let the leftmost path in T2 be r2 = v′

1, v
′
2, . . . , v

′
k′ = the leftmost

leaf of T2. We replace x and its subtree by a new red node y, making x the left child and
r2 the right child of y. If r2 is red, we change its color to black; the black invariant is
maintained, since the number of the black nodes in vj = x, vj+1, . . . , vk is rank(x) + 1, and
it equals (since r2 is now black) to the number of the black nodes in r2 = v′

1, v
′
2, . . . , v

′
k′ . We

store at y the identity transformation U [y] := I and the bisector image

b[y] := b(U [vj]U [vj+1] · · ·U [vk](s), U [vj−1]
−1U [vj−2]

−1 · · ·U [v1]
−1U [v′

1]U [v′

2] · · ·U [v′

k′ ](s)),

which is the bisector between the source image stored at the rightmost leaf of T1 and
the source image stored at the leftmost leaf of T2, unfolded into the destination plane of
U [vj]U [vj+1] · · ·U [vk] (and of U [vj−1]

−1U [vj−2]
−1 · · ·U [v1]

−1U [v′
1]U [v′

2] · · ·U [v′
k′ ]). We update

U [r2] := U [vj−1]
−1U [vj−2]

−1 · · ·U [v1]
−1U [r2] (here vj−1 is the (new) parent of y), and we

similarly update b[r2] := U [vj−1]
−1U [vj−2]

−1 · · ·U [v1]
−1b[r2]. If the parent of y is red, we

must recolor and rebalance the tree, from the parent of y up to r1, as described in [19, 41],
to maintain the red invariant. During the rebalancing rotations of the tree, we preserve the
correctness of the unfolding information, by performing rotations as illustrated in Figure 44
(only a single right rotation is depicted in the figure; a single left rotation is performed in
a symmetric manner, and a double rotation consists of two single rotations; see [19, 41] for
more details).

IU [x]

U [x]−1U [w]

U [y] U [y]U [x] U [y]b[x]

U [w] U [x]−1U [y]−1b[y]w

x

y

v

x

y

u

u

v w

b[w]

b[y]

U [x]−1b[w]

b[x]

Figure 44: For each node z, the initial values of its unfolding field U [z] and its bisector image field
b[z] appear in the left figure. After rotating the tree to the right, the values are updated as shown
in the right figure. Only the fields of the nodes x, y, w change as the result of the rotation. After
the rotation, the bisector image field b[z] is unfolded onto a plane that is different from the plane
before the rotation, for each z ∈ {x, y, w}. For example, b[x] is unfolded onto the destination plane
of U [x] before the rotation, and it is unfolded onto the destination plane of U [y] after the rotation;
b[y] is unfolded onto the destination plane of U [y] before the rotation, and onto the destination
plane of U [v] (which is also the destination plane of U [x]−1) after the rotation.

Notice that the only difference between this and the standard implementations of con-

catenate (as in [41]) is the updating of the source unfolding information and bisector
images (and the priority fields) of the nodes on the path from x to r1, the rightmost path in
the subtree of x, and the leftmost path of T2, which requires only computations along the
O(log n) nodes on these paths. Hence it still takes O(log n) time to concatenate two trees,
where n is the total number of leaves in both trees.
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We next describe how to perform a split operation on the tree T at a given source
image si. Denote by T1 the new tree that has to store the leaves of T up to and including the
leaf of si, and denote by T2 the new tree that has to store the leaf of si and all succeeding
leaves of T . We keep si in both portions, since in general the split is caused by some critical
event that the wave of si reaches (hitting a vertex of P or a transparent endpoint), which
causes this wave to be split into two portions, so that the wave of si appears in both of the
new wavefronts (but with different homotopies when the split is at a vertex of P ). We also
compute the new artificial bisector (the ray from si through the image of the location of the
vertex event, as detailed in Section 5.3.1 below), which now becomes an extreme bisector of
each of the two new portions of the wavefront.

By following the search path π from the root of T to the leaf storing si, we can obtain
each of T1, T2 as the disjoint union of O(log n) subtrees of T . The roots of the O(log n)
subtrees that comprise T1 (resp., T2) are left (resp., right) children of nodes on π, which
themselves lie off π, including the singleton subtree storing si in both T1, T2.

Since we are going to discard all the nodes of π except the leaf that stores si, we first
“push away” their unfolding transformations as follows. Let the nodes of π be root =
v1, . . . , vk = leaf storing si. We traverse π top-down, and compute the products U∗[vj] =
U [v1]U [v2] · · ·U [vj] as we go. When we process vj, we take the child uj+1 which is the sibling
of vj+1, update U [uj+1] := U∗[vj]U [uj+1] and b[uj+1] := U∗[vj]b[uj+1], and proceed to vj+1.
We now cut off the subtrees that hang below π (including the singleton subtree that contains
si), and discard the nodes of π. We assemble T1 (resp., T2) by concatenating the left (resp.,
right) subtrees (as mentioned above, the singleton storing si is concatenated to both T1, T2,
and becomes the rightmost leaf of T1, and the leftmost leaf of T2).

By [41], the time bounds for the concatenate operations that construct each of T1, T2

form a telescoping series summing to O(log n). Updating the nodes that hang below π takes
O(log n) time as well, and so does the manipulation of the unfolding data (and the priorities).
Hence our implementation of split still takes O(log n) time.

Remark: In fact, in our setup, this implementation replaces the standard insert operation,
since a new wave is created only when an existing one is split.

Delete operation. We delete a generator si from a wavefront W either during the
merging process or while processing a bisector event; in both cases we are given a pointer to
the leaf v of the tree T that stores si. We discard v from T ; unless the tree becomes empty,
we replace the parent x of v by the remaining child y of x. We compute Unew := U [x]U [y]
and update U [y] := Unew.

If si was neither the first nor the last source image in W , then there are two leaves in T
that store its neighbors si−1, si+1. One of them, say si+1, must be stored at y; denote by z
the leaf that stores si−1. We traverse the two paths from y and z up to their lowest common
ancestor w, composing the two unfoldings Ui−1, Ui+1 stored along the respective paths, as we
go. Then we update b[w] (that must have been equal to the appropriate image of b(si−1, si))
to b(Ui−1(s), Ui+1(s)).

To maintain the black invariant, we have to rebalance the tree, as described in [19, 41];
the rotations are performed according to the recipe depicted in Figure 44. Again, the only
difference between this operation and the standard rotation is the updating of the fields71



U [u], b[u] (and the priority fields) of the nodes u on a single path from the deleted leaf to
the root, hence the operation still takes O(log n) time.

Maintaining all versions. We also require our data structure to be confluently persistent
[14]; that is, we need the ability to maintain, operate on, and modify past versions of any
list (wavefront), and we need the ability to merge (in the terminology of [14]) existing
distinct versions into a new version. Consider, for example, a transparent edge e and two
transparent edges f, g in output(e). We propagate W (e) to compute W (e, f),W (e, g); the
first propagation has modified W (e), and the second propagation goes back to the old version
of W (e) and modifies it in a different manner. Moreover, later, when f , say, is ascertained
to be covered, we merge W (e, f) with other wavefronts that have reached f , to compute
W (f), and then propagate W (f) further. At some later time g is ascertained to be covered,
and we merge W (e, g) with other wavefronts at g into W (g). Thus, not only do we need to
retrieve older versions of the wavefront, but we also need to merge them with other versions.
All this calls for using a confluently persistent implementation of the structure.

We also use the persistence of the data structure to implement the wavefront propagation
through a block tree, as described in Section 5.3.1 below. Specifically, our propagation
simulation uses a “trial and error” method; when an “error” is discovered, we restart the
simulation from an earlier point in time, using an older version of the wavefront.14

Each of the three kinds of operations, concatenate, split and delete, uses O(1)
storage for each node of the binary tree that it accesses, so we can make the data structure
confluently persistent by path-copying [23]. Each of our operations affects O(log n) nodes of
the tree, including all the ancestors of every affected node. Once we have determined which
nodes an operation will affect, and before the operation modifies any node, we copy all the
affected nodes, and then modify the copies as needed. This creates a new version of the
tree while leaving the old version unchanged; to access the new version we can simply use a
pointer to the new root, so traversing it is done exactly as in the ephemeral case. The data
structure uses O(m log n) storage, where m is the total number of operations on the data
structure, and keeps the O(log n) time bound per operation stated above. In summary, we
have:

Lemma 5.1. There exists a data structure that represents a one-sided wavefront and supports
all the list operations, priority queue operations, and unfolding operations, as described above,
in O(log n) worst-case time per operation. The size of the data structure is linear in the
number of generators; it can be made confluently persistent at the cost of O(log n) additional
storage per operation.

5.2 Overview of the wavefront propagation stage

Recall from Section 4 that the two main subroutines of the algorithm are wavefront prop-
agation and wavefront merging. In this and the following subsection we describe the im-
plementation details of the first procedure; the merging is discussed in Section 4.2, which,

14We do not actually need confluent persistence for that, but, since we already have it, we use it anyway.

72



together with the data structure details presented in Section 5.1, implies that all the merging
procedures can be executed in O(n log n) time.

Let e be a transparent edge. When the simulation clock reaches time covertime(e), we
merge all the (at most O(1)) contributing wavefronts that have reached e up to this time, sep-
arately for each side of e (see Section 4.2), resulting in two one-sided wavefronts W (e),W ′(e),
which are represented by data structures of the kind just described. We now show how to
propagate a given one-sided wavefront W (e) to another edge g ∈ output(e) (that is, e ∈
input(g)), denoting, as above, the resulting propagated wavefronts by WH1

(e, g), . . . ,WHk
(e, g),

where H1, . . . , Hk are all the relevant homotopy classes of geodesic paths that correspond to
block sequences from e to g within R(g) (see Section 3.3); note that a transparent endpoint
“splits” a homotopy class, similarly to a vertex of P . In the process, we also determine the
time of first contact between each such W (e, g) and the endpoints of g.

The high-level description of the algorithm is a sequence of steps, each of which propagates
a wavefront W (e) from one transparent edge e to another g ∈ output(e), within a fixed
homotopy class H, to form WH(e, g). Nevertheless, in the actual implementation, when we
start the propagation from e, all the topologically constrained wavefronts WH(e, g), over all
relevant g and H, are treated as a single wavefront W . At the beginning of the propagation
simulation, W is split into k1 initial sub-wavefronts, where k1 is the number of building
blocks that e bounds (on the side into which we propagate); during the propagation, these
initial wavefronts are further split into a total of k sub-wavefronts, one per homotopy class.
The splits occur either at vertices of P , where the current homotopy class is extended to
two different classes, or at transparent endpoints, where the splits cut the wavefront into
sub-wavefronts, each traversing a different sequence of transparent edges until it eventually
reaches a transparent edge of output(e).

Let c be the surface cell for which e ⊂ ∂c, and W (e) enters c after reaching e. We describe
in the next subsection a procedure for computing (all the relevant topologically constrained
wavefronts) W (e, g) for any transparent edge g ⊂ ∂c. Because the edges of output(e) belong
to a constant number of cells in the vicinity of e, we can use this primitive to compute
W (e, g) for all g ∈ output(e), including the edges that do not belong to ∂c, as follows. When
we propagate W (e) cell-by-cell inside R(g) from e to g, we effectively split the wavefront into
multiple component wavefronts, each labeled by the sequence of O(1) transparent edges it
traverses from e to g. We propagate a wavefront W from e to g inside a single surface cell,
either when W is one of the two one-sided wavefronts merged at e, or when W has reached e
on its way to g from some other transparent edge f ∈ input(g) (without being merged with
other component wavefronts at e). In what follows, we treat W as in the former case; the
latter case is similar.

We also note that the propagation of the initial singleton wavefront (which is the true
wavefront, but nonetheless considered as “one-sided” in our procedure) from s to the bound-
ary of the surface cell that contains s, is done exactly as the propagation of a one-sided
wavefront W (e) from a transparent edge e to the boundary of a cell that contains e, replac-
ing the Riemann structure T (e) by the corresponding structure T (s). This requires simple
and obvious modifications which we will not spell out.
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5.3 Wavefront propagation in a single cell

So far we have considered a wavefront as a static structure, namely, as a sequence of gener-
ators that reach a transparent edge. We now describe a “kinetic” form of the wavefront, in
which we track changes in the combinatorial structure of the wavefront W (e) as it sweeps
from its origin transparent edge e across a single cell c. Our simulation detects and processes
any bisector event in which a wave of W (e) is eliminated by its two neighboring waves inside
c; actually, the propagation may also detect some events that occur in O(1) nearby cells, as
described in detail below. Events are detected and processed in order of increasing distance
from s, that is, in simulation time order. However, the simulation clock t is not updated
during the propagation inside c; that is, the propagation from an edge e to all the edges in
output(e) is done without “external interruptions” of propagating from other fully covered
transparent edges that need processing. The effect of the propagated wavefront W (e, g), for
g ∈ output(e), on the simulation clock is in its updating of the values covertime(g); the
actual updating of t occurs only when we select a new transparent edge e′ with minimum
covertime(e′) for processing — see Section 4.1.

We propagate the wavefront separately in each of the O(1) block trees of the Riemann
structure T (e) (see Section 3.2). Let W (e) be the one-sided wavefront that reaches e from
outside c; it is represented as an ordered list of source images, each claiming15 some (con-
tiguous and nonempty) portion of e. To prepare W (e) for propagation in c, we first split

W (e) into O(1) sub-wavefronts, according to the subdivision of e by building blocks of c. A
sub-wavefront that claims the segment of e that bounds a building block B of c is going to
be propagated in the block tree TB(e) ∈ T (e).

By propagating W (e) from e in all the trees of T (e) within c, we compute O(1) new
component wavefronts that reach other transparent edges of ∂c. If e is the initial edge
in this propagation step, then, by Corollary 3.18, these component wavefronts collectively
encode all the shortest paths from s to points p of c, which enter c through e and do not
leave c before reaching p. In general, this property holds for all the cells c′ in R(e), as
follows easily from the construction. Hence, these component wavefronts, collected over
all propagation steps that traverse c, contain all the needed information to construct (an
implicit representation of) SPM(s) within c.

5.3.1 Wavefront propagation in a single block tree

Let TB(e) be a block tree in T (e), and denote by eB the sub-edge ∂B ∩ e. Denote by W (eB)
the sub-list of generators of W (e) that claim points on eB (recall that W (e) claims a single
connected portion of e, which may or may not contain the endpoints of e, or of eB). Let
W = W (t) denote the kinetic wavefront within the blocks of TB(e) at any time t during the
simulation; initially, W = W (eB). Note that even though we need to start the propagation
from e at simulation time covertime(e), the actual starting time may be strictly smaller, since
there may have been bisector events beyond e that have occurred before time covertime(e),

15We say here that a generator s′ in a wavefront W claims a point p ∈ ∂P if the wave of W represented
by s′ encodes a geodesic path from s′ to p that reaches p before any other path encoded in W , even if the
true claimer of p is not in W .
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and these events need now to be processed; up to now, they have been detected by the
algorithm but not processed yet. The starting time t0 is the time when the earliest among
these events takes place (if there are no such events, t0 = covertime(e)).

Denote by EB an edge sequence associated with B (any one of the two oppositely ordered
such sequences, for blocks of type II, III), and by FB its corresponding facet sequence. We can
then write W = (s1, s2, . . . , sk), so that, for each i, we have si = UEi

(s), where Ei is defined as
follows. Denote by Ẽi the maximal polytope edge sequence traversed by the wave of si from si

to the points that it claims on e; Ẽi must overlap either with a portion of EB or with a portion
of the reverse sequence Erev

B . In the former case we extend Ẽi by the appropriate suffix of EB

(which takes us to f in Figure 45). In the latter case we truncate Ẽi at the first polytope
edge of Erev

B that it meets, and then extend it by the appropriate suffix of EB. However, the
algorithm does not compute these sequences explicitly (and does not perform the “extend” or
“truncate” operations). In fact, the algorithm never manipulates edge sequences explicitly;
it only stores and composes their unfolding transformations. The unfolding transformations
UEi

are thus only implicitly maintained, as described in Section 5.1. In this way, the algorithm
efficiently unfolds all source images of W onto a common plane (of the last facet of FB),
which we denote by Λ(W ); we do not alter Λ(W ) until the propagation of W in TB(e) is
stopped (and then Λ(W ) is updated, as described below). When we propagate the initial
singleton wavefront directly from s in TB(s), we initialize W := (s), so that the maximal
polytope edge sequence of s is empty, and the corresponding unfolding transformation is the
identity transformation I. This setting is appropriate since s is assumed to be a vertex of
P , and therefore all the polytope edges in EB emerge from s, so it lies on all the facets of
FB, and, particularly, on the last facet of FB.

The wavefront W is propagated into blocks of TB(e), starting from B and passing from
one block to another through the contact intervals that connect them.

Unless otherwise specified, in what follows we treat each node of TB(e) as a distinct
building block, even though this block might appear more than once in the tree. Each
contact interval between a parent and its child in TB(e) is also treated as being distinct from
any other occurrence of the same contact interval that might show up elsewhere in TB(e).
Transparent edges and block vertices are treated similarly.
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Ẽ4

χ1 χ2

s3

eB

c

e

EBB

Figure 45: The block B is shaded; the edge sequence associated with B is EB = (χ1, . . . , χ6).
The bisectors of the wavefront W (eB) are thick dashed lines (including the two extreme artificial
bisectors); W (eB) consists of four source images s1, . . . , s4, all unfolded to the plane of the facet
f before the simulation of the propagation into TB(e) starts (that is, the last facet of the facet
sequence corresponding to each Ei is f). Specifically, E1 = Ẽ1||(χ2, . . . , χ6), E2 = Ẽ2||(χ5, χ6),
E3 = Ẽ3 \ (χ6, χ5) and E4 = Ẽ4 \ (χ6).
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Figure 46: (a) Bisector events (the thick square points), some of which are processed during the
propagation of the wavefront W from the transparent edge portion eB (the thickest segment in
this figure) through the building blocks (their shadings alternate) of the block tree TB(e) (shown
in (b)). The unfolded transparent edges are drawn as thick solid lines, while the unfolded contact
intervals are thin solid lines. The bisectors of the generators of W , as it sweeps through the unfolded
blocks, are shown dashed. The union of all the blocks in TB(e) is bounded by eB and the boundary
chain C (which is non-overlapping in this example). The dotted lines indicate the distance from
the transparent edges in C within which we still process bisector events of W . For each transparent
edge f of C, we can stop propagating the wavefront portion W (eB, f) that has reached f after it
crosses the dotted line (which lies at distance 2 |f | from f), since f must have already been fully
swept at that time by the waves of W (eB, f).
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The boundary chain C of TB(e) is recursively defined as follows. Initially, we put in C
all the boundary edges of ∂B, other than eB. We then proceed top-down through TB(e).
For each node B′ of TB(e) and for each child B′′ of B′, we remove from the current C the
contact interval connecting B′ and B′′, and replace it by the remaining boundary portion of
B′′. This results in a connected (unfolded) polygonal boundary chain that shares endpoints
with B ∩ e. (We remind the reader that the unfolding process that produces C generates a
Riemann surface that may overlap itself; such overlaps however are overcome (and essentially
ignored) by the local propagation mechanism, as described below.) Since TB(e) has O(1)
nodes, and each block has O(1) boundary elements, C contains only O(1) elements. See
Figure 46 for an illustration of an unfolded TB(e) and its (unfolded) boundary chain.

When W is propagated towards C, the most important property is that each transparent
edge or contact interval of C can be reached only by a single topologically constrained sub-
wavefront of W , since, if W splits on its way, the new sub-wavefronts reach different elements
of C. Note that the property does not hold for ∂c, since, when c contains holes and/or a
vertex of P , there is more than one way to reach a transparent edge f ∈ ∂c — in such
cases f appears more than once in C, each time as a distinct element (this is illustrated in
Figure 46). In the rest of this section, whenever a resulting wavefront W (e, f) is mentioned
for some f ∈ C, we interpret W (e, f) as WH(e, f) for the unique homotopy class H that
constrains W on its way from e to this specific incarnation of f along C.

We denote by range(W ) the portion of C that can potentially be reached by W , initialized
as range(W ) := C. As W is propagated (and split), range(W ) is updated (that is, split
and/or truncated) accordingly, as described below.

Critical events and simulation restarts. We simulate the continuous propagation of W
by updating it at the (discrete) critical events that change its topology during its propagation
in TB(e). There are two types of these events — bisector events (of the first kind), when a
wave of W is eliminated by its two neighbors, and vertex events, when W reaches a vertex of
C (either transparent or a real vertex of P ) and has to be split. Before we describe in detail
the exact processing of all the cases that may arise, we provide here a high-level description
of these cases, and the intuition behind the (somewhat unorthodox implementation of the)
low-level procedures.

The purpose of the propagation of W in TB(e) is the computation of the wavefronts
W (eB, f), for each transparent edge f in C that W reaches. To do so, we have to correctly
update W at those critical events that are true events with respect to the propagation of
W in TB(e), i.e., the events that take place in TB(e) that would have been vertices of
SPM(s) if there were no other wavefronts except W to propagate through the blocks of
TB(e). For the sake of brevity, in the rest of this section we call these events simply true
events. Unfortunately, it is difficult to determine in advance the exact set of true events
(mainly because of vertex events — see below). Instead, we determine on the fly a larger
set of candidates for critical events, which is guaranteed to contain all the true events, but
which might also contain events that are false with respect to the propagation of W in TB(e);
in the rest of this section we refer to events of the latter kind as false events. The candidates
that turn out to be false events either are bisector events that involve at least one generator
s′ of W so that the path from s′ to the event location intersects C, or are computed based
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on incomplete information of earlier true events (at least one of which has not been detected
and processed in time). (Note that this classification differs from the ultimate classification
of events as “true” or “false” according to whether an event is or is not a vertex of SPM(s).
Instead, the algorithm prunes away events that it can ascertain not to take place in TB(e),
and regards the remaining ones as (tentatively) true.)

Let x be such a candidate bisector event that takes place at simulation time tx. If all
the true events of W that have taken place before tx were processed before tx, then x can be
foreseen at the last critical event at which one of the bisectors involved in x was updated
before time tx, using the priorities assigned to the source images in W . The priority of a
source image s′ is the distance from s′ to the point at which the two (unfolded) bisectors of
s′ (one of which is artificial, if s′ is extreme in W ) intersect beyond eB, either in B or beyond
it. (In the latter case we cannot right away locate the intersection point, because it may
depend on polytope edge sequences that “continue the unfolding”, which are not immediately
available; we explain below how we overcome this problem by explicitly “tracing” the involved
paths to the location of x beyond B through TB(e).) The priority is +∞ if the bisectors do
not intersect beyond eB. (Initially, when W contains the single wave from s, the priority of
s is defined to be +∞.) Whenever a bisector of a source image s′ is updated (as detailed
below), the priority of s′ is updated accordingly.

A candidate vertex event cannot be foreseen so easily, since we do not know which source
image of W claims a vertex v (because of the critical events that might change W before it
reaches v), until v is actually reached by W . Even when v is reached by W , we do not have
in the data structure a “warning” that this vertex event is about to take place. Instead,
we detect the vertex event that occurs at v only later and indirectly, either when processing
some later candidate event (which is false as it was computed without taking into account
the event at v — see Figure 47(a,b)), or when the propagation of W in TB(e) is stopped at a
later simulation time, when a segment f of C incident to v is ascertained to be fully covered
(in which case we want to split out from W the sub-wavefront W ′ that claims f , since W ′

must not be propagated further, as described below), as illustrated in Figure 47(c). Both
cases are detailed further in this section.

(c)

si−1 si+1

x
C

v

Cf

v

v

v′ f
C

si

(a) (b)

Figure 47: A vertex event at a vertex v of C, which has been reached by the wavefront W at
some earlier time tv, can be detected: (a) while processing a false bisector event x at the later time
priority(si); (b) while processing a vertex event at an endpoint v′ of a segment f of C, at some
later time when f is ascertained to be covered by W ; (c) when the segment f of C, incident to v,
is ascertained to be covered by W .

Here and later in this section, we denote by claimer(p), for a point p in a block of TB(e),
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the generator visible from p (in the corresponding unfolded block sequence of TB(e)) which
is nearest to p among all such generators of W (eB).

When we detect a vertex event at some vertex v which is reached by W at time tv, so
that at least one candidate critical event of W , which takes place later than tv, has already
been processed, all the versions of the (persistent) data structure that encode W after time tv
become invalid, since they do not reflect the update that occurs at tv. To correct this situation,
we discard all the invalid versions of W , and restart the simulation of the propagation of the
last valid version of W from time tv. This time, however, we split W at v (at simulation time
tv) into two new sub-wavefronts, making the ray from claimer(v) to v the new (artificial)
extreme bisector of both, as detailed below. Note that this step does not guarantee that
the current event at v is a true event, since there might still exist undetected earlier vertex
events, which, when eventually detected later, will cause the simulation to be restarted again,
making the current event at v invalid (and we will have to wait until the wavefront reaches
v again). In spite of all this overhead, we will argue below that these restarts do not affect
the asymptotic time complexity of the propagation of W .

In other words, the processing of the critical events, described below, is valid at a given
simulation time t (that is, the wavefront that is maintained by the algorithm at time t con-
tains all the necessary shortest paths and does not include invalid paths that violate visibility
constraints or are longer than alternative paths within W ) only under the assumption that
all the vertex events that had taken place before t have already been (correctly) detected
and processed — otherwise, at each such future detection of a “past” vertex event that has
occurred at some time t′ < t, the simulation process will be restarted from time t′.

Path tracing. Let x be the (unfolded) location of a candidate critical event. To determine
whether the path to x from its claimer (or the paths from its claimers, if x is a bisector event)
does or does not intersect16 C, and, in the former case, to also determine the first intersection
point (along the path) with C, we use the following path tracing procedure. It receives as
input a source image s′ and the image of x unfolded onto Λ(W ), and traces π(s′, x) either
up to x, or until π(s′, x) intersects C — whichever occurs first.

The tracing is done as follows. We first compute the unfolded image of ∂B (onto Λ(W )),
and consider the following cases.

If π(s′, x) does not intersect ∂B \ eB before reaching x, then x lies in B, and we are done.
If π(s′, x) intersects a transparent edge of ∂B \ eB before reaching x, then we are also done,
since we have reached C.

Suppose next that π(s′, x) intersects some contact interval I of ∂B before intersecting
any transparent edge of ∂B \ eB (and before reaching x). If B does not have a child in TB(e)
that is connected to B through I, then I belongs to C, and we are done: The candidate
event at x is false; that is, there must be some other wave, reaching the region on the other

16Here and in the rest of this section, whenever we say that a path π intersects C at a point p along its
way to a critical event x, we include the case where π merely touches C at p, without crossing, if p is not an
endpoint of C; the reason is that in this case p must be a vertex of C, and therefore we detect a vertex event
at p that takes place before x. (However, these cases can be ignored by assuming general position.)
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side of I, that reaches x earlier and claims it, by Corollary 3.18.

Otherwise, we pass to the unique child B′ of B in TB(e) that is connected to B through
I, and repeat this step. In more detail, denote by B the block sequence (B,B′), and denote
by E the edge sequence associated with B (E is unique — see Section 3.2). We find the
unfolded images UE(π(s′, x)) and UE(B

′). (Note that we do not yet update the unfolding
transformation of s′ in the source unfolding data structure; all such updates will be done at
the end of the propagation of W in TB(e) — see below.) Then we can determine whether x
lies in B′, or whether π(s′, x) intersects ∂B′ \ I before reaching x, similarly to the procedure
described above for ∂B \ eB, and recursively proceed to further building blocks, as above.

At each step we proceed in TB(e) from a node to its child; since the depth of TB(e) is
O(1), we are done after O(1) steps. Since at each step we compute O(1) unfoldings of paths
and transparent edges, and each unfolding operation takes O(log n) time to perform, using
the data structures described in Sections 2.4 and 5.1, the whole tracing procedure takes
O(log n) time.

Corollary 5.2. Tracing the path π(s′, p) from a generator s′ ∈ W to a point p without
intersecting C, correctly determines the distance d(s′, p).

Proof: Since C is not intersected, π(s′, p) is a valid geodesic path that traverses a valid
polytope edge sequence corresponding to s′; distances to p from other source images (which
may be closer to p than s′ is) do not change this fact. ¤

Remark: Although the unfolding of the block sequence B in a root-to-leaf path of TB(e)
might overlap itself, it does not affect the above tracing procedure, which traverses B block-
by-block, each time computing the intersection of a (straight-line) unfolded image with the
unfolded boundary of the next block of B.

Since any shortest path from s that enters B through e and does not stop inside c must
leave c through C, after crossing O(1) building blocks, we can also use the above procedure
to trace any such path of W until it intersects C, without specifying any terminal point on
the path, as long as the starting direction of the path in the plane is well defined.

In the rest of this section, whenever we say that a path π from a generator s′ ∈ W
intersects C, we actually mean that only the portion of π from s′ to the first intersection
point x = π∩C is a valid geodesic path; the portion of π beyond x is merely a straight segment
along the direction of π on Λ(W ). Still, for the sake of simplicity, we call π (including possibly
a portion beyond x) a path (from s′ to the terminal point of π).

The following technical lemma is needed later for the correctness analysis of the simulation
algorithm — in particular, for the analysis of critical event processing. See Figure 48.

Lemma 5.3. Let si, sj be a pair of generators in W , and let pi, pj be a pair of (possibly coin-
ciding) points in the unfolded blocks of TB(e), so that π(si, pi) and π(sj, pj) do not intersect
each other (except possibly at their terminal point, if pi = pj), and if pi 6= pj then f = pipj is
a straight segment of C. Denote by zi (resp., zj) the intersection point π(si, pi) ∩ eB (resp.,
π(sj, pj) ∩ eB), and denote by τ the unfolded convex quadrilateral (or triangle) zipipjzj. Let
B′ be the last building block of the maximal common prefix block sequence along which both
π(si, pi) and π(sj, pj) are traced (before possibly diverging into different blocks).
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If only one of the two paths leaves B′, or if π(si, pi) and π(sj, pj) leave B′ through different
contact intervals of ∂B′, then the region B′∩τ contains at least one vertex of C that is visible,
within the unfolded blocks of TB(e), from every point of z1z2 ⊆ eB.

Proof: Assume for simplicity that B′ 6= B. The paths π(si, pi), π(sj, pj) must enter B′

through a common contact interval I of ∂B′. Consider first the case where π(si, pi), π(sj, pj)
leave B′ through two respective different contact intervals Ii, Ij of ∂B′, and denote their first
points of intersection with ∂B′ by xi and xj, respectively — see Figure 48(a). Denote by
X the portion of ∂B′ between xi and xj that does not contain I; X must contain at least
one vertex of ∂B′. By definition, each vertex of a building block is a vertex of C; note that
the extreme vertices of X are xi and xj, which may or may not be vertices of C. Since the
unfolded image of X is a simple polygonal line that connects π(si, xi) and π(sj, xj), and
intersects neither π(si, xi) nor π(sj, xj), it is easily checked that we can sweep τ by a line
parallel to eB, until we encounter a vertex v of X within τ , which is also a vertex of C: Either
xi or xj is such a vertex, or else τ must contain an endpoint of either Ii or Ij. Therefore v
is visible from each point of z1z2.
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Figure 48: (a) π(si, pi), π(sj , pj) leave B′ through two different contact intervals of ∂B′. In this
example pi = pj , and τ is the triangle zipizj . (b) π(si, pi) reaches pi ∈ B′ and π(sj , pj) leaves B′

at the point xj . In this example pi 6= pj , and τ is the quadrilateral zipipjzj . The portion X of ∂B′

is highlighted in both cases.

Consider next the case where only one of π(si, pi), π(sj, pj) leaves B′, and assume, without
loss of generality, that π(si, pi) reaches pi ∈ B′ and π(sj, pj) leaves B′ at the point xj before
reaching pj — see Figure 48(b). Denote by π(pj, sj) the path π(sj, pj) directed from pj to
sj, and denote by π′ the concatenation π(si, pi)||pipj||π(pj, sj). The path π(si, pi) does not
leave B′, and, by assumption, the segment pipj is either an empty segment or a segment of
∂B′, and therefore the only portion of π′ that leaves B′ is π(pj, sj). Denote by xi the first
point along π(pj, sj) (beyond pj itself) that lies on ∂B′; if π(pj, sj) leaves B′ immediately,
we do take xi = pj. Since (the unfolded) π(pj, sj) is a straight segment, and since, for
each segment f ′ of ∂B′, B′ lies locally only on one side of f ′, it follows that xi and xj lie
on different segments of ∂B′. Define X as above; here it connects the prefixes of π′ and
π(sj, pj), up to xi and xj, respectively, and the proof continues as in the previous case. ¤

Stopping times and their maintenance. The simulation of the propagation of W in the
blocks of TB(e) processes candidate bisector events in order of increasing priority, up to some
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time tstop(W ), which is initialized to +∞, and is updated during the propagation.17 When
the time tstop(W ) is reached, the following holds: Either tstop(W ) = +∞ (see Figure 49(a)),
all the known candidate critical events of W in the blocks of TB(e) have been processed, and
all the waves of W that were not eliminated at these events have reached C; or tstop(W ) < +∞
(see Figure 49(b)), and there exists some sub-wavefront W ′ ⊆ W , which claims some segment
(a transparent edge or a contact interval) f of range(W ) (that is, f is ascertained to have
been covered by W ′ not later than at time tstop(W )), such that all the currently known
candidate events of W ′ have been processed before time tstop(W ). In the former case we
split W into sub-wavefronts W (e, f) for each segment f ∈ range(W ); in the latter case,
we extract from W (by splitting it) the sub-wavefront W (e, f) = W ′ that has covered f .
When we split W into a pair of sub-wavefronts W1,W2, the time tstop(W1) (resp., tstop(W2))
replaces tstop(W ) in the subsequent propagation of W1 (resp., W2), following the same rule,
while tstop(W ) plays no further role in the propagation process.

(a)

W ′

f

x y

WW

(b)

Figure 49: (a) The stopping time tstop(W ) = +∞. (b) The stopping time tstop(W
′) = tstop(f) <

+∞; the dotted line indicates the stopping time (or distance) at which we stop processing bisector
events: the event at x has been processed before tstop(W

′), while the event at y has been detected
but not processed.

For each segment f in C, we maintain an individual time tstop(f), which is a conservative
upper estimate of the time when f is completely covered by W during the propagation in
TB(e). Initially, we set tstop(f) := +∞ for each such f . As detailed below, we update
tstop(f) whenever we trace a path from a generator in W that reaches f (without reaching
C beforehand); by Corollary 5.2, these updates are always valid (i.e., do not depend on
simulation restarts).

The time tstop(W ) is the minimum of all such times tstop(f), where f is a segment of
range(W ). Whenever tstop(f) is updated for such an f , we also update tstop(W ) accordingly.
When the simulation clock reaches tstop(W ), either some f of range(W ) is completely covered
by the wavefront W , so that tstop(f) = tstop(W ), or the priority of the next event of W in
the priority queue is +∞, in which case tstop(W ) = +∞.

17The present description also applies to appropriate sub-wavefronts that have already been split from W

— see below.
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As shown below, range(W ) is maintained correctly, independently of simulation restarts;
therefore, when range(W ) contains only one segment, no further vertex events may cause a
restart of the simulation of the propagation of W (since a simulation restart of a wavefront
that is separated from W does not affect W , and the vertex events at the endpoints of f
have already been processed, since W and range(W ) have already been split at them).

Before going into the details of the stopping time maintenance procedures, we explain
the intuition behind them.

First, note that there is a gap of at most |f | time between the time tf when the segment
f of C is first reached by W and the time when f is completely covered by W . In particular,
it is possible that both endpoints of f are reached by W before f is completely covered by
W — see Figure 50(a) for an illustration. It is also possible, because of visibility constraints,
that W reaches only a portion of f in our propagation algorithm (and then there must be
other topologically constrained wavefronts that reach the portions of f that are not reached
by W ). Still, if f is reached by W at some time tf , we say that f is covered by W at time
tf + |f |, as if we were propagating also the non-geodesic paths that progress along f from
the first point of contact between W and f . See Figure 50(b).

f

f

(b)(a)

WW

C C

Figure 50: Reaching segments f of C: (a) Both endpoints of f are reached by W before f is
covered by W . (b) W actually reaches only a portion of f (between the two dashed lines), because
of visibility constraints.

The algorithm does not necessarily detect the first time tf when f is reached by W .
Instead, we detect a time t′f , when some path encoded in some wave of W reaches f . How-
ever, in order to estimate the time when f is completely covered by W correctly (although
somewhat conservatively), the algorithm sets tstop(f) := t′f + |f |. We show below that t′f is
greater than tf by at most |f |, hence the total gap between the time when f is first reached
by W , and the time when the algorithm ascertains that f is completely covered, is at most
2 |f |.

Consider W ′, the sub-wavefront of W that covers a segment f of C. If f is a transparent
edge, the well-covering property of f ensures that during these 2 |f | simulation time units
(since tf ) no wave of W ′ has reached “too far” beyond f . That is, all the bisector events
of W ′ beyond f that have been detected and processed before tstop(f) occur in O(1) cells
near c (see Figure 46 for an illustration). This invariant is crucial for the time complexity of
the algorithm, as it implies that no bisector event is detected more than O(1) times — see
below. If f is a contact interval, the paths encoded in W that reach f in our propagation
do not reach f in the real SPM(s), by Corollary 3.18; therefore these paths do not leave c
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(as shortest paths), and need not be encoded in the one-sided wavefronts that leave c. This
property is also used below in the time complexity analysis of the algorithm.

Processing candidate bisector events. As long as the simulation clock has not yet
reached tstop(W ), at each step of the simulation we extract from the priority queue of W
the candidate bisector event which involves the generator si with the minimum priority in
the queue, and process it according to the high-level description in Section 4.3, the details
of which are given next. Let x denote the unfolded image of the location of the candidate
event (the intersection point of the two bisectors of si), and denote by W ′ the constant-size
sub-wavefront of W that encodes the paths involved in the event. If si is neither the first
nor the last source image in W , then W ′ = (si−1, si, si+1). The generator si cannot be the
only source image in W , since in this case its two bisectors would be rays emanating from
si, and two such rays cannot intersect (beyond e). If si is either the first or the last source
image in W , then W ′ is either (si, si+1) or (si−1, si), respectively. Denote by π1 (resp., π2)
the path from the first (resp., last) source image of W ′ to x, or, more precisely, the respective
unfolded straight segments of (common) length priority(si).

We use the tracing procedure defined above for each of the paths π1, π2. For any path π,
denote by C(π) the first element of C (along π) that π intersects, if such a point exists. The
following two cases can arise:

Case (i): The bisector event at x is true with respect to the propagation of W in TB(e)
(see Figure 51(a)),18 which means that none of π1, π2 intersects the boundary chain C, and
both paths are traced along a common block sequence in TB(e). (Recall that the unfolded
blocks of TB(e) might overlap each other, so the latter condition is necessary to ensure that
both paths reach x on the same layer of the Riemann structure; see Figure 51(b) for a
counterexample.) By definition of a block tree, this is a necessary and sufficient condition
for the event to be true (with respect to the propagation of W in TB(e)); however, a following
simulation restart might still discard this candidate event, forcing the simulation to reach it
again. If si is neither the first nor the last source image in W , we delete si from W , and
recompute the priorities of its neighbors si−1, si+1, as follows. Since all the source images of
W are currently unfolded to the same plane Λ(W ), we can compute, in constant time, the
intersection point p, if it exists, of the new bisector b(si−1, si+1) (stored in the data structure
during the delete operation) with the bisector of si−1 that is not incident to x. If the
two bisectors do not intersect each other (p does not exist), we put priority(si−1) := +∞;
otherwise priority(si−1) is the length of the straight line from si−1 to p, ignoring any visibility
constraints, or the possibility that the two bisectors reach p through different block sequences
— see below. The priority of si+1 is recomputed similarly.

If si = s1 is the first but not the last source image in W , we delete s1 from W (that
is, s2 becomes the first source image in W ), and define the first (unfolded) bisector of W as
a ray from s2 through x; the priority of s2 is recomputed as above. If si is the last but not
the first source image in W , it is handled symmetrically.

Case (ii): The bisector event at x is false with respect to the propagation of W in TB(e):

18We remind the reader that the event may still be false in the actual map SPM(s).
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Figure 51: Processing a candidate bisector event x. The outermost paths π1, π2 of W involved
in x are drawn as thick arrows. In (a) x is a true bisector event; the new bisector b between the
generators of π1, π2 is shown dashed. In (b–d) x is a false candidate. (b) π1, π2 do not intersect C,
but reach x through different layers of the Riemann structure that overlap each other (the region
of overlap is darkly shaded). By Lemma 5.3, at least one vertex of V = {v1, v2, v3} is visible from
the portion of eB between π1 and π2; the same is true in (c), where both π1, π2 intersect C. (d)
C(π1) = C(π2) is a segment f of C. No vertex of V (here V = {v1}) is visible from the portion of
eB between π1 and π2.

Either at least one of the paths π1, π2 intersects C, or π1, π2 are traced towards x along
different block sequences in TB(e), reaching the location x in different layers of the Riemann
structure that overlap at x. See Figure 51(b–d) for an illustration.

If π1 intersects C, denote the first such intersection point (along π1) by z and the seg-
ment C(π1), that contains z, by f (if z is a vertex of C and therefore is incident to two
segments f , repeat this procedure for each such f). We compute z and update tstop(f) :=
min{tstop(f), dz + |f |}, where dz is the distance from s to z along π1. As described above,
and with the visibility caveats noted there, the expression dz + |f | is a time at which W will
certainly have swept over f . 19 We also update tstop(W ) := min{tstop(f), tstop(W )}. If, as the
result of this update, tstop(W ) becomes less than or equal to the current simulation time, we
conclude that f is already fully covered. We then stop the propagation of W and process f as
a covered segment of C (as described below), immediately after completing the processing of
the current bisector event. Note that in this case, that is, when tstop(f) gets updated because
of the detection of the crossing of the wavefront of f at z, which causes tstop(W ) to go below
the current simulation clock t, we have tstop(W ) = tstop(f) = dz + |f | ≤ t = dz + d(z, x),
where d(z, x) is the distance from z to x along π1; see Figure 52. Hence d(z, x) ≥ |f |. This
however violates the invariant that we want to maintain, namely, that we only process bi-
sector events that lie no farther than |f | from an edge f of C. Nevertheless, this can happen
at most once per edge f , because from now on tstop(W ) will not exceed tstop(f). We will use
this property in the time complexity analysis below.

If π2 intersects C, we treat it similarly.

Regardless of whether π1, π2, or neither of them intersects C, we then proceed as follows.
Denote by τ the triangle bounded by the images of e, π1 and π2, unfolded to Λ(W ), and

19We could have used here instead of |f | the expression max{|za| , |zb|}, where a, b are the endpoints of f ,
but this optimization does not affect the asymptotic performance of the algorithm.
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Figure 52: If dz + |f | ≤ t = dz + d(z, x), then d(z, x) ≥ |f |.

denote by V the set of the (at most O(1)) vertices of C that lie in the interior of τ . Since it
takes O(log n) time to unfold each segment of C, it takes O(log n) time to compute V .

Assume first that π1, π2 satisfy the assumptions of Lemma 5.3; it follows that V is not
empty (see Figure 51(b, c)). We trace the path from each generator in W ′ to each ver-
tex v of V , and compute claimer(v) (which satisfies d(claimer(v), v) = min

{

{d(s′, v) |
v is visible from s′ ∈ W ′}∪{+∞}

}

). Denote by u the vertex of V so that tu := d(claimer(u), u) =
minv∈V d(claimer(v), v); by Lemma 5.3, at least one vertex of V is visible from at least one
generator in W ′, and therefore tu is finite. As we will shortly show in Corollary 5.8, tu < tx
(where tx = priority(si) is the current simulation time). (This claim is “intuitively obvious”
— see Figure 51(b–d), but does require a rigorous proof.) This implies that the propagation
is invalid for t ≥ tu. We thus restart the propagation at time tu, as follows.

Let Wu denote the last version of (the data structure of) W that has been computed before
time tu. We split Wu into sub-wavefronts W1,W2 at s′ := claimer(u) at the simulation
time tu, so that range(W1) is the prefix of range(Wu) up to u, and range(W2) is the rest of
range(Wu) (to retrieve the range that is consistent with the version Wu we can simply store
all the versions of range(W ) — recall that each uses only constant space, because we can
keep it unfolded). Discard all the later versions of W . We set tstop(W1) (resp., tstop(W2))
to be the minimal tstop(f) value (as calculated before time tu) among all segments f in
range(W1) (resp., range(W2)). We replace the last (resp., first) unfolded bisector image of
W1 (resp., W2) by the ray from s′ through u, and correspondingly update the priority of s′

in both new sub-wavefronts (recall from Section 5.1 that the split operation creates two
distinct copies of s′).

Assume next that the assumptions of Lemma 5.3 do not hold, which means that both
π1 and π2 intersect C, and that C(π1) = C(π2), which is either a contact interval I or a
transparent edge f of C (see Figure 51(d)). In the former case (a contact interval), the
wave of si is not part of any sub-wavefront of W that leaves c (as shortest paths), and it is
not involved in any further critical event inside c, as discussed above. To ignore si in the
further simulation of the propagation of W in TB(e), we reset priority(si) := +∞ (instead
of deleting si from W , which would involve an unnecessary recomputation of the bisectors
involving the neighbors of si). In the latter case, the following similar technical operation
must be performed. Since si is a part of the resulting wavefront W (e, f) (as will follow from
the correctness of the bisector event processing, proved in Lemma 5.11 below), we do not
want to delete si from W ; yet, since si is not involved in any further critical event inside
c, we want to ignore si in the further simulation of the propagation of W in TB(e) (that is,
to ignore its priority in the priority queue), and therefore we update priority(si) := +∞.
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However, this artificial setting must be corrected later, when the propagation of W in TB(e)
is finished, to ensure that the priority of si in W (e, f) (which may be then merged into
W (f)) is correctly set — we must then reset priority(si) to its true (current) value. We
mark si to remember that its priority must be reset later.20

To summarize, in Case (i) we trace two paths and perform one delete operation and
O(1) priority queue operations, hence it takes O(log n) time to process a true bisector event.
In Case (ii) we trace O(1) paths, compute at most O(1) unfolded images, and perform at
most one split operation and O(1) priority queue operations; hence it takes O(log n) time
to process a false (candidate) bisector event. The correctness of the above procedure is
established in Lemma 5.11 below, but first we describe the detection and the processing of
the candidate vertex events that were not detected and processed during the handling of
false candidate bisector events. This situation arises when the priority of the next event of
W in the priority queue is equal or greater than tstop(W ), in which case we stop processing
the bisector events of W in TB(e), and proceed as described next.

Processing a covered segment of C. Consider the situation in which the algorithm stops
propagating W in TB(e) when the simulation reaches the time tstop(W ) 6= +∞. We then
must have tstop(W ) = tstop(f), for some segment f in range(W ), so that all the currently
known candidate events that involve the sub-wavefront of W that claims f have already
been processed.

Another case in which the algorithm stops the propagation of W is when tstop(W ) = +∞.
This means that all the currently known candidate events of W have already been processed;
that is, the former situation holds for each segment f in range(W ). Therefore to treat the
latter case we process each f in range(W ), in the same manner as processing a single f in
the former case, so we only consider the former situation.

Let f be such a segment of range(W ). We compute the static wavefront W (e, f) from
the current dynamic wavefront W — if f is a transparent edge, then W (e, f) is needed for
the propagation process in further cells; otherwise (f is a contact interval) we do not need
to compute W (e, f) to propagate it further, but we need to know the extreme generators of
W (e, f) to ensure correctness of the simulation process, a step that will be explained in the
proof of Lemma 5.11 below. Since the computation in the latter case is almost identical to
the former, we treat both cases similarly (up to a single difference that is detailed below).

Since f ∈ C defines a unique homotopy class of paths from eB to f within TB(e), the sub-
wavefront of W that claims points of f is indeed a single contiguous sub-wavefront W ′ ⊆ W .
We determine the candidate extreme claimers of f by performing search in W for each of
the endpoints a, b of f (note that the candidates are not necessarily true, since search does
not consider visibility constraints). If the candidate claimer of a does not exist, we denote
by a′ the closest to a point of f intersected by an extreme bisector of W – see Figure 53(a).
(If there is no such a′, we can already determine that W claims no points on f , and no

20In the previously described case, where V contains vertices that are visible from W ′, the above technical
procedure is not currently needed, because we will first process vertex events at some of the vertices of V,
which will cause restarts of the simulation, involving splitting W at the appropriate claimers. These restarts
may eventually lead to situations with V = ∅, which will then be processed as described above.
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further processing of f is needed.21) Symmetrically, we search for the claimer of b, and, if
it is not found, we define b′ similarly. If a (resp., b) is claimed by W , denote by π1 (resp.,
π2) the path π(claimer(a), a) (resp., π(claimer(b), b)); otherwise denote by π1 (resp., π2)
the path π(claimer(a′), a′) (resp., π(claimer(b′), b′)). Note that π1, π2 might intersect C; as
we will shortly see, this is exactly the situation in which we can detect a vertex event that
has occurred earlier but has not yet been detected. Denote by W ′ the sub-wavefront of W
between the generators of π1 and π2 (inclusive), and use π1, π2 to define (and compute) V as
in the processing of a candidate bisector event (described above).

f ′ 6= f

v1
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v

a′

v3

v2

v1
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π2π1
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Figure 53: Processing a covered segment f of range(W ). (a) The endpoint a of f is not claimed
by W , and π1 is the shortest path to the last claimed point a′; the generator of π1 is extreme in W

(which has already been split at v) and π1 lies on the extreme bisector of W . (b) By Lemma 5.3,
at least one vertex of V = {v1, v2, v3} is visible from the portion of eB between π1 and π2. (c)
C(π1) = C(π2) is a segment f ′ 6= f of C; f is not reached by W at all. No vertex of V is visible from
the portion of eB between π1 and π2. (d) Since df = |π1| < |π1|, W is split at the generator of π1

first.

Assume first that π1, π2 satisfy the assumptions of Lemma 5.3. It follows that V is not
empty, and at least one vertex of V is visible from (all generators in W ′, and, in particular,
from) its claimer in W ′ (see, e.g., Figure 53(b)). Then the case is processed as Case (ii) of a
candidate bisector event (described above), with the following difference: Instead of tracing
a path from each source image in W ′ to each vertex v ∈ V (which is too expensive now, since
W ′ may have non-constant size), we first search in W ′ for the claimer of each such v and
then trace only the path π(claimer(v), v). (Then we restart the simulation from the earliest
time when a vertex v of V is reached by W , splitting W at claimer(v).)

Assume next that the assumptions of Lemma 5.3 do not hold, which means that both
π1 and π2 intersect C, and that C(π1) = C(π2), which is either f or a segment f ′ 6= f of C.
In the latter case, since f is not reached by W at all, no further processing of f is needed
(see Figure 53(c)) — we delete f from range(W ), and update tstop(W ) := min{tstop(f

′)|f ′ ∈
range(W )\{f}}. In the former case, if both π1, π2 are extreme in W , then we have W ′ = W ;
the further processing of f is described below. Otherwise (at least one of π1, π2 is not extreme
in W ), we first have to split W , as follows. If π1 and π2 are not extreme in W , denote by df

the minimum of |π1| , |π2|; if only one path π ∈ {π1, π2} is non-extreme in W , let df := |π|.
Without loss of generality, assume that df = |π1| — see Figure 53(d). We restart the

21Note that this situation may only arise if tstop(W ) = +∞ and f is not the only segment in range(W ).
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simulation from time |π1|, splitting W at the generator of π1, as described in Case (ii) of the
processing of a candidate bisector event.

It is only left to describe the case where W ′ = W and f is the only segment of range(W ).
If f is a contact interval, no further processing of f is needed. Otherwise (f is a transparent
edge), we have to make the following final updates (to prepare W (e, f) for the subsequent
merging procedure at f and for further propagation into other cells). First, we recalculate
the priority of each marked source image (recall that it was temporarily set to +∞), and
update the priority queue component of the data structure accordingly. Next, we update
the source unfolding data (and Λ(W )), as follows. Let B be the block sequence traversed by
W from e to f along TB(e), including (resp., excluding) B if the first (resp., last) facet of B
lies on Λ(W ), and let E be the edge sequence associated with B. We compute the unfolding
transformation UE , by composing the unfolding transformations of the O(1) blocks of B.
We update the data structure of W (e, f) to add UE to the unfolding data of all the source
images in W (e, f), as described in Section 5.1. As a result, for each generator si of W (e, f),
the polytope edge sequence Ei is the concatenation of its previous value with E , and all the
generators in W (e, f) are unfolded to the plane of an extreme facet incident to f .

Remark: As described in Section 4.2, the basic operation performed in the merging pro-
cedure at a transparent edge f (which results in a pair of one-sided wavefronts at f) is the
computation of a bisector between two generators in two distinct wavefronts that reach (a
fixed side of) f . Note that the above invariant, that all the generators in such a wavefront
W (e, f) are ready to be unfolded to a plane of a facet intersected by f (that is, for each
generator in W (e, f) this unfolding transformation is available by traversing its path in the
tree that stores W (e, f), in O(log n) time), allows us to compute a bisector between two gen-
erators in two distinct wavefronts that reach f , in O(log n) time. We omit further (simple)
details of this operation.

To summarize, we trace O(1) paths and perform one split and at most O(1) search

operations, for each of at most O(1) segments of C. Then we perform at most one source
unfolding information update for each transparent edge in C. All these operations take a
total of O(log n) time. However, we also perform a single priority update operation for each
marked generator which has participated in a candidate bisector event beyond a transparent
edge of C. A linear upper bound on the total number of these generators, as well as the
number of the processed candidate events, is established next.

5.3.2 Correctness and complexity analysis.

We start by observing, in the following lemma, a very basic property of W that asserts,
informally, that distances from generators increase along their bisectors; this will be used in
the correctness analysis of the simulation algorithm.

Lemma 5.4. Let si, sj ∈ W be a pair of generators that become neighbors at a bisector
event x during the propagation of W through TB(e), where an intermediate generator s′ gets
eliminated. Then (i) the portion of the bisector b(si, sj) that is closer to s′ than x is claimed,
among si, s

′ and sj, by s′, and (ii) x is closer to si (and sj) than any other point on the
portion of b(si, sj) that is not claimed by s′.
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Proof: (i) Assume the contrary. Then, as is easily seen, the region R(s′) claimed by s′ must
fully lie on one side of b(si, sj) (on Λ(W )); without loss of generality, assume that R(s′) lies
entirely on the same side of b(si, sj) as si (so that R(s′) ∩ b(si, sj) = x; sj lies on the other
side of b(si, sj)). See Figure 54(a) for an illustration. Consider the straight segment sisj

(on Λ(W )), and let r = sisj ∩ b(si, sj), q = sisj ∩ b(s′, sj) and u = sisj ∩ b(si, s
′) be the

three intersection points of sisj with the corresponding bisectors. Now consider the straight
segments s′q and s′u on Λ(W ): Since q ∈ b(s′, sj), we have

∣

∣s′q
∣

∣ = |sjq|; similarly, |sir| = |sjr|

and |siu| =
∣

∣s′u
∣

∣. Since |sjq| > |sjr| and |sir| > |siu| + |uq|, we have
∣

∣s′q
∣

∣ >
∣

∣s′u
∣

∣ + |uq|,
which contradicts the triangle inequality.
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Figure 54: (a) The impossible situation where the region R(s′) claimed by s′ (shaded) lies entirely
on one side of b(si, sj). (b) si and sj must lie on the same side of the line l that supports e, and x

and p must lie on the other side of l.

(ii) Assume the contrary: Let p be a point on the portion of the bisector b(si, sj) that is
not claimed by s′, so that d(si, p) ≤ d(si, x). Then ∠sipx ≥ ∠sixp, and, since p and x are
equidistant from si and from sj, ∠sipx = ∠sjpx and ∠sixp = ∠sjxp. However, since both
si and sj are in the one-sided wavefront W (eB), si and sj must lie on the same side of the
line l that supports eB, and x and p must lie on the other side of l (see Figure 54(b)). Hence
∠sixsj > π > ∠sipsj, a contradiction. ¤

Lemma 5.5. Assume that all bisector events of W that have occurred up to some time t
have been correctly processed, and the data structure of W has been correctly updated. Let p
be a point tentatively claimed by a generator si ∈ W at time d(si, p) ≤ t, meaning that the
claim is only with respect to the current generators in W (at time t), and where we ignore
any visibility constraints of C. Denote by R(si) the unfolded region, that is enclosed between
the bisectors of si currently stored in the data structure. Then p ∈ R(si), and p /∈ R(sj), for
any other generator sj 6= si in W .

Proof: The claim that p ∈ R(si) is trivial, since the bisectors of si that are currently
stored in the data structure have been computed before time t, and are therefore correct, by
assumption.

For the second claim, assume to the contrary that there exists a generator sj 6= si in W
so that p ∈ R(sj). Denote by q the first point along π(sj, p) that is equally closest to sj and
to some other generator s′ ∈ W (such q and s′ must exist, since d(si, p) < d(sj, p)); that is,
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q = π(sj, p) ∩ b(s′, sj). The fact that in the data structure p lies in R(sj) means that the
bisector b(s′, sj) is not correctly stored in the data structure, and thus it cannot be a part
of W (eB); therefore b(s′, sj) emanates from a bisector event location x that lies within c.
By Lemma 5.4, d(s′, x) < d(s′, q) < d(s′, p) ≤ t; hence, the bisector event when b(s′, sj) is
computed occurs before time t, and therefore b(s′, sj) is correctly stored in the data structure
— a contradiction. ¤

In particular, Lemma 5.5 shows that when a vertex event at v is discovered during the
processing of another event at simulation time t, or is processed since a segment of C that is
incident to v is covered at time t, the tentative claimer of v (among all the current generators
in W ) is correctly computed, assuming that all bisector events of W that have occurred up
to time t have been correctly processed. We will use this argument in Lemma 5.11 below.

Lemma 5.6. Assume that all bisector events of W that have occurred up to some time t
have been correctly processed, and the data structure of W has been correctly updated at all
these events. If two waves of a common topologically constrained portion of W are adjacent
at t, then their generators must be adjacent in the generator list of W at time t.

Proof: Assume the contrary. Then there must be two source images si, sj in a common
topologically constrained portion W ′ ⊆ W such that their respective waves wi, wj are ad-
jacent at some point x at time t (that is, d(si, x) = d(sj, x) = t ≤ d(sk, x) for all other
generators sk in W ), but there is a positive number of source images si+1, . . . , sj−1 in the
generator list of W ′ at time t between si and sj, whose distances to x are necessarily larger
than d(si, x) (and their waves in W ′ at time t are nontrivial arcs). See Figure 55 for an
illustration.

x x
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b(si, bk)
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Figure 55: The waves from the source images si, sj collide at x. Each of the two following cases
contradicts the assumption in the proof of Lemma 5.6: (a) The portion β of b(si, sj) intersects the
transparent edge e; (b) The generator sk is eliminated at time ty = d(si, y) < d(si, x) = t.

Consider the situation at time t. Since wi, wj belong to a common topologically con-
strained W ′, it follows that e, π(si, x) and π(sj, x) unfold to form a triangle τ in an unfolded
block sequence of TB(e) (so that τ is not intersected by C).
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Consider the “unfolded” Voronoi diagram Vor({si, . . . , sj}) within τ . By assumption,
x lies in the Voronoi cells V (si), V (sj) of si, sj, respectively, separated by a Voronoi edge
β, which is a portion of b(si, sj). If β intersects e (see Figure 55(a)), then si and sj claim
consecutive portions of e in W (e), so si and sj must be consecutive in W already at the
beginning of its propagation within TB(e), a contradiction.

Otherwise, β ends at a Voronoi vertex within τ — see Figure 55(b). Thus both cells
V (si), V (sj) have Voronoi vertices in τ , and we select that vertex y whose distance ty to
its claimers is the smallest. Clearly, y is the location of the bisector event in which some
generator sk ∈ W is eliminated; moreover, sk must belong to W ′, by construction. By
Lemma 5.4, ty < t, and therefore, by our assumption, the bisector event at y has been
correctly processed, so si and sj must be consecutive in W already before time t — a
contradiction.¤

Lemma 5.6 shows that if all the events considered by the algorithm are processed correctly,
then all the true bisector events of the first kind are processed by the algorithm, since, as
the lemma shows, such events occur only between consecutive generators of W . Let W ′ be a
topologically constrained portion of W , and denote by R(W ′, t) the region within TB(e) that
is covered by W ′ from the beginning of the simulation in TB(e) up to time t. By definition
of the topologically constrained wavefront, ∂R(W ′, t) consists only of eB and of the unfolded
images of the waves and of the extreme bisectors of W ′. Another role of Lemma 5.6 is in the
proof of the following observation.

Corollary 5.7. R(W ′, t) is not punctured (by points or “islands” that are not covered by W ′

at time t).

Proof: Follows directly from Lemma 5.6, since, otherwise, R(W ′, t) would have to contain
a point q where a pair of waves, generated by the respective generators si, sj, collide, and
eB and the paths π(si, q), π(sj, q) enclose an island within the (unfolded) triangle that they
form. This however contradicts the proof of Lemma 5.6. ¤

Corollary 5.8. When a vertex event at v is discovered during the processing of a candidate
event at simulation time t (either a bisector event x or an event involving a covered segment
f of C), the vertex v is reached by W no later than time t.

Proof: Indeed, by the way vertex events are discovered, v must lie in an unfolded triangle
τ formed as in the proof of Lemma 5.6, where the waves of the respective generators si, sj

either collide at a bisector event location x, or are adjacent in the wavefront that covers
the segment f of C. Since the two sides of τ incident to x belong to R(W ′, t), for some
topologically constrained portion W ′ of W that contains si, sj, Corollary 5.7 implies that all
of τ is contained in R(W ′, t), which implies the claim. ¤

The analysis of the simulation restarts. Before we show the correctness of the pro-
cessing of the true critical events, let us discuss the processing of the false candidates. First,
note that the simulation can be aborted at time t′ (during the processing of a false candidate
event) and restarted from an earlier time t′′ < t′ only if there exists some true vertex event
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x that should occur at time t ≤ t′′ and has not been detected until time t′ (in the aborted
version of the simulation). Note that whenever a false candidate event x′ /∈ {x1, . . . , xm} is
processed at time t′, one of the three following situations must arise.

(i) It might be the case that x′ is not currently (at time t′) determined to be false, since
both paths involved in x′ are traced along the same block sequence and do not intersect C, x′

is false “just” because there is some earlier true vertex event that is still undetected. Then
a new (invalid) version of W corresponding to time t′ is created at time t′.

Otherwise, x′ is immediately determined to be false (since either one of the involved paths
intersects C or the paths are traced along different block sequences). In this case either (ii)
an earlier candidate vertex event x′′ (occurring at some time t′′ < t′) is currently detected
and the simulation is restarted from t′′, or (iii) x′ is a bisector event which occurs outside
TB(e), so it involves only bisectors that do not participate in any further critical event inside
TB(e). In this case a new version of W , corresponding to the time t′, is created, in which
the generator that is eliminated at x′ is marked and its priority is set to +∞.

In any of the above cases, none of the existing true (valid) versions of W is altered
(although some invalid versions may be discarded during a restart); moreover, a new invalid
version corresponding to time t′ may be created (without restarting the simulation yet) only
if there is some true event that occurred at time t < t′ but is still undiscovered at time t′.

Order the O(1) vertices of C that are reached by W (that is, the locations of the true vertex
events) as v1, . . . , vm, where W reaches v1 first, then v2, and so on (this is not necessarily
their order along C); denote by tj, for 1 ≤ j ≤ m, the time at which W reaches vj. Assume
that if the simulation is restarted because of a vertex event at vj, then the simulation is
restarted exactly from time tj — we show that this assumption is correct in Lemma 5.11
below; in other words, the simulation is only restarted from times t1, . . . , tm.

Lemma 5.9. When the vertex events at vertices v1, . . . , vk, for 1 ≤ k ≤ m, are already
detected and processed by the algorithm, the simulation is never restarted from time tk or
earlier.

Proof: Since the simulation restart from time t discards all existing versions of W that
correspond to times t′ > t, the claim of the lemma is equivalent to the claim that all the
versions of W that were created at time tk or earlier will never be discarded by the algorithm
if all the vertex events at vertices v1, . . . , vk have already been detected and processed. We
prove the latter claim by induction on k.

For k = 1, the version of W created at time t1 can only be discarded if a vertex event
which occurs earlier than t1 is discovered, which is impossible since v1 is the first vertex
reached by W .

Now assume that the claim is true for v1, . . . , vk−1, and consider the version Wk of W
that is created at time tk when the vertex events at vertices v1, . . . , vk are already detected
and processed. The algorithm may discard Wk only when at some time t′ > tk a vertex
v is discovered, such that v is reached by W at time tv < tk, and therefore v must be in
{v1, . . . , vk−1}. This therefore cannot happen, since v has already been processed at time
tv < t′, and W , that already encodes the split at the claimer of v, cannot detect and process
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the event at v again without discarding the version that corresponds to time t1 ≤ tv ≤ tk−1

(and discarding this version contradicts the induction hypothesis). ¤

Lemma 5.10. For each 1 ≤ j ≤ m, the simulation is restarted from time tj at most 2j−1

times.

Proof: By induction on j. By Lemma 5.9, the simulation is restarted from time t1 at most
once. Now assume that j ≥ 2 and that the claim is true for times t1, . . . , tj−1.

By Lemma 5.11, the vertex event at vj is eventually processed at time tj; by Lemma 5.9,
there are no further restarts from time tj after we get a version of W that encodes all the
events at v1, . . . , vj. Hence the simulation may be restarted from time tj only once each
time that W ceases to encode the vertex event at vj, and this may only happen either at
the beginning of the simulation, or when the simulation is restarted from a time earlier than
tj. Since, by the induction hypothesis, the simulation is restarted from times t1, . . . , tj−1 at
most

∑j−1
i=1 2i−1 = 2j−1 − 1 times, the simulation may be restarted from time tj at most 2j−1

times. ¤

Correctness of true critical event processing. We are now ready to establish the
correctness of the simulation algorithm. Since this is the last remaining piece of the inductive
proof of the whole Dijkstra-style propagation (Lemmas 4.2 and 4.5), we may assume that
all the wavefronts were correctly propagated to some transparent edge e, and consider the
step of propagating from e. This implies that W (eB) encodes all the shortest paths from s
to the points of eB from one fixed side. Now, let x1, . . . , xm be all the true critical events
(that is, both bisector and vertex events that are true with respect to the propagation of W
in TB(e)), ordered according to the times t1, . . . , tm at which the locations of these events
are first reached by W . Since we assume general position, t1 < · · · < tm.

Assume now that at the simulation time tk (for 1 ≤ k ≤ m) all the true events that
occur before time tk have been correctly processed; that is, for each such bisector event
xi, the corresponding generator has been eliminated from W at simulation time ti, and for
each such vertex event xj, W has been split at simulation time tj at the generator that
claims the corresponding vertex. Note that the assumption is true for simulation time t1,
since the processing of false candidate events does not alter W (eB) (which represents the
wavefront before any event within TB(e); its validity follows from the inductive correctness
of the merging procedure and is not violated by the processing of false events).

Lemma 5.11. Assuming the above inductive hypothesis, the next true critical event xk is
correctly processed at simulation time tk, possibly after a constant number of times that the
simulation clock has reached and passed tk (to process a later false candidate event) without
detecting xk, each time resulting in a simulation restart.

Proof: There are two possible cases. In the first case, xk is a true bisector event, in which
the wave of a generator s′ in W is eliminated by its neighbors at propagation time tk. The
only condition needed for the processing of xk at time tk is that priority(s′) at time tk must
be equal to tk. Any possible false candidate event that is processed before xk and after the
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processing of all true events that take place before time tk, may only create new invalid
versions that correspond to times which are later than time tk (since a false candidate event
can arise only when an earlier true event is still undetected). This implies that s′ has not
been deleted from any valid version of W that corresponds to time tk or earlier, and all such
valid versions exist. By this fact and by the inductive hypothesis, the bisectors of s′ have
been computed correctly either already in W (eB), or during the processing of critical events
that took place before time tk. By definition, priority(s′) is the distance from s′ to the event
point, and is thus equal to tk, so the above condition is fulfilled.

In the second case, xk is a true vertex event that takes place at a vertex v ∈ C, which is
claimed by some generator sv in W . By the argument used in the first case, sv has not been
deleted from W at an earlier (than tk) simulation time, and each point on the path π(sv, v)
is claimed by sv at time tk or earlier. Therefore sv can only be deleted from a version of
W at time later than tk when a false bisector event involving sv is processed. Moreover, a
sub-wavefront including sv can be split from a version of W at time later than tk (and v
can be removed from range(W )) when a false vertex event is processed. We show next that
in both cases, xk is detected and the simulation is restarted from time tk, causing xk to be
processed correctly.

Consider first the case where sv is not deleted in any later false candidate event. In
that case, when we stop the propagation of W , v is in range(W ), and therefore at least one
segment f of range(W ) that is incident to v is ascertained to be covered at that time. Since
sv is in W , Lemma 5.5 implies that the result of the search procedure that the algorithm
uses to compute the claimer of v is sv, and, by Corollary 5.2, the tracing procedure correctly
computes d(sv, v) to be tk. Since xk is the next true vertex event, the distance from the
other endpoint of f to its claimer is larger than or equal to tk, and, since W has not yet
been split at v, π(sv, v) is not an extreme bisector of W . Hence the algorithm sets df := tk,
and W is split at sv at simulation time tk, as required.

Consider next the case where sv is deleted (or split) from W at a false event x′ at time
t′ ≥ tk. Suppose first that x′ is a false bisector event. Then v must lie in the interior of the
region τ bounded by e and by the paths to the location of x′ from the outermost generators
of W involved in x′. The algorithm traces the paths to v and to (some of) the other vertices
of C in τ from all the generators of W that are involved in x′, including sv (see Figure 51(b,
c)); then all such distances are compared. Only distances from each such generator s′ to each
vertex that is visible from s′ (within the unfolded blocks of TB(e)) are taken into account,
since, by Corollary 5.2, all visibility constraints are detected by the tracing procedure. The
vertex v must be visible from sv and the distance d(sv, v) must be the shortest among all
compared distances, since, by the inductive hypothesis, all vertex events that are earlier
than xk have already been processed (and W has already been split at these events). By
Lemma 5.5 and by Corollary 5.2, the tentative claimer (among all current generators in W )
of each vertex u is computed correctly. No generator s′ that has already been eliminated
from W can be closer to u than the computed claimer(u), since, by Corollary 5.8 and by
the inductive hypothesis, u would have been detected as a vertex event no later than the
bisector event of s′, which is assumed to have been correctly processed. Therefore the distance
d(claimer(u), u) is correctly computed for each such vertex u (including v), and therefore the
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distance d(sv, v) = tk is determined to be the shortest among all such distances. Hence the
simulation is restarted from time tk, and W is split at sv at simulation time tk, as asserted.

Otherwise, x′ is a false vertex event processed when a segment f of C is ascertained to
be fully covered by W , and v must lie in the interior of the region τ bounded by e, f , and
by the paths from the outermost generators of W claiming f to the extreme points of f
that are tentatively claimed by W (see Figure 53(b)). The algorithm performs the search

operation in the sub-wavefront W ′ ⊆ W that claims f for v and for all the other vertices of C
in τ , and then compares the distances d(claimer(u), u), for each such vertex u that is visible
from its claimer (including v). By the same arguments as in the previous case, the distance
d(sv, v) = tk is determined to be the shortest among all such distances, the simulation is
restarted from time tk, and W is split at sv at simulation time tk, as asserted. ¤

The above lemma completes the proof of the correctness of our algorithm, because it
shows, using induction, that every true event will eventually be detected.

Remark: From a practical point of view, the algorithm can be greatly optimized, by using
the information computed before the restart to speed-up the simulation after it is restarted.
Moreover, we suspect that, in practice, the number of restarts that the algorithm will perform
will be very small, significantly smaller than the bounds in the lemma.

Complexity analysis. By Lemma 5.10, the algorithm processes only O(1) candidate ver-
tex events (within a fixed TB(e)), and, since the simulation is restarted only at a vertex
event, it follows that each bisector event has at most O(1) “identical copies”, which are the
same event, processed at the same location (and at the same simulation time) after different
simulation restarts; at most one of these copies remains encoded in valid versions of W (and
the rest are discarded). Hence for the purpose of further asymptotic time complexity anal-
ysis, it suffices to bound the number of the processed candidate bisector events that take
place at different locations.

Note that each candidate bisector event x processed by the propagation algorithm falls
into one of the five following types:

(i) x is a true bisector event.

(ii) x is a false candidate bisector event, during the processing of which an earlier-reached
vertex of C has been discovered, and the simulation has been restarted.

(iii) x is a false candidate bisector event of a generator s′ ∈ W , so that all paths in the wave
from s′ cross a common contact interval of C (a “dead-end”) before the wave is eliminated
at x.

(iv) x is a false candidate bisector event of a generator s′ ∈ W , so that all paths in the wave
from s′ cross a common transparent edge f of C before the wave is eliminated at x, and the
distance from f to x along d(s′, x) is greater than 2 |f |.

(v) x is a false candidate bisector event, as in (iv), except that the distance from f to x
along d(s′, x) is at most 2 |f |.

We first bound the number of true bisector events (type (i)).
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Lemma 5.12. The total number of processed true bisector events, during the whole wavefront
propagation phase, is O(n).

Proof: First we bound the total number of waves that are created (and propagated) by the
algorithm.

The wavefront W is always propagated from some transparent edge e, within the blocks
of a tree TB(e), for some block B incident to e, in the Riemann structure T (e) of e. A wave
of W is split during the propagation only when W reaches a vertex of C, the corresponding
boundary chain of TB(e). Each such vertex is reached at most once (ignoring restarts) by each
topologically constrained wavefront that is propagated in TB(e). There are only O(1) such
wavefronts, since there are only O(1) paths in TB(e) (and corresponding homotopy classes).
Each (side of a) transparent edge e is processed exactly once (as the starting edge of the
propagation within its well-covering region), by Lemma 4.2, and e may belong to at most
O(1) well-covering regions of other transparent edges, that may use e at an intermediate
step of their propagation procedures. There are O(1) vertices in any boundary chain C,
hence at most O(1) wavefront splits can occur within TB(e) during the propagation of a
single wavefront. Since there are only O(n) transparent edges e in the surface subdivision,
and there are only O(1) trees TB(e) for each e, we process at most O(n) such split events.
(Recall from Lemma 5.10 that a split at a vertex is processed at most O(1) times.) Since a
new wave is added to the wavefront only when a split occurs, at most O(n) waves are created
and propagated by the algorithm.

In each true bisector event processed by our algorithm, an existing wave is eliminated
(by its two adjacent waves). Since a wave can be eliminated exactly once and only after it
was earlier added to the wavefront, we process at most O(n) true bisector events. ¤

Lemma 5.13. The algorithm processes only O(n) candidate bisector events during the whole
wavefront propagation phase.

Proof: There are at most O(n) events of type (i) during the whole algorithm, by Lemma 5.12.
By Lemma 5.10, there are only O(1) candidate events of type (ii) that arise during the
propagation of W in any single block tree TB(e). Since a candidate event of type (iii), within
a fixed surface cell c, involves at least one wave that encodes paths that enter c through
eB but never leave c (that is, they traverse a facet sequence that contains a loop, and are
therefore known not to be shortest paths beyond some contact interval in the loop), the
total number of these candidate events during the whole propagation is bounded by the
total number of generated waves, which is O(n) by the proof of Lemma 5.12.

When a candidate event of type (iv) occurs at a location x at time tx, while processing
some fixed TB(e), consider the transparent edge f of C that is crossed by the wave from
the generator s′ eliminated at x. Denote by d1 the distance from s′ to f along π(s′, x),
and denote by d2 the distance along π(s′, x) from f to x; that is, d2 > 2 |f | and d1 + d2 =
d(s′, x) = tx. Before the update, the value of tstop(f) must have been equal or greater than
tx > d1 + 2 |f |, since otherwise f would have been ascertained to be covered before time tx,
and therefore the event at tx would have not be processed; hence, after the update, we have
tstop(f) = d1 + |f | < tx. Therefore, immediately after the processing of the event at tx we
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detect that f has been covered; by Lemma 5.10 each f is detected to be covered at most
O(1) times, and, since there are only O(1) transparent edges in C, there are at most O(1)
events of type (iv) during the propagation of W in TB(e).

Consider now a candidate event of type (v) that occurs at a location x at time tx after
crossing the transparent edge f of C. This event may also be detected during the propagation
of the wavefront through f into further cells, and therefore it must be counted more than once
during the whole wavefront propagation phase. However, on Λ(W ), x lies no further than
2 |f | from the image of f , and therefore the shortest-path distance from f to the location of
x on ∂P cannot be greater than 2 |f |; hence, by the well-covering property of f , x lies within
a constant number of cells away from the cell c. Therefore each candidate event of type (v)
is detected in at most O(1) cells, and, since in each such event at least one wave that encodes
paths that enter c through eB gets eliminated, the total number of these candidate events
during the whole algorithm is bounded by the total number of generated waves, which is
O(n) by the proof of Lemma 5.12. ¤

We summarize the main result of the preceding discussion in the following lemma.

Lemma 5.14. The total number of candidate events processed during the wavefront propa-
gation is O(n). The wavefront propagation phase of the algorithm takes a total of O(n log n)
time and space.

5.4 Shortest path queries

In this subsection we describe the second phase of the algorithm, namely, the preprocessing
needed for answering shortest path queries.

Preprocessing building blocks. At the end of the propagation phase, the one-sided
wavefronts for all transparent edges have been computed. Furthermore, for each building
block B of a surface cell c and a topologically constrained wavefront W that was propagated
in c through B, all bisector events that are true with respect to the propagation of W in B
have been exactly computed. We call a generator of W active in B if it was detected by
the algorithm to be involved in such an event inside B. Note that if W has been split in
another preceding building block of c into two sub-wavefronts W1,W2 that now traverse B
as two distinct topologically constrained wavefronts, no interaction between W1 and W2 in
B is detected or processed (the two traversals are processed at two distinct nodes of a block
tree, or different block trees of T (e), both representing B). Moreover, if W has been split
in B (which might happen if B is a nonconvex type I block — see Section 3.1), the split
portions cannot collide with each other inside B; see Figure 56. The wavefront propagation
algorithm lets us compute the active generators for all pairs (W,B) in a total of O(n log n)
time.

We next define the partition local(W,B) of the unfolded portion of a building block B
that was covered by a wavefront W (and the wavefronts that W has been split into during
its propagation within B), which will be further preprocessed for point location for shortest
path queries. The partition local(W,B) consists of active and inactive regions, defined as
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follows. The active regions are those portions of B that are claimed by generators of W that
are active in B, and each inactive region is claimed by a contiguous band of waves of W that
cross B in an “uneventful” manner, delimited by a sequence of pairwise disjoint bisectors.
See Figure 56 for an illustration. Note that the complexity of local(W,B) is O(k +1), where
k is the number of true critical events of W in B.
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Figure 56: The wavefront W enters the building block B (in this example, B is a nonconvex block
of type I, bounded by solid lines) from the left. The partition local(W, B) is drawn by thick dashed
lines; thin dashed lines denote bisectors of W that lie fully in the interior of the inactive regions.
The regions of the partition are numbered from 1 to 12; the active regions are lightly shaded, the
inactive regions are white, and the portions of B that were not traversed by W due to visibility
constraints are darkly shaded. The locations of the bisector events of W and the reflex vertices
reached by W in B are marked. W is split at v into W1 and W2, and local(W, B) includes these
sub-wavefronts too.

Here are several comments concerning this definition. The edges of local(W,B) are those
bisectors of pairs of generators of W , at least one of which is active in B. The first and the
last bisectors of W are also defined to be edges of local(W,B). If, during the propagation
in B, W has been split (into sub-wavefronts W1,W2) at a reflex vertex v of B, then the ray
from the generator of W , whose wave has been split at v, through v (an artificial extreme
bisector of both W1,W2) is also defined to be an edge of local(W,B); this ray terminates at
v in one of the wavefronts W1,W2, and may extend beyond v in the other. If W has been
split into sub-wavefronts W1,W2 in such a way, we treat also the bisectors of W1,W2 as if
they belonged to W (that is, embed local(W1, B), local(W2, B) as extensions of local(W,B),
and preprocess them together as a single partition of B). The partition can actually be
computed “on the fly” during the propagation of W in B, in additional time proportional
to the number of detected critical events of W in B.

We preprocess each such partition local(W,B) for point location [15, 25], so that, given
a query point p ∈ B, we can determine which region r of local(W,B) contains the unfolded
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image q of p (that is, if B is of type II or III and E is the edge sequence associated with
B, q = UE(p); if B is of type I or IV then q = p). If r is traversed by a single wave of W
(which is always the case when r is active, and can also occur when r is inactive), it uniquely
defines the generator of W that claims p (if we ignore other wavefronts traversing B). This
step of locating r takes O(log k) time. If q is in an inactive region r of local(W,B) that
was traversed by more than one wave of W , then r is the union of several “strips” delimited
by bisectors between waves that were propagated through B without events. We can then
search for the claimer of q in W in O(log n) time (see Section 5.1).22

Preprocessing S3D. In order to locate the surface subdivision cell that contains the query
point, we also preprocess the 3D-subdivision S3D for point location, as follows. First, we
subdivide each perforated cube cell into six rectilinear boxes, by extending its inner horizontal
faces until they reach its outer boundary, and then extending two parallel vertical inner faces
until they reach the outer boundary too, in the region between the extended horizontal faces.
Next, we preprocess the resulting 3-dimensional rectilinear subdivision in O(n log n) time
for 3-dimensional point location, as described in [12]. The resulting data structure takes
O(n log n) space, and a point location query takes O(log n) time.

Answering shortest-path queries. To answer a shortest-path query from s to a point
p ∈ ∂P , we perform the following steps.

1. Query the data structure of the preprocessed S3D to obtain the 3D-cell c3D that contains
p.

2. Query the surface unfolding data structure (defined in Section 2.4) to find the facet f
of ∂P that contains p in its closure.23

3. Since the transparent edges are close to, but not necessarily equal to, the corresponding
intersections of subfaces of S3D with ∂P , p may lie either in a surface cell induced by
c3D or by an adjacent 3D-cell, or in a surface cell derived from the intersection of
transparent edges of O(1) such cells. To find the surface cell containing p, let I(c3D) be
the set of the O(1) surface cells induced by c3D and by its O(1) neighboring 3D-cells
in S3D (whose closures intersect that of c3D). For each cell c ∈ I(c3D), check whether
p ∈ c, as follows.

(a) Using the surface unfolding data structure, find the transparent edges of ∂c that
intersect f , by finding, for each transparent edge e of ∂c, the polytope edge se-
quence E that e intersects, and searching for f in the corresponding facet sequence
of E (see Section 2.4).

(b) Calculate the portion c ∩ f and determine whether p lies in that portion.

22Note that we could have also found the claimer by a naive binary search through the list of generators
of r, which would have cost O(log2 n). Here search can be regarded as an optimized implementation of
such a binary search.

23Alternatively, this step can be done using a standard point location technique, if we additionally pre-
process ∂P as a planar map.
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4. If p is contained in more than one surface cell, then it must be incident to at least
one transparent edge. If p is incident to more than one transparent edge, then p is a
transparent edge endpoint and its shortest path distance has already been calculated
by the propagation algorithm and can be reported immediately. If p is incident to
exactly one transparent edge e, then we search for the claimer of p in each of the
two one-sided wavefronts at e, and report the one with the shortest distance to p (or
report both if the distances are equal).

If p is contained in exactly one surface cell c, then perform the following step.

5. Among the O(1) building blocks of c, find a block B that contains p (if p is on a
contact interval, and thus belongs to more than one building block, we can choose any
of these blocks). For each wavefront W that has entered B, we find the generator
si that claims p in W , using the point location structure of local(W,B) as described
above, and compute the distance d(si, p). We report the minimal distance from s to p
among all claimers of p that were found at this step.

6. If the corresponding shortest path has to be reported too, we report all polytope edges
that are intersected by the path from the corresponding source image to p. If needed,
all the shortest paths in Π(s, p) (in case there are several such paths) can be reported
in the same manner.

Steps 1–3 take O(log n) time, using [12] and the data structure defined in Section 2.4.
As argued above, it takes O(log n) time to perform Step 4 or Step 5 (note that only one of
these steps is performed). This, at long last, concludes the proof of our main result (modulo
the construction of the 3D-subdivision, given in the next section):

Theorem 5.15 (Main Result). Let P be a convex polytope with n vertices. Given a source
point s ∈ ∂P , we can construct an implicit representation of the shortest path map from s
on ∂P in O(n log n) time and space. Using this structure, we can identify, and compute the
length of, the shortest path from s to any query point q ∈ ∂P in O(log n) time (in the real
RAM model). A shortest path π(s, q) can be computed in additional O(k) time, where k is
the number of straight edges in the path.

6 Constructing the 3D-subdivision

This section presents the proof of Theorem 2.1, by describing an algorithm for constructing
a conforming 3D-subdivision for a set V of n points in R

3. This is a straightforward gener-
alization of the construction of a similar conforming subdivision in the plane [22], without
any significant changes, except for the obvious change in dimension. Readers familiar with
the construction in [22] will find the presentation below very similar, but we nevertheless
describe it here for the sake of completeness.

The main part of the algorithm constructs a 1-conforming 3D-subdivision (defined below)
of size O(n) in O(n log n) time, and Lemma 6.1 shows how to transform this subdivision into
a conforming 3D-subdivision of size O(n) in O(n) additional time.
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A 1-conforming 3D-subdivision is similar to a conforming 3D-subdivision, except for the
well-covering property, which is replaced by the following 1-well-covering property. Given
a 1-conforming 3D-subdivision S1

3D, a subface h ∈ S1
3D is said to be 1-well-covered if the

following three conditions hold (compare with Section 2):

(W1) There exists a set of cells C(h) ⊆ S1
3D such that h lies in the interior of their union

R(h) =
⋃

c∈C(h) c. The region R(h) is called the well-covering region of h.

(W2) The total complexity of all the cells in C(h) is O(1).

(W31) If g is a subface on ∂R(h), then d3D(h, g) ≥ max{l(h), l(g)}.

A subface h is strongly 1-well-covered if the stronger condition (W3’1) holds:

(W3’1) For any subface g so that h and g are incident either to nonadjacent faces of
distinct cells or to nonadjacent faces of the same cell of the subdivision, d3D(h, g) ≥
max{l(h), l(g)}.

If every subface of a 1-conforming 3D-subdivision S1
3D is strongly 1-well-covered, then

S1
3D is strongly 1-conforming.

The minimum vertex clearance property is replaced by the following (weaker) minimum
vertex 1-clearance property :

(MVC1) For any point v ∈ V and for any subface h, d3D(v, h) ≥ 1
4
l(h).

Lemma 6.1. Let V be a set of n points, and let S1
3D be a 1-conforming 3D-subdivision for

V of size O(n) that satisfies the following additional properties:

(1) Each face of S1
3D is axis-parallel.

(2) Each cell is either a whole or a perforated cube (with subdivided faces).

(3) Each point of V is contained in the interior of a whole cube cell.

(4) The minimum vertex 1-clearance property is satisfied.

We can then construct from S1
3D, in time O(n), a conforming 3D-subdivision S3D for V

with complexity O(n), that satisfies the same additional properties (1–3) and the minimum
vertex clearance property (MVC) instead of (MVC1). If S1

3D is a strongly 1-conforming 3D-
subdivision, then we can construct S3D to have the above properties, and also to be a strongly
conforming 3D-subdivision.

Proof: Subdivide each face of S1
3D into 16 × 16 equal-length square subfaces. Define the

well-covering region of each new subface h in S3D to be the same as the well-covering region
in S1

3D of the subface of S1
3D that contains h. These operations can be performed in O(n)

overall time. It is easy to check that the subdivision thus defined satisfies properties (C1–C3)
of Section 2.2. We provide the proof for the sake of completeness.
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(C1) S3D has the same set of cells as S1
3D, so each cell of S3D contains at most one point of

V in its closure.

(C2) To show that each subface h of S3D is well-covered, we check that it satisfies conditions
(W1), (W2), and (W3) (or (W3’) if S1

3D is strongly 1-conforming). Let h1 be the subface
of S1

3D that contains h. Let C1(h1) be the set of cells of S1
3D whose union R1(h1) is the

well-covering region of h1. Define C(h) and R(h) analogously.

(W1) By definition, R(h) = R1(h1), so h is contained in its interior.

(W2) Each subface of each cell in C1(h1) is divided into 16 × 16 pieces in C(h), so
the total complexity of C(h) is O(1).

(W3) Let g be a subface of S3D on ∂R(h), and let g1 be the subface of S1
3D from

which it is derived. Then we have d3D(h, g) ≥ d3D(h1, g1) ≥ max{l(h1), l(g1)} =
16 · max{l(h), l(g)}.

(W3’) Similar to the argument just given for (W3).

(C3) The well-covering regions in S3D are the same as in S1
3D, so each contains at most one

vertex of V .

The properties (1–3) are satisfied in S3D since they are satisfied in S1
3D. The minimum

vertex clearance property is satisfied in S3D since the minimum vertex 1-clearance property
is satisfied in S1

3D, and since in S1
3D the edge of a subface is 16 times longer than the edges

of the subfaces derived from it in S3D, while the distance between two subfaces in S3D is
not shorter than the distance between the original subfaces in S1

3D (similarly, the distance
between a subface in S3D and a point v ∈ V is not shorter than the distance between v and
the original subface in S1

3D). This establishes the lemma. ¤

6.1 i-Boxes and i-quads

Before we describe the construction of the 1-conforming 3D-subdivision, we need a few
definitions.

We fix a Cartesian coordinate system in R
3. For any whole number i, the ith-order grid

Gi in this system is the arrangement of all planes x = k2i, y = k2i and z = k2i, for k ∈ Z.
Each cell of Gi is a cube of size 2i × 2i × 2i, whose near-lower-left24 corner lies at a point
(k2i, l2i,m2i), for a triple of integers k, l,m. We call each such cell an i-box.

Any 4×4×4 contiguous array of i-boxes is called an i-quad. Although an i-quad has the
same size as an (i + 2)-box, it is not necessarily an (i + 2)-box because it need not be a cell
in Gi+2; see Figure 57 for the planar analog of i-boxes and i-quads. The eight non-boundary
i-boxes of an i-quad form its core, which is thus a 2 × 2 × 2 array of i-boxes. Observe that
an i-box b has exactly eight i-quads that contain b in their cores.

The algorithm constructs a conforming partition of the point set V in a bottom-up
fashion. It simulates a growth process of a cube box around each data point, until their

24This means near in the y-direction, lower in the z-direction, and left in the x-direction.
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(a) (b)

Gi

Gi+2

Figure 57: The planar analog of (a) an i-box (lightly shaded) and an (i + 2)-box (darkly shaded);
and (b) an i-quad (darkly shaded) and its core (lightly shaded).

union becomes connected. The simulation works in discrete stages, numbered −2, 0, 2, 4, . . ..
It produces a subdivision of space into axis-parallel cells. The key object associated with a
data point p at stage i is an i-quad containing p in its core. In fact, the following stronger
condition holds inductively: Each (i − 2)-quad constructed at stage (i − 2) lies in the core
of some i-quad constructed at stage i.

In each stage, we maintain only a minimal set of quads. The set of i-quads maintained
at stage i is denoted as Q(i). This set is partitioned into equivalence classes under the
transitive closure of the overlap relation, where two i-quads overlap if they have a common
i-box (not necessarily in their cores). That is, regarding the quads as open, two quads q, q′

are equivalent if and only if they belong to the same connected component of the union of
the current quads. Let S1(i), . . . , Sk(i) denote the partition of Q(i) into equivalence classes,
and let ≡i denote the equivalence relation.

The portion of space covered by quads in one class of this partition is called a component.
Each component at stage i is either an i-quad or a connected union of (open) i-quads. We
classify each component as being either simple or complex. A component at stage i is simple
if (1) its outer boundary is an i-quad and (2) it contains exactly one (i− 2)-quad of Q(i− 2)
in its core. Otherwise, the component is complex.

6.2 The invariants

As the algorithm progresses, we construct the faces that constitute the boundaries of certain
components, where each boundary face is an axis-parallel square. Together, these faces
subdivide R

3 into axis-parallel cells, which comprise the subdivision. The critical property
of the subdivision is the following conforming property :

(CP) For any two subfaces h, g that are incident to either nonadjacent faces
of distinct cells or to nonadjacent faces of the same cell of the subdivision,
d3D(h, g) ≥ max{l(h), l(g)}.
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The algorithm constructs subfaces whose edge lengths keep increasing, and we never
subdivide previously constructed subfaces. In order to help maintain (CP), we will also
enforce the following auxiliary property.

(CPaux) The boundary of each complex component at stage i is subdivided into
square subfaces that are faces of the ith-order grid Gi.

The algorithm delays the explicit construction of the outer boundary of a simple compo-
nent until just before it merges with another component to form a complex component. This
is crucial to ensure that the final subdivision has only O(n) size, and can be constructed in
near-linear time.

The algorithm consists of two main parts. The first part grows the (i− 2)-quads of stage
(i − 2) into i-quads of stage i, and the other part computes and updates the equivalence
classes, and constructs subdivision subfaces that satisfy properties (CPaux) and (CP). These
tasks are performed by the procedures Growth and Build-subdivision, respectively. We post-
pone the discussion of Growth to a later subsection, but introduce the necessary terminology
to allow us to describe Build-subdivision.

Given an i-quad q, Growth(q) is an (i + 2)-quad containing q in its core. For a family S
of i-quads, Growth(S) is a minimal (but not necessarily the minimum) set of (i + 2)-quads
such that each i-quad in S is contained in a member of Growth(S).

As mentioned earlier, up to eight (i+2)-quads may qualify for the role of Growth(q), for
an i-quad q, but for now we let Growth(q), or q̃, denote the unique (i+2)-quad returned by
the procedure Growth (see below for details concerning its choice).

6.3 The Build-subdivision procedure

By appropriate scaling and translation of 3-space, we may assume that the L∞-distance
between each pair of points in V is at least 1, and that no point coordinate is a multiple of
1
16

. For each point p ∈ V , we construct (to distinguish from other quads that we only compute
during the process, constructing a quad means actually adding it to the 3D-subdivision) a
(−4)-quad with p at the near-lower-left (−4)-box of its core; this choice ensures that the
minimal distance from p to the boundary of its quad is at least 1

4
of the side length of the

quad. Around each of these quads q, we compute (but not construct yet) a (−2)-quad with
q in its core, so that when there is more than one choice to do that (there are one, two,
four, or eight possibilities to choose the (−2)-quad if ∂q is coplanar with none, two, four, or
six planes of G−2, respectively), we always choose the (−2)-quad whose position is extreme
in the near-lower-left direction. This ensures that the (−2)-quads associated with distinct
points are openly disjoint (because the points of V are at least 1 apart from each other in
the L∞-distance; without the last constraint, one could have chosen two (−2)-quads whose
interiors have nonempty intersection).

These quads form the set Q(−2), which is the initial set of quads in the Build-subdivision
algorithm described below. Each quad in Q(−2) forms its own singleton component under
the equivalence class in stage −2. As above, we regard all quads in Q(−2) as open, and thus
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Figure 58: Planar analog of three (not necessarily constructed yet) initial components of (−2)-
quads (G−2 is drawn with thick lines; G−4 is also shown). An initial (−4)-quad (lightly shaded)
around each point p ∈ V (in its core) is contained in the core of the corresponding (−2)-quad
(darkly shaded). Each of the (open) (−2)-quads is an initial simple component. They are all
pushed as far as possible in the lower-left direction.

forming distinct simple components, even though some pairs might share boundary points.
See Figure 58 for an illustration of the planar analog of this initial structure. Both properties
(CPaux) and (CP) are clearly satisfied at this stage.

The pseudo-code below describes the details of the algorithm Build-subdivision. This
pseudo-code is not particularly efficient; an efficient implementation is presented later in
Section 6.5.
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Procedure Build-subdivision

Initialize Q(−2) (∗ as described above. ∗)

i := −2.

while |Q(i)| > 1 do

1. i := i + 2.

2. (∗ Compute Q(i) from Q(i − 2). ∗)

(a) Initialize Q(i) := ∅.

(b) for each equivalence class S of Q(i − 2) do
Q(i) := Q(i) ∪ Growth(S).

(c) for each pair of i-quads q, q′ ∈ Q(i) do
if q ∩ q′ 6= ∅ set q ≡i q′.

(d) Extend ≡i to an equivalence relation by transitive closure, and compute the
resulting equivalence classes.

3. (∗ Process simple components of ≡i−2 that are about to merge with some other

component. ∗)
for each q ∈ Q(i − 2) do

(a) Let q̃ := Growth(q) as computed in Step 2b.

(b) if q forms a single simple component at stage (i − 2)
but q̃ does not form a single simple component at stage i then

Construct the boundary of q and subdivide each of its faces
into 4 × 4 subfaces by the planes of Gi−2.

4. (∗ Process complex components. ∗)
for each equivalence class S of Q(i) do

Let S ′ := {q ∈ Q(i − 2) | Growth(q) ∈ S}.

if |S ′| > 1 then (∗ S is complex; see Figure 59 for a planar analog. ∗)

(a) Let R1 :=
⋃

q∈S′{the core of Growth(q)}.

(b) Let R2 :=
⋃

q∈S′ q.

(c) Construct (i − 2)-boxes to fill R1 \ R2.

(d) Construct i-boxes to fill S \ R1; partition each cell boundary with an
endpoint incident to R1 into 4× 4 subfaces of side length 2i−2, to satisfy
properties (CPaux) and (CP).

endwhile
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Figure 59: A planar analog of a complex component S ⊆ Q(i) (darkly shaded), consisting of five
i-quads (the grid Gi is drawn with thick lines; Gi−2 is also shown). The (i − 2)-quads of Q(i − 2)
in the cores of these i-quads (lightly shaded) constitute R2. The portion R1 \ R2 (where R1 is the
union of the cores of the i-quads of S) is drawn with zigzag pattern.

Lemma 6.2. The subdivision computed by the algorithm Build-subdivision satisfies proper-
ties (CPaux) and (CP).

Proof: We prove by induction that the properties hold for each of the families of quads
Q(i), for all i. The initial family of quads Q(−2) clearly satisfies the two properties. We
argue that no step of the algorithm Build-subdivision ever violates these properties.

Step 2 computes Growth(S) for each equivalence class of Q(i − 2) and then computes
Q(i). No new subfaces are constructed in this step.

The only subfaces constructed in Step 3 are on the boundaries of simple components.
Let q be an (i − 2)-quad that is a simple component of Q(i − 2). By definition, the single
(i − 4)-quad of Q(i − 4) contained in q lies in its core and thus its L∞-distance from the
outer boundary of q is at least 2i−2. Hence the subfaces already constructed in the core
satisfy the property (CP) — they have length no more than 2i−2 (actually 2i−4, except when
i = 0), and are separated from the boundary of q by a distance of at least 2i−2. We construct
the boundary of q in Step 3; since any previously constructed subfaces within q lie in its
core, the new subfaces satisfy (CP) with respect to these previously constructed subfaces.
The new subfaces on ∂q satisfy (CP) also with respect to the new subfaces on the boundary
of any other (i − 2)-quad, since all (i − 2)-quads are part of Gi−2 and therefore either their
boundaries intersect or there is a gap of at least 2i−2 between them. (CPaux) holds vacuously,
since it involves only complex components (that are not processed in this step).

Step 4 subdivides each complex component S ⊆ Q(i). Again, the distance between the
boundary of S and any component of Q(i − 2) that it contains is at least the width of an
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i-box. By the property (CPaux) (at stage i − 2), the (i − 2)-boxes constructed at Step 4c
satisfy (CP) with respect to the previously constructed subfaces; they clearly satisfy (CP)
with respect to the subfaces of other (i−2)-boxes constructed in this stage. Step 4d packs the
area between the core and the boundary of S with i-boxes, and breaks the newly-constructed
faces that are incident to previously constructed cells into 4× 4 subfaces, to guarantee (CP)
with respect to those cells. (The previously constructed subfaces on the core boundary have
length 2i−2, so, by induction, the cells incident to them have side lengths at least 2i−2. It
follows that the cells inside the core satisfy (CP) with respect to the newly constructed
subfaces of length 2i−2.) The subfaces on the boundary of S (of length 2i) are unbroken, so
(CPaux) holds at the end of stage i. These subfaces also satisfy (CP) with respect to subfaces
on the boundary of any other i-quad, since all i-quads are part of Gi. This completes the
proof. ¤

Lemma 6.3. The subdivision produced by Build-subdivision has size O(n).

Proof: We show that the algorithm constructs a linear number of subfaces altogether. The
number of subfaces constructed in Step 3 is proportional to the number constructed in Step 4
— we construct a constant number of subfaces in Step 3 for each simple component that
merges to form a complex component at the next stage. The number of subfaces constructed
in Step 4 for a complex component S is O(|S ′|) (where S ′ = {q ∈ Q(i−2) | Growth(q) ∈ S}),
the number of (i−2)-quads whose growths constitute S. The key observation in proving the
linear bound is that the total size of Q decreases every two stages by an amount proportional
to the total number of quads in complex components. This fact, which we prove in the next
subsection (Lemma 6.5), can be expressed as follows. If fi subfaces are constructed at stage
i, then

|Q(i + 2)| ≤ |Q(i − 2)| − βfi,

for some absolute constant β. That is,

βfi ≤ |Q(i − 2)| − |Q(i + 2)|.

If we sum this inequality over all even i ≥ 0, the right-hand side telescopes, and we obtain

β
∑

i fi ≤ |Q(−2)| + |Q(0)|.

Since |Q(−2)| = n, we have |Q(0)| ≤ n and therefore
∑

i fi ≤
2n
β

= O(n), as asserted. ¤

Lemma 6.4. The subdivision S1
3D that Build-subdivision produces is strongly 1-conforming

and satisfies the following additional properties:

(1) Each face of S1
3D is an axis-parallel square.

(2) Each cell is either a whole or a perforated cube (with subdivided faces).

(3) Each input point is contained in the interior of a whole cube cell.
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(4) The minimum vertex 1-clearance property is satisfied.

Proof: Strong 1-conformity is a consequence of (CP), as we now show. Condition (C1) is
trivially true, since each point is initially enclosed by a cube. To establish the 1-well-covering
property (Condition (C2)), let I(h) be the union of the O(1) cells incident to a subface h.
I(h) contains at most eight cells. Indeed, a subface h cannot be incident to a cell c whose
side length is less than 4l(h), by construction, and h can be incident to at most eight cells
of side length greater than or equal to 4l(h); see Figure 60 for an illustration. By (CP),
the distance from h to any subface outside or on the boundary of I(h) is at least l(h). The
subface h may be coplanar with other subfaces of the two cells on whose boundary it lies.
We define C(h) to be the set of cells incident to one of these coplanar subfaces; R(h), the
union of these cells, is a superset of I(h). See Figure 61 for an illustration.

Figure 60: A subface h (shaded) can be incident to at most eight 3D-cells of side length greater
than or equal to 4l(h).

Since the two cells with h as a boundary subface meet only along subfaces coplanar with
h, the definition of R(h) implies that for any subface g on or outside the boundary of R(h),
I(g) does not contain both cells incident to h. But this implies, by (CP), that h is on or
outside the boundary of I(g), and hence the distance from h to g is at least l(g). The subface
h certainly lies in the interior of R(h) (Condition (W1)). Condition (W2) follows because
C(h) is the union of I(h′) for O(1) subfaces h′ coplanar with h, |I(h′)| ≤ 8 for each h′, and
each cell has a constant number of faces. As noted above, the minimum distance between
h and any subface g on or outside the boundary of R(h) is at least max{l(h), l(g)}, which
establishes Condition (W31). (The stronger condition (W3’1) is the property (CP) itself.)
Condition (C3) follows from the observation that a well-covering region R(h) contains a
vertex v of V if and only if h is a subface of the cube containing v. This is because each
vertex-containing cube is the inner cube of a perforated cube in the subdivision. No subface
belongs to two such cubes, so Condition (C3) holds.

To establish the minimum vertex 1-clearance property, consider a subface h of the (whole)
cube cell c3D that closes a point v ∈ V . By construction, d3D(v, h) ≥ 1

16
and l(h) = 1

4
, so the

property holds for h. For any other subface g of the 3D-subdivision, the shortest straight
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Figure 61: The region I(h) of the darkly shaded face h contains, in this example, a total of ten
3D-cells (3 × 3 shaded smaller cells and one shaded larger cell behind them). The well-covering
region R(h) contains all the 39 cells drawn in this figure: 5× 5 smaller cells, five larger cells on the
front, covered on top by a darkly shaded “carpet”, and 3 × 3 larger cells on the back.

line from g to v goes through some h that lies in ∂c3D. By (CP), d3D(g, h) ≥ l(g), and since
d3D(v, g) ≥ d3D(g, h), the minimum vertex 1-clearance property holds for g.

The remaining properties (1–4) hold by construction. This completes the proof. ¤

6.4 The Growth procedure

In this subsection we describe the algorithm for computing Growth(S) for a set of i-quads S,
and show that the number of quads decreases every two stages (that is, from stage i to stage
i + 4) by an amount proportional to the total complexity of the complex components. Let
S ⊂ Q(i) be a set of i-quads forming a complex component under the equivalence relation
≡i. Recall that we want Growth(S) to be minimal (albeit not necessarily the minimum) set
of (i+2)-quads such that each i-quad of S lies in the core of some (i+2)-quad in Growth(S).
We will show that

|Growth(Growth(S))| ≤ κ |S|,

for an absolute constant 0 < κ < 1. The pseudo-code below describes an unoptimized version
of the algorithm for computing Growth(S). The algorithm works by building a graph on
the quads in S; we denote the set of the graph edges by E.
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Procedure Growth

0. Set Growth(S) := ∅ and E := ∅.

1. foreach pair of quads q1, q2 ∈ S do
if q1 ∪ q2 can be enclosed in a 2 × 2 × 2 array of (i + 2)-boxes, then

Add (q1, q2) to E.

2. Compute a maximal (not necessarily the maximum) matching M in the graph
computed in Step 1, by traversing all edges of E.

3. foreach edge (q1, q2) in M do
Choose an (i + 2)-quad q̃ containing q1, q2 in its core.
Set Growth(q1) := Growth(q2) := q̃, and add q̃ to Growth(S).

4. foreach unmatched quad q ∈ S do
Set Growth(q) := q̃, where q̃ is any (i + 2)-quad containing q in its core.
Add q̃ to Growth(S).

The maximum node degree of the graph constructed in Step 1 is O(1) since only a
constant number of i-quads can touch or intersect any i-quad q. Thus, a maximal matching
in this graph has Θ(|E|) edges. Each i-quad at stage i maps to an (i+2)-quad at stage (i+2).
Since each matching edge corresponds to two i-quads that map to the same (i + 2)-quad, it
clearly follows that

|Growth(S)| = |S| − |M | = |S| − Θ(|E|).

The crucial property is that |E| is a constant fraction of |S| at the next stage (that is, at
stage (i + 2)).

Lemma 6.5. Let S ⊂ Q(i) be a set of two or more i-quads such that Growth(S) is a complex
component under the equivalence relation ≡i+2. Then |Growth(Growth(S))| ≤ κ |S|, for an
absolute constant 0 < κ < 1.

Proof: We show that either |Growth(S)| < 3
4
|S|, or at least half of the quads of Growth(S)

are non-isolated in the (i+2)-graph; that is, can be enclosed in a 2×2×2 array of (i+2)-boxes
with some other quad of Growth(S).

If |Growth(S)| < 3
4
|S|, then we are done, because then we have |Growth(Growth(S))| ≤

|Growth(S)| ≤ 3
4
|S|. Therefore, suppose that |Growth(S)| ≥ 3

4
|S|. Then at least half the

i-quads of S are not matched in Step 2 of stage i of the construction of Growth (since there
are at most 1

4
|S| matched pairs), and their growths, which are all distinct, by construction,

contribute more than half of the (i + 2)-quads of Growth(S). Consider one such unmatched
i-quad q ∈ S. Since S is a non-singleton equivalence class (if it were a singleton, Growth(S)
would not have been complex), there exists another i-quad q′ ∈ S that overlaps q. Let
q̃ = Growth(q) and q̃′ = Growth(q′). By assumption, q̃ 6= q̃′. The cores of q̃ and q̃′ both
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contain the overlap region q∩q′, so the cores must overlap. Therefore both cores are contained
within a 3 × 3 × 3 array of (i + 2)-boxes, and both the (i + 2)-quads q̃ and q̃′ are contained
within a 5 × 5 × 5 array of (i + 2)-boxes. This ensures that q̃ and q̃′ are joined by an edge
in the graph of Growth(S): Any two (i + 2)-quads that are both contained in a 5 × 5 × 5
array of (i + 2)-boxes can be covered by a 2× 2× 2 array of (i + 4)-boxes. See Figure 62 for
an illustration.

Figure 62: The component S contains six i-quads (lightly shaded small squares). The matching
(which is maximal but not the maximum) is illustrated by edges connecting the centers of the
corresponding i-quads. Four (darkly shaded) (i + 2)-quads computed by Growth(S), that contain
the six i-quads in their cores, overlap, so that they are contained in the cores of two (lightly
shaded) (i + 4)-quads computed by Growth(Growth(S)). (Grid lines are shown only where they
are relevant.)

That is, in the graph of Growth(S), |E| ≥ 1
4
|S| (because, for each unmatched quad q ∈ S,

the corresponding (i + 2)-quad Growth(q) is incident to some edge of the new graph), and
since the degree of each vertex of the graph is constant, the number of edges in the maximal
matching of Growth(S) is Ω(|S|). This proves the inequality |Growth(Growth(S))| ≤ κ |S|
for some κ < 1. ¤
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Since the number fi of subfaces constructed at stage i is proportional to the number of
(i−2)-quads whose growths belong to complex components, the preceding lemma establishes
the earlier claim that

|Q(i + 2)| ≤ |Q(i − 2)| − βfi,

for some absolute constant β. For any q, q′ ∈ S, we have Growth(q) = Growth(q′) only if
q and q′ touch or intersect each other, that is, their closures intersect, for otherwise q and
q′ cannot be contained in the core of the same (i + 2)-quad. We use this fact to implement
the procedure Growth(S), for a complex component S at a fixed stage i, to run in time
O(|S| log |S|): Each quad of S touches at most a constant number of other quads, and we
can compute which pairs of quads touch each other, in O(|S| log |S|) time and linear space,
using the algorithm of Callahan and Kosaraju [9] that finds k nearest neighbors of each
point among n points in R

3, in O(n log n+kn) time: Since there are only k = 73 −1 distinct
i-quads that can touch or intersect a given i-quad q, and these k i-quads must be L∞-closer
to q than any other i-quad, we can compute the k nearest neighbors of q, and then to check
which of them touches or intersects q, in constant time for each q. From the set of touching
pairs we can compute the graph edges in Step 1 of Growth(S) in O(|S|) additional time. All
other steps of Growth(S) take time proportional to the graph size, which is O(|S|).

6.5 An efficient implementation of Build-subdivision

In order to keep the time complexity of Build-subdivision independent of the distribution of
the points, we process a simple component only when it is about to merge with another com-
ponent. This makes the processing time proportional to the number of boundary subfaces
constructed at any stage. Except for Step 2(b), which implements Growth, and Step 2(c),
which detects overlapping i-quads, all other steps can be implemented to run in time pro-
portional to the number of subfaces constructed in the subdivision. (Steps 3 and 4 use the
adjacency information computed in Step 2(c) to run in linear time.) In what follows we
show how to use a minimum spanning tree construction to implement Steps 2(b) and 2(c)
in O(n log n) time.

6.5.1 The merging of i-quads

Before we present the algorithm, we discuss the distance properties satisfied by points that
lie in the same equivalence class in stage i. We say that a quad q is a containing i-quad of
a point u ∈ V if q ∈ Q(i) and u lies in the core of q. A point u belongs to an equivalence
class S ⊆ Q(i) if there is a containing i-quad of u in S.

Lemma 6.6. Let u ∈ V and let q ∈ Q(i) be a containing i-quad of u. Then the L∞-distance
between u and any point on the outer boundary of q is between 2i and 3 · 2i.

Proof: Since q has side length 2i+2, and u lies at least a quarter of this distance away from
the outer boundary, because it lies in the core, the lemma follows. ¤
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Lemma 6.7. Let u and v be two points of V that belong to different equivalence classes of
≡i. Then d∞(u, v) > 2 · 2i.

Proof: Let qu and qv be two containing i-quads of u and v, respectively. Since u and v
lie in different equivalence classes, these i-quads do not openly intersect (recall that this is
a consequence of the special alignment of the i-quads). By Lemma 6.6, each of the points
lies at distance at least 2i away from the outer boundaries of their i-quads, from which the
lemma follows immediately. ¤

Lemma 6.8. Let u, v ∈ V and let qu, qv, respectively, be the i-quads of Q(i) containing them.
If qu ∩ qv 6= ∅, then d∞(u, v) < 6 · 2i.

Proof: By Lemma 6.6, the maximum L∞ distance between u and any point on the outer
boundary of qu is at most 3 · 2i. The same holds for v and qv, which implies the asserted
upper bound on d∞(u, v). ¤

6.5.2 An efficient implementation based on L∞-minimum spanning trees

Let VS be the set of points of V in the cores of the i-quads of a component S ⊆ Q(i). The
implementation of Build-subdivision is based on the observation that the longest edge of the
L∞-minimum spanning tree of VS has length less than 6 · 2i. To make this observation more
precise, we define G(i) to be the graph on V containing exactly those edges whose L∞ length
is at most 6 · 2i, and define MSF(i) to be the minimum spanning forest of G(i).

Lemma 6.9. For each component S of Q(i), the points of VS belong to a single tree of
MSF(i).

Proof: By Lemma 6.8, the points of VS can be linked by a tree with edges of length shorter
than 6 ·2i. For any bipartition of the points of VS, the minimum-weight edge linking the two
subsets is shorter than 6 · 2i. Hence, all the edges of the minimum spanning tree of VS are
shorter than 6 · 2i, and therefore VS belongs to a single tree of MSF(i). ¤

Lemma 6.10. If two i-quads q1 and q2 belong to different components of Q(i), then their
points belong to different trees of MSF(i − 2).

Proof: Any segment connecting a point of V in the component of q1 to any point of V
outside that component has length greater than 2 · 2i, by Lemma 6.7. The points of V in
the quads q1 and q2 are in the same tree of MSF(i − 2) only if every bipartition of V that
separates the points of q1 from those of q2 is bridged by an edge of length less than 6 · 2i−2.
But the bipartition separating the points of the component of q1 of Q(i) from the rest of V
has bridge length greater than 2 · 2i > 6 · 2i−2. ¤

The algorithm is based on an efficient construction of MSF(i) for all i such that MSF(i) 6=
MSF(i − 2). We first find all the O(n) edges of the final MSF of V (a single tree), using
the O(n log n) algorithm of Krznaric et al. [26] for computing an L∞-minimum spanning
tree in three dimensions. Then, for each edge e constructed by the algorithm, we compute
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the stage k = 2
⌈

1
2
log2

1
6
|e|

⌉

, at which e is added to MSF(k). By processing the edges in
increasing length order, we obtain the entire sequence of forests MSF(i), for those i for which
MSF(i) 6= MSF(i − 2).

The implementation of Build-subdivision below replaces Steps 1 and 2 of the original
Build-subdivision with more efficient code based on the minimum spanning tree construction.
First, we process only stages at which something happens: MSF(i) changes, or there are
complex components of Q(i) whose Growth computation is nontrivial. (This optimization
only significant when the ratio of maximum to minimum point separation is greater than
exponential in n.) Second, we compute Growth(S) only for complex components and for
simple components that are about to be merged with another component, and maintain the
equivalence classes of Q(i) only for this same subset of quads. Simple components that are
well separated from other components are not involved in the computation at stage i.
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Efficient Implementation of Build-subdivision

For each tree T in MSF(i), maintain the corresponding set Q(i, T ) of i-quads in Q(i)
that are the containing quads of the vertices of T .

Initialize i := −2. Initialize MSF(−2) to be a forest of singleton vertices. For each
vertex v ∈ V , Q(−2, {v}) is a singleton quad grown around a (−4)-quad with v in its
core, as described above.

Maintain a set N of trees in MSF(i) such that for each T ∈ N , |Q(i, T )| > 1; that is,
the component of T is not a singleton quad. Initialize N := ∅.

while |Q(i)| > 1 do
iold := i;
if |N | > 0 then i := i + 2;
else Set i to the smallest (even) i′ > i such that MSF(i′) 6= MSF(i).
(∗ Prepare Q(i − 2, T ) before it is used to compute Q(i, T ). ∗)
foreach edge e of MSF(i) \ MSF(iold) do

Let T1 and T2 be the trees linked by e.
foreach Tx ∈ {T1, T2} do

if Tx ∈ N then remove Tx from N ;
else Set Q(i − 2, Tx) to be the singleton (i − 2)-quad corresponding to Tx.

end
Join T1 and T2 to get T ′, and add T ′ to N .
Set Q(i − 2, T ′) := Q(i − 2, T1) ∪Q(i − 2, T2).

end
(∗ Invariant: If T ∈ N , then Q(i − 2, T ) is correctly computed.

Now we use it to compute Q(i, T ). ∗)
foreach T ∈ N do

Step 2a: Initialize Q(i, T ) := ∅.
Step 2b: foreach equivalence class S ⊆ Q(i − 2, T ) do

Q(i, T ) := Q(i, T ) ∪ Growth(S).
Steps 2c–2d: Compute the equivalence classes of Q(i, T ) by finding

k = 73 − 1 nearest neighbors of each i-quad,a using [9].
Steps 3–4: Construct faces of the subdivision, by Steps 3–4 in the

original Build-subdivision, performed on the equivalence classes of Q(i, T ).
if |Q(i, T )| = 1 then delete T from N .

end
endwhile

aFor each i-quad q, at most 73 − 1 different i-quads q′ 6= q can be packed so that q′ ≡i q.

The running time of the L∞-minimum spanning tree algorithm in [26] is O(n log n). The
k-nearest-neighbors algorithm requires O(mi log mi + kmi) time to process mi = |Q(i, T )|
quads in Steps 2c–2d [9]. Since

∑

i mi = O(n), it takes O(n log n) total time to perform
Steps 2c–2d. We also maintain a disjoint-set data structure to process the O(n) union

and find operations, needed to compute the equivalence classes, efficiently; in any standard
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implementation (see, e.g., a survey in [16]) this is not the costliest part of the algorithm. Since
the procedure constructs O(n) subfaces, it takes O(n) total time to perform Steps 3–4 for
all stages i. Hence, the total running time of the algorithm Build-subdivision is O(n log n).
The space requirements of the MST construction in [26] and of the k-nearest-neighbors
computation are O(n), as well as the space requirements of the other stages of the algorithm.

We have thus established the following lemma.

Lemma 6.11. The algorithm Build-subdivision can be implemented to run using O(n log n)
standard operations on a real RAM, plus O(n) floor and base-2 logarithm operations.

Lemmas 6.1, 6.3, 6.4, and 6.11 establish the main theorem of this section.

Theorem 6.12 (Conforming 3D-subdivision Theorem). Every set of n points in R
3

admits a strongly conforming 3D-subdivision S3D of O(n) size, that also satisfies the mini-
mum vertex clearance property. In addition, each input point is contained in the interior of
a distinct whole cube cell. Such a 3D-subdivision can be constructed in O(n log n) time and
linear space.

7 Extensions and Concluding Remarks

We have presented an optimal-time algorithm for computing an implicit representation of
the shortest path map from a fixed source on the surface of a convex polytope in three
dimensions. The algorithm takes O(n log n) preprocessing time and O(n log n) storage, and
answers a shortest path query in O(log n) time. We have used and adapted the ideas of
Hershberger and Suri [22], solving Open Problem 2 of their paper, to construct “on the fly”
a dynamic version of the incidence data structure of Mount [32], answering in the affirmative
the question that was left open in [32].

As in the planar case (see [22]), our algorithm can also easily be extended to a more
general instance of the shortest path problem that involves multiple sources on a surface of a
convex polytope. Computing shortest paths in the presence of multiple sources is equivalent
to computing their (implicit) geodesic Voronoi diagram. This is a partition of the polytope
surface into regions, so that all points in a region have the same nearest source and the same
combinatorial structure (i.e., maximal edge sequence) of the shortest paths to that source.
We only compute this diagram implicitly, so that, given a query point q ∈ ∂P , we can identify
the nearest source point s to q, and to return the shortest path length (and, possibly, the
shortest path itself) from s to q. The algorithm for constructing an implicit geodesic Voronoi
diagram is an easy adaptation of the algorithm presented in this paper, with minor (and
obvious) modifications. One can show that, for m given sources, the algorithm processes
O(m + n) events in total O((m + n) log(m + n)) time, using O((m + n) log(m + n)) storage;
afterwards, a nearest-source query can be answered in O(log(m + n)) time.

Finally, we conclude with open problems.

1. Can the space complexity of the algorithm be reduced to linear? Can an efficient
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tradeoff between the query time and the space complexity be achieved, using, say, the
SPM(s)-representations of Chen and Han [10, 11]?

2. Can an unfolding of a surface cell of S overlap itself?

3. Does the wavefront propagation method extend to the shortest path problem on the
surface of a nonconvex polyhedral surface? Say, on a polyhedral terrain?

Acknowledgment. We thank Joseph O’Rourke for his thorough review of this paper, as
well as for the valuable comments and material on surface unfolding and overlapping, and for
remarks on Kapoor’s paper. We are also grateful to Haim Kaplan for his help in designing
the data structures, and to Joe Mitchell for his comments of Kapoor’s paper.

References

[1] P. K. Agarwal, B. Aronov, J. O’Rourke, and C. A. Schevon, Star unfolding of a polytope
with applications, SIAM J. Comput., 26:1689–1713, 1997.

[2] P. K. Agarwal, S. Har-Peled, M. Sharir, and K. R. Varadarajan, Approximate shortest
paths on a convex polytope in three dimensions, J. ACM, 44:567–584, 1997.

[3] L. Aleksandrov, M. Lanthier, A. Maheshwari, and J.-R. Sack, An ǫ-approximation algo-
rithm for weighted shortest path queries on polyhedral surfaces, Abstracts 14th European
Workshop Comput. Geom., 19–21, 1998.

[4] L. Aleksandrov, M. Lanthier, A. Maheshwari, and J.-R. Sack, An ǫ-approximation algo-
rithm for weighted shortest paths on polyhedral surfaces, 6th Scand. Workshop Algorithm
Theory, Lecture Notes Comput. Sci., 1432:11–22, Springer-Verlag, 1998.

[5] L. Aleksandrov, A. Maheshwari, and J.-R. Sack, An improved approximation algorithm
for computing geometric shortest paths, 14th FCT, Lecture Notes Comput. Sci., 2751:246–
257, 2003.

[6] G. Aloupis, E. D. Demaine, S. Langerman, P. Morin, J. O’Rourke, I. Streinu, and G.
Toussaint, Unfolding polyhedral bands, in Proc. 16th Canad. Conf. Comput. Geom., 60–
63, 2004.

[7] B. Aronov and J. O’Rourke, Nonoverlap of the star unfolding, Discrete Comput. Geom.,
8:219–250, 1992.

[8] R. Bayer, Symmetric binary B-trees: Data structures and maintenance algorithms, Acta
Informatica, 1:290–306, 1972.

[9] P. B. Callahan and S. R. Kosaraju, A decomposition of multidimensional point sets with
applications to k-nearest-neighbors and n-body potential fields, J. ACM, 42(1):67–90,
1995.

120



[10] J. Chen and Y. Han, Shortest paths on a polyhedron, Part I: Computing shortest paths,
Internat. J. Comput. Geom. Appl., 6:127–144, 1996.

[11] J. Chen and Y. Han, Shortest paths on a polyhedron, Part II: Storing shortest paths,
Tech. Rept. 161-90, Comput. Sci. Dept., Univ. Kentucky, Lexington, KY, February 1990.

[12] M. de Berg, M. van Kreveld, and J. Snoeyink, Two- and three-dimensional point location
in rectangular subdivisions, J. Algorithms, 18:256–277, 1995.

[13] E. W. Dijkstra, A note on the problems in connection with graphs, Numer., Math.,
1:269–271, 1959.

[14] J. R. Driscoll, D. D. Sleator, and R. E. Tarjan, Fully persistent lists with catenation, J.
ACM, 41(5):943–949, 1994.

[15] H. Edelsbrunner, L. J. Guibas, and J. Stolfi, Optimal point location in a monotone
subdivision, SIAM J. Comput., 15:317–340, 1986.

[16] Z. Galil and G. F. Italiano, Data structures and algorithms for disjoint set union prob-
lems, ACM Computing Surveys, Vol. 23, Issue 3, 319–344, 1991.

[17] G. H. Gonnet and R. Baeza-Yates, Handbook of Algorithms and Data Structures — in
Pascal and C, 2nd edition, Addison-Wesley, 1991.

[18] L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan, Linear time al-
gorithms for visibility and shortest path problems inside simple polygons, Algorithmica,
2:209–233, 1987.

[19] L. J. Guibas and R. Sedgewick, A dichromatic framework for balanced trees, in Proc.
19th IEEE Sympos. Found. Comput. Sci., 8–21, 1978.

[20] S. Har-Peled, Approximate shortest paths and geodesic diameters on convex polytopes
in three dimensions, Discrete Comput. Geom., 21:216–231, 1999.

[21] S. Har-Peled, Constructing approximate shortest path maps in three dimensions, SIAM
J. Comput., 28(4):1182–1197, 1999.

[22] J. Hershberger and S. Suri, An optimal algorithm for Euclidean shortest paths in the
plane, SIAM J. Comput. 28(6):2215–2256, 1999. Earlier versions: in Proc. 34th IEEE
Sympos. Found. Comput. Sci., 508–517, 1993; Manuscript, Washington Univ., St. Louis,
1995.

[23] G. F. Italiano and R. Raman, Topics in Data Structures, in M. J. Atallah, editor,
Handbook on Algorithms and Theory of Computation, Chapter 5, CRC Press, Boca Raton,
1998.

[24] S. Kapoor, Efficient computation of geodesic shortest paths, in Proc. 32nd Annu. ACM
Sympos. Theory Comput., 770–779, 1999.

121



[25] D. Kirkpatrick, Optimal search in planar subdivisions, SIAM J. Comput., 12:28–35,
1983.

[26] D. Krznaric, C. Levcopoulos, and B. J. Nilsson, Minimum spanning trees in d dimen-
sions, Nord. J. Comput., 6(4):446–461, 1999.

[27] M. Lanthier, A. Maheshwari, and J.-R. Sack, Approximating shortest paths on weighted
polyhedral surfaces, Algorithmica, 30(4):527–562, 2001.

[28] C. Mata and J. S. B. Mitchell, A new algorithm for computing shortest paths in weighted
planar subdivisions, in Proc. 13th Annu. ACM Sympos. Comput. Geom., 264–273, 1997.

[29] J. S. B. Mitchell, Shortest paths and networks, in J. E. Goodman and J. O’Rourke,
editors, Handbook of Discrete and Computational Geometry (2nd Edition), chapter 27,
607–641, North-Holland, Chapman & Hall/CRC, Boca Raton, FL, 2004.

[30] J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou, The discrete geodesic problem,
SIAM J. Comput., 16:647–668, 1987.

[31] D. M. Mount, On finding shortest paths on convex polyhedra, Tech. Rept., Computer
Science Dept., Univ. Maryland, College Park, October 1984.

[32] D. M. Mount, Storing the subdivision of a polyhedral surface, Discrete Comput. Geom.,
2:153–174, 1987.

[33] J. O’Rourke, Computational geometry column 35, Internat. J. Comput. Geom. Appl.,
9:513–515, 1999; also in SIGACT News, 30(2):31–32, (1999) Issue 111.

[34] J. O’Rourke, Folding and unfolding in computational geometry, in Lecture Notes Com-
put. Sci., Vol. 1763, J. Akiyama, M. Kano, M. Urabe, editors, Springer-Verlag, Berlin,
2000, pp. 258–266.

[35] J. O’Rourke, On the development of the intersection of a plane with a polytope, Tech.
Rept. 068, Smith College, June 2000.

[36] J. O’Rourke, S. Suri, and H. Booth, Shortest paths on polyhedral surfaces, Manuscript,
The Johns Hopkins Univ., Baltimore, MD, 1984.

[37] R. P. Paul, Robot Manipulators: Mathematics, Programming, and Control, MIT Press,
Cambridge, Massachusetts, 1981.

[38] F. P. Preparata and M. I. Shamos, Computational Geometry, Springer-Verlag, New
York, 1985.

[39] M. Sharir, On shortest paths amidst convex polyhedra, SIAM J. Comput., 16:561–572,
1987.

[40] M. Sharir and A. Schorr, On shortest paths in polyhedral spaces, SIAM J. Comput.,
15:193–215, 1986.

122



[41] R. E. Tarjan, Data Structures and Network Algorithms, SIAM CBMS, 44, 1983.

[42] K. R. Varadarajan and P.K. Agarwal, Approximating shortest paths on a nonconvex
polyhedron, in Proc. 38th Annu. IEEE Sympos. Found. Comput. Sci., 182–191, 1997.

[43] E. W. Weisstein, Homotopy, MathWorld — A Wolfram Web Resource,
http://mathworld.wolfram.com/Homotopy.html.

[44] E. W. Weisstein, Riemann Surface, MathWorld — A Wolfram Web Resource,
http://mathworld.wolfram.com/RiemannSurface.html.

[45] E. W. Weisstein, Unfolding, MathWorld — A Wolfram Web Resource,
http://mathworld.wolfram.com/Unfolding.html.

A Artificial waves

In certain cases we can determine that a portion of a one-sided wavefront reaches an edge only
after the one-sided wavefront from the other side has swept through the edge. In such cases,
we can discard the part that arrives later; we call the resulting wavefronts approximate one-
sided wavefronts, or simply approximate wavefronts. In this sense, an approximate one-sided
wavefront is not necessarily a complete representation of all the waves coming from one side
of the edge. The approximate wavefront from one side of a transparent edge e is what the true
wavefront would be if we were to block off the wavefront from the other side of e by turning e
into an artificial obstacle. In physical terms, we can imagine replacing the transparent edge e
with a high thin wall placed on e, perpendicular to ∂P . The wall absorbs the wavefront from
either side of e, although the wavefront can pass around the endpoints of the wall to reach the
other side of e. Passing around the two endpoints of the wall generates two artificial waves
that propagate from the two endpoints. The artificial wave is a conceptual device that allows
us a limited interaction between the (approximate) wavefronts coming from the two sides of
e. See Figure 63(b) for an illustration. This interaction is too limited to eliminate all the
superfluous waves in the pair of the opposite approximate wavefronts at e, but it suffices to
maintain the invariant that when an approximate wavefront leaves the well-covering region of
e, it does not contain waves that had already been eliminated from the true wavefront before
the time when e has been completely covered. That is, when a wave w is eliminated from
the true wavefront before it reaches e, but it does reach e in an approximate wavefront W ,
w will be eliminated from W by some artificial wave before W leaves R(e). This important
invariant is kept due to the well-covering property of e, as described in detail below in this
section.

To recap, the approximate wavefront that reaches e from a specific side is the exact
wavefront that reaches that side of e in the presence of the obstacle erected at e, and it
does not contain waves that were eliminated from the true wavefront before it has entered
R(e). We could have calculated the exact wavefront at e explicitly, by merging the two
approximate wavefronts from both sides of e, but we do not know how to do it efficiently.
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Figure 63: (a) Two wavefronts W and W ′, drawn as collections of thick solid arcs, are approaching
the transparent edge e from two opposite directions, within the well-covering region R(e) (shaded).
The bisectors between the waves are drawn as dashed and dotted lines. (b) Two approximate
wavefronts W (e) and W ′(e) (collections of thick solid arcs), computed at the simulation time when
e is completely covered by W, W ′, are propagated further within R(e). The algorithm allows for
a limited interaction between W and W ′ in the computation of W (e) and W ′(e), which causes
some waves that have appeared in W, W ′ to be removed from W (e) and W ′(e), or to be shortened.
However, some of the waves that are left in W (e) and W ′(e) are obviously absent from the true
wavefront, since there is another wave in the opposite approximate wavefront that claims the same
points of e.

The interaction between the opposite one-sided wavefronts is implemented using artificial
waves. These artificial waves are the only mechanism for pruning portions of the wavefront
that arrive second at a transparent edge. We can use the artificial waves to ensure that waves
in one approximate wavefront that are dominated by waves from the opposite approximate
wavefront are eliminated, within a constant number of cells from where they first become
dominated, by one of the artificial waves that they encounter. This can use this property to
prove an interesting invariant that is shown in Lemma A.2 below.

The construction is depicted in Figure 64. Consider a transparent edge e, and let a be
an endpoint of e (the same is also true for the other endpoint b of e — that is, exactly two
artificial waves are constructed at each transparent edge e). Let wi be the first wave that
reaches a. Denote by si the generator of wi, and denote by E the polytope edge sequence
traversed by wi from s to a. Denote by W ′ the wavefront that contains wi (W ′ = W (f, e)
for some edge f ∈ input(e)). Let W ′(e) be the approximate wavefront constructed at e to be
propagated further through e in the same direction as W ′, and let W ′′(e) be the approximate
wavefront at e in the opposite direction. We introduce an artificial wave with generator sa,
which is located at distance dS(s, a) = d(si, a) from a, on the straight line that contains
UE(e) and on the side of UE(a) that is disjoint from UE(e) (this part of the line may cross cell
boundaries, or boundaries of R(e); there are no visibility constraints for an artificial wave);
see Figure 64. To simplify the analysis, this artificial wave is used in the computation of
both approximate wavefronts W ′(e) and W ′′(e), even though it is not needed for W ′(e); see
also a remark below. The triangle inequality implies that dS(s, p) ≤ dS(s, a) + dS(a, p), for
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any point p ∈ e; moreover, since e itself is a shortest path, we have
∣

∣

∣UE(a)UE(p)
∣

∣

∣ = dS(a, p).

Hence, if the artificial wave reaches p before a wavefront W ′′ from the other side of e reaches
p, then p is surely reached first by W ′, and so there is no need to propagate W ′′ through
p; that is, we construct W ′′(e) so that it does not contain the portion of W ′′ that reaches e
later than the artificial wave. In essence, an artificial wave is a convenient (and conservative)
mechanism for discarding parts of either W ′ or W ′′ that can be ascertained to be dominated
by the wavefront that reaches e from the other side. The discarded portions are either
prefixes or suffixes of the wavefronts. A generator of an artificial wave is not passed on
to output(e) as part of an approximate wavefront; in other words, an artificial wave at e
expands only along e.

Remark: After the elimination of some of the waves approaching e by an artificial wave,
an approximate wavefront W (e) may not cover the entire transparent edge e. However, the
portions that are not covered by W (e) are necessarily covered by the opposite approximate
wavefront.

sa

UE(e)UE(a)

W ′′

W ′′(e)

W ′

si+1

W ′(e)

si
d S

(s
, a

)

dS(s, a)

UE(b)

UE(p)

Figure 64: Two wavefronts, W ′ and W ′′, are approaching the transparent edge e from two opposite
sides. W ′ claims the endpoint a before W ′′, by the wave generated by the source image si. The
resulting artificial wave is generated by sa, which is located at distance d(si, a) = d(s, a) from a.
W ′(e) is the approximate wavefront constructed at e to be propagated further through e in the
same direction as W ′, and W ′′(e) is the approximate wavefront at e in the opposite direction. The
point p is the rightmost on e for which the distance dS(s, a)+dS(a, p) is less than the time at which
the wavefront W ′′ reaches p, therefore the portion of e between a and p is guaranteed to be reached
first by W ′; hence the approximate wavefront W ′(e) includes the generators of W ′ that claim this
portion of e, while the approximate wavefront W ′′(e) lacks the corresponding generators of W ′′.

Consider the oriented transparent edge ~e that coincides with e and is oriented from its
endpoint a to its other endpoint b. Consider the computation of the approximate wavefront
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at e that will be propagated further (through e) to, say, the right of ~e (that is, reaching ~e
from the left; in Figure 64 this is W ′(e)). The contributing wavefronts to this computation
are the following:

1. All wavefronts W (f, e), for f ∈ input(e), that contain at least one wave that reaches ~e
from the left (not later than at the time covertime(e)).

2. Two artificial waves, one expanding from each endpoint of e.

The contributing wavefronts for the computation of the approximate wavefront reaching
~e from the right are defined symmetrically. Note that a wavefront W (f, e) may contribute
to both approximate wavefronts at e (if some wave of W (f, e) reaches e from one side, and
another wave of W (f, e) reaches e from the opposite side). The wavefront that crosses no
transparent edges on its way from s to e is also contributing for the corresponding one of
the approximate wavefronts at e if s ∈ R(e).

Remark: To simplify the proofs, we say that both artificial waves are contributing wave-
fronts to the approximate wavefront from each side of e. Obviously, it follows from the
triangle inequality that an artificial wave with generator sa cannot actually contribute to the
approximate wavefront that claims the endpoint a.

Notice that e is completely covered, including both its endpoints, at the simulation time
in which we compute the approximate wavefronts at e. Since, by the invariant we maintain,
the exact distance from s to a point on e is the minimum of the distances measured to this
point by the two approximate wavefronts, we can compute the exact distances from s to the
endpoints of e (see Section 5 for details) and thereby generate exactly the artificial waves
that are needed for the computation of the approximate wavefronts at e.

In the following lemma we formalize an important invariant kept by the algorithm, main-
tained using the artificial waves.

Lemma A.1. Let si be a generator that contributes to an approximate wavefront W (e), but
not to the true wavefront at e (because for every point p ∈ e claimed by si, some wave from
the other side of e reaches p first). Then the wave of si is absent from any approximate
wavefront that leaves R(e).

Proof: Assume the contrary — that is, there is some transparent edge f ⊂ ∂R(e) so that
the approximate wavefront W (f) that has reached f from the side of e includes the wave of
si. Let q be a point on f claimed by si, and p denote the intersection point of π(si, q) with
e. Denote by sj the true claimer of p (whose wave reaches e from the opposite side). See
Figure 65 for an illustration.

Consider first the case in which s is outside R(e); then denote by x the first intersection
point of π(sj, p) with ∂R(e). Note that, by definition, x lies on some transparent edge
g ∈ input(e). Then two following cases arise.

First case: If g = f , then, since dS(q, p) ≥ |f | (by the well-covering property (W3S)),
the endpoints of f are reached by a wave from sj or from some other generator before the
wave from sj reaches p at time |π(sj, p)|. The artificial waves from the endpoints of f will
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Figure 65: q lies on f , p lies on e. First case: π(sj , p) intersects f (that is, g = f). The well-covering
region R(e) is shaded.

therefore cover f before time |π(sj, p)| + |f |. By assumption, we have |π(si, p)| > |π(sj, p)|.
The wave from si cannot reach e earlier than time |π(si, p)| − |e|. By the well-covering
property, dS(e, f) is at least |e| + |f |, and so the wave from si reaches f no earlier than
|π(si, p)| + |f | > |π(sj, p)| + |f |, at which time f is already covered by the artificial waves.
Hence the whole claim of si on f is eliminated by the artificial wave, which contradicts the
assumption.

Second case: If g 6= f , consider the concatenated path π = π(sj, p) || π(p, q) that crosses
g and reaches f . Since |π(sj, p)| < |π(si, p)|, π reaches q before π(si, q), from the same side
of f . Hence, by Lemma 4.5, there must be a wave w in W (g, f) that is propagated by the
algorithm to f (from the same side of f as the wave of si) and, during the merging process,
does not allow si to claim q. Again, this contradicts the assumption.

To complete the proof, we also have to consider the case in which s ∈ R(e). Then, if
π(sj, p) crosses ∂R(e), we can define the intersection point x and the corresponding trans-
parent edge g, and proceed as in the first case above. Otherwise, as in the second case above,
the concatenated path π = π(sj, p) || π(p, q) reaches q before π(si, q), from the same side of
f . Then again, by Lemma 4.5, this completes the proof. ¤

Let b be a bisector b(si, si+1) of two consecutive source images in some approximate
wavefront W (e) of the transparent edge e. We say that in this case b crosses e in W (e). The
following lemma shows that the approximate wavefronts are not too different from the true
wavefronts (since, using the artificial waves, each bisector b in the algorithm is not propagated
more than O(1) cells away from the vertex of SPM(s) where b ends — see the detailed proof
below); this lets us bound the number of the waves that the algorithm propagates.
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Lemma A.2. The number of pairs (e, b) of transparent edges e and bisectors b, such that b
crosses e in some approximate wavefront W (e), but b does not cross e in the true wavefront
(that is, this crossing does not occur in SPM(s)), is O(n).

Proof: Let X denote the set of these pairs (e, b). Let e be a transparent edge, and let b be
a bisector in W (e) so that (e, b) ∈ X. There are only O(n) pairs (e, b) in X in which b is the
first or the last (artificial) bisector of W (e), so assume that b = b(si, si+1) (so that he waves
generated by si and si+1 reach e from the same side). Let p = b ∩ e.

Unless s ∈ R(e), both si, si+1 claim points on ∂R(e) (in input(e)) in SPM(s), by
Lemma A.1; that is, both paths π(si, p) and π(si+1, p) intersect ∂R(e). Denote by Db the
region of R(e) between the paths π(si, p) and π(si+1, p) (if s ∈ R(e), this area is still well
defined, since both paths start from s). Since (e, b) is not an incident pair in SPM(s), there
must be at least one bisector event in SPM(s) (that is, a vertex of SPM(s) where b ends)
that lies in the interior of Db. We can charge the early demise of b to any one of these (real)
bisector events.
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1,
p)

π(s
j+

1 , p ′)

π(s
j , p ′)

π(
s i,

p)

b′

e

s

p
p′

b

R(e)

Figure 66: The bisectors b and b′ cross e in the approximate wavefront W (e) (but not in the true
wavefront — this fact is not illustrated in this figure). The regions Db (the sector of R(e) that is
bounded by π(si, p) and π(si+1, p)) and Db′ (similarly defined) must be disjoint from each other.

The paths π(si, p) and π(si+1, p) are disjoint from the corresponding paths defined by
any other pair (e, b′) ∈ X — in the modified environment in which e is replaced by a thin
high obstacle, the paths π(si, p) and π(si+1, p) are shortest paths in Π(s, p), and hence they
are disjoint from any other such paths (see Figure 66 for an illustration). Thus the sector
of R(e) that is bounded by π(si, p) and π(si+1, p) is disjoint from the sector defined by any
other pair (e, b′) ∈ X, so each vertex v of SPM(s) inside R(e) is charged at most once by all
pairs in X that have e as the first element of the pair. Since the surface cell that contains v
belongs to only O(1) well-covering regions R(e), v is charged at most O(1) times for all the
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relevant pairs in X. Since there are only O(n) vertices in SPM(s) (see Section 2.1.1), this is
an upper bound on |X|. ¤

Lemma A.3. At any simulation time t the total number of waves in all the approximate
wavefronts is O(n).

Proof: Let si be a generator in an approximate wavefront at time t, and let e be the last
transparent edge that the wave from si reaches in the algorithm no later than at t. Consider
the interval I claimed by si in e. There are O(n) generators that are either the first of
the last in their approximate wavefronts, so assume that I is bounded by two bisectors
b(si−1, si) and b(si, si+1), for two non-artificial generators si−1 and si+1. Furthermore, we
can assume that b(si−1, si) and b(si, si+1) both intersect e in SPM(s), recalling that there are
only O(n) bisector-edge pairs that appear in some approximate wavefront but not in SPM(s)
(by Lemma A.2). Therefore I is bounded by two bisectors of SPM(s), so we can charge any
of these bisectors for I. Each bisector of SPM(s) can be charged at most four times, since
at most two oppositely directed waves (of distinct approximate wavefronts) can touch each
side of the bisector. There are only O(n) bisectors of SPM(s) (see Section 2.1.1), hence the
bound follows. ¤

B Kapoor’s algorithm

We briefly describe here the algorithm of Kapoor [24] for computing a shortest path between
two points on a general (possibly non-convex) polyhedron P ; we also highlight a partial list
of the difficulties in the algorithm that remain to be solved in detail to make it possible to
validate its correctness and time complexity.

The algorithm follows the continuous Dijkstra paradigm, claiming to compute a shortest
path from the source s to a single target point t. The algorithm maintains the true wavefront
W , propagating the unfolded image of W along the plane ζ that contains some facet f0 that
contains s. Each time that W encounters a facet f of P that was not encountered before, f
is unfolded into ζ (each facet is unfolded at most once; some facets may lie in regions where
W will be never propagated into, so these facets will never be unfolded — see below). The
boundary of the unfolded region consists of disjoined cycles, each cycle encloses a connected
region of ∂P whose facets have not been reached by W yet. Only one of these cycles (of edges
of ∂P ) is maintained by the algorithm — the cycle B that bounds the region that contains the
target point t. B is subdivided into portions (called sections in [24]), each of which is either
a single edge b that is associated with a sub-wavefront of W that contains the candidate
waves to claim points on b, or a sequence B of edges associated with a single wave w ∈ W
so that w is the best current candidate to claim the whole section B.

The edges of B that are combined into a section B (and associated with a single wave
w) are maintained in a convex hull tree structure, so that each node in the tree represents
the convex hull of its children. The tree is balanced, so its depth is O(log n); the structure
is claimed to allow to determine the element of B that is first reached by w in (amortized)
O(log2 n) time. The waves of W that are associated with a single edge b ∈ B (that is, the
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sub-wavefront W of claimers of b) are maintained in a similar structure, that is claimed to
allow to determine the wave of W that reaches b first in (amortized) O(log2 n) time.

As W is propagated, events are processed; all the events are scheduled in a priority queue.
When an event is processed, the data structures must immediately be updated to compute
the exact location of the next event. There are several types of possible events:

(i) A wave has been eliminated by its neighbors in W .

(ii) Two non-adjacent waves collide into each other, separating the wavefront into two
cycles.

(iii) A wave has reached a facet incident to B that had not been reached before.

(iv) A wave has reached a facet incident to B that had already been reached by another
wave.

Events of type (i) are relatively easy to determine (by computing the intersection points
of the pair of the bisectors of each wave) and process. However, events of type (ii) are
very difficult to detect (using the described data structure), and they are therefore neither
detected nor processed by the algorithm. It is claimed in [24] that ignoring these events
does not affect the correctness of the algorithm; this claim requires a proof, since a pair of
non-adjacent waves that collide into each other might continue advancing “through” each
other, possibly affecting the convex hull of the wavefront section that encodes these waves.

Even if we assume that the convex hulls of the wavefront sections are correctly maintained,
events of type (iii) are not easy to determine, since the wave w that is closest to B does not
have to share points with the convex hull boundary of the wavefront section W that contains
w. The data structure of W must therefore be efficiently searched to compute the distance
from w to B. Although this procedure is sketched in [24], it is not explained how distances
along the unfolded surface of P are computed. This is especially problematic when the
segment, along which we compute the distance, crosses the boundary of the region unfolded
so far onto ζ. This missing detail seems even less trivial if we recall that the unfolded surface
of P might overlap itself (see [45]), and the number of faces of ∂P that overlap each other
might be large. See Figure 67(a) for an illustration.

The events of type (iv) are even more complicated to process (although, if the wavefront
is maintained correctly, they are quite easy to detect). Whenever a wavefront section W1 (or
a wave w1) reaches a facet that has already been reached by another wavefront section W2 (or
a wave w2), a merge procedure must take place. This procedure has to update three kinds of
data structure: (a) it has to merge the data structures that represent the wavefront sections
W1,W2; (b) it has to unite the convex hull trees of the sections of B that are associated with
the merging waves, and (c) the associations between the edges of B and the merging waves
must be updated. While it is sketched in [24] how to perform (c), the description of (a) and
(b) does not seem to be complete.

Merging the data structures that represent the wavefront sections (step (a)) does not
seem easy, since even two convex hulls C1, C2 that comprise k1 and k2 arcs, respectively,
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Figure 67: (a) The unfolded triangle f1 (shaded), has been currently reached by the wavefront and
has been unfolded onto ζ, where its image overlaps another unfolded triangle f2. The straight line
distance d from the wave w to the boundary edge b of f1 is invalid (the true distance from w to b

might be either shorter or longer than d). (b) The wave w1 reaches the facet f that has already
been reached by w2. The constructed convex hull C intersects the boundary of the unfolded region
(facets outside B are shaded).

might apparently have up to O(k1 + k2) intersections. Even if the two convex hulls intersect
in only a constant number of points, we recall that these two structures continue to evolve
as the corresponding wavefront sections are propagated further along ∂P , and their waves
might collide into each other, as in events of type (ii) described above, eventually leading to
the intersection of their convex hulls. However, as for the events of type (ii), it is claimed
in [24] that ignoring such intersections does not affect the correctness of the algorithm; this
probably needs a proof, since it is far from obvious, how can the wavefront data structure,
which does not process these events, be queried for shortest distances to B (possibly further
complicating the detection of events of type (iii)).

Note also that, as a result of the merging procedure, it is possible for the algorithm
to construct a convex hull C of a wavefront section W so that the region on ζ enclosed
in C contains vertices of P that are separated from W by B — see Figure 67(b) for an
illustration. Since the shortest path structure is affected by the way the path “navigates”
around the vertices of P , it is unclear in this case how the algorithm determines the right
order of the events that occur when W reaches B, nor how it computes distances within the
hull.

Another (probably less significant) missing detail is how the algorithm chooses the cycle
that encloses the target point t whenever B is split into more than one cycle (as in step
(b) above); recall that the algorithm continues the propagation of W only towards the
cycle that contains the target t, neglecting the portions of W that are not associated with
that cycle. It is easy to construct an example where B is split Θ(n) times through the
algorithm; moreover, even during a single merge the boundary might be split into many
cycles. Therefore, the correct determination of the cycle that encloses t (which does not
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seem to be simple, especially in the case of a nonconvex polytope) is important to estimate
the algorithm running time. (It is conceivable that some lock-step searching mechanism
could handle this problem, but the details are not obvious to us.)

To summarize, as it is presented, we feel that the algorithm of Kapoor [24] has many
issues to address and to fill in before it can be judged at all.
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