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1 Introduction 2complexity of the union boundary might be considerably smaller. Nevertheless, an algorithmfor this problem that runs in subquadratic time when the boundary of the union has sub-quadratic complexity1 is unlikely to exist, since this problem belongs to the family of 3SUM-hard problems [18], which are problems that are very likely to require 
(n2) time in the worstcase; see below for more details.However, subquadratic algorithms exist in several special cases, such as the case of fattriangles (namely, every angle of each triangle is at least some constant positive angle), orof triangles that arise in the union of Minkowski sums of a �xed convex polygon with a setof pairwise disjoint convex polygons (which is the problem one faces in translational motionplanning of a convex polygon). In these cases, the union has only linear or near-linear complex-ity [20, 23, 24], and more eÆcient algorithms, based on either deterministic divide-and-conquer,or on randomized incremental construction, can be devised, and are presented in the above-cited papers.If the input consists of general triangles, then the complexity of the union can be �(n2) inthe worst case. If it happens to be smaller, one can attempt to compute the union by employingthe randomized incremental construction (RIC) of Agarwal and Har-Peled [1], whose analysis isbased on Mulmuley's theta series [27]. Brie
y, the algorithm inserts the triangles one at a timein a random order, and maintains the union incrementally, updating it after each insertion. Asis well known (and discussed in [15]), the RIC algorithm has good performance, even when thesize of the arrangement is quadratic, provided that the depth d(v) (i.e., the number of inputtriangles containing v in their interior) of most of the vertices v in the arrangement inducedby the n input triangles is large enough. We refer to such vertices as being deep. Otherwise,when most of the vertices in the arrangement are shallow, the RIC algorithm performs poorly.In this case, one can employ the Disjoint Cover (DC) algorithm, proposed in [15], which hasgood performance in practice. This algorithm also inserts the triangles one at a time, but itcomputes an insertion order that attempts to cover as many shallow vertices as possible in eachinsertion step. However, from a theoretical point of view (and in view of certain pathologicalexamples, presented in [15]), the DC algorithm can produce 
(n2) vertices of the arrangement,even if the size of the output (i.e., the number of vertices on the boundary of the union) isonly linear or constant, and it can be beaten by the RIC algorithm in such cases.Output sensitivity. In this paper we present an eÆcient algorithm that computes the unionin an \output-sensitive" manner. There are two obvious ways to de�ne output sensitivity. The�rst is to measure the output size in terms of the size of the smallest subset S � T that satis�esSS = ST , where SS (resp., ST ) denotes the union of the triangles in S (resp., in T ). Thesecond measure is in terms of the size of the smallest subset S0 such that @ST � @SS0. SeeFigure 1 for an illustration of the two measures. Note that if the output size is �, according toeither measure, the actual complexity of the union may be as large as �(�2) (but not larger).The second measure of output size is likely to be too weak. Indeed, consider the reduction,as presented in [18], of an instance of 3sum (namely, the problem of determining whether thereexist a 2 A, b 2 B, c 2 C satisfying a+ b+ c = 0, for three given sets A, B, C of real numbers)1This is one variant of output sensitivity that one may wish to attain. In this paper we use a di�erent notionof output sensitivity, described later in the introduction.
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t1 t1 t5 t6 t4t3t2(a) (b)Figure 1: (a) An arrangement of six triangles, illustrating the �rst measure of output sensitivity.The triangles t1 and t2 cover the entire union, so the output size is 2. (b) Illustrating thesecond measure of output sensitivity. The union boundary is determined only by the trianglest1; : : : ; t4, even though the triangles t5 and t6 cover the hole created by Si�4 ti. The outputsize is 4 according to the second measure, and 6 according to the �rst one.to an instance of the problem of determining whether the union of a given set of triangles fullycovers the unit square. We can further reduce this latter problem to our problem, as follows.Let A denote an algorithm that eÆciently computes the union of n triangles in the plane, interms of the second measure, and let TA(n; �) denote its running time, expressed as a functionof n and of the \output size" �. We assume that TA(n; �) = o(n2) when � = o(n). In order todetermine eÆciently whether the given triangles fully cover the unit square, we consider onlythe portions of the triangles that are contained in the unit square, and retriangulate them, ifnecessary. In addition, we add four thin and narrow triangles that cover the boundary of theunit square. We now run A on the newly constructed instance. Clearly, there are no holesin the union of the newly created triangles if and only if the original union contains the unitsquare. In this case, the boundary of the new union consists of only four triangles, and thus Awill terminate in a predictable subquadratic time. We thus run A. If it terminates within theanticipated (subquadratic) time, we can determine, at no extra cost, whether the union coversthe unit square. Otherwise, we stop A, and correctly report that the union of the originaltriangles does not cover the unit square. Hence an eÆcient output-sensitive solution, underthe second measure, would have yielded a subquadratic solution to 3sum, and is thus unlikelyto exist.In contrast, the �rst measure does lend itself to an eÆcient output-sensitive solution, whichis the main result of this paper.Our results. Speci�cally, we present an eÆcient algorithm to construct the boundary ofthe union of a set T = f�1; : : : ;�ng of n triangles in the plane, under the assumption thatthere exists a subset S � T of � � n triangles (unknown to us) such that SS = ST . Wepresent an algorithm, whose running time is O(n4=3 log n + n� log2 n), which is subquadraticwhen � = o(n= log2 n). Our approach is a randomized algorithm, based on the method ofBr�onnimann and Goodrich for �nding a set cover or a hitting set in a set system of �niteVC-dimension, as presented in [10] (see Section 2.1 for a brief review of this method). In our



2 The Union Construction as a Set Cover Problem 4case, the objects are the triangles of T , and each vertex v of the arrangement A(T ) de�nesa set Tv = f� 2 T j v 2 int(�)g. A hitting set for this system is a set S � T such thatSS = ST , and thus a minimum-size hitting set is the object that we wish to compute. Ingeneral, the Br�onnimann-Goodrich technique is not eÆcient enough for our purposes, but weuse a variant of the algorithm which can be implemented eÆciently. Speci�cally, we applythe algorithm of Br�onnimann and Goodrich in an \approximate setting", �ne-tuning it (usingrandomization) so that it constructs a subset T 0 of O(� log �) triangles of T , whose union coversthe overwhelming majority of the vertices in the arrangement A(T ). This allows us, with somecare, to compute the portion of ST that lies outside ST 0 in an eÆcient explicit manner.We note that, when measuring the expected number of vertices generated by the algorithm,it suÆces (and is appropriate) to consider only vertices at positive depth, since vertices atdepth 0 are the vertices of the union, and they have to be constructed by any algorithm thatcomputes the union. We call the latter quantity, namely the number of positive-depth verticesgenerated by the algorithm, the residual cost of the algorithm.In Section 2.1 we brie
y recall the algorithm of Br�onnimann and Goodrich, and presentour approximate version of it. Then we derive an upper bound on the expected residual cost ofthe algorithm in its approximate version. Section 3 describes a detailed implementation of ouralgorithm. In this implementation, we use generic and simple techniques, that can be easilyextended to other geometric objects of constant description complexity2 in the plane and inIRd. These extensions are discussed in Section 4. We give concluding remarks and suggestionsfor further research in Section 5.2 The Union Construction as a Set Cover Problem2.1 An overview of the Br�onnimann-Goodrich techniqueA technique for �nding a set cover of a set system of �nite VC-dimension is described in detailby Br�onnimann and Goodrich [10]; for the sake of completeness, we provide a brief overviewof this approach, in the context of the union construction problem.We denote by V the set of vertices of the arrangement A(T ) at positive depth (consideringonly intersection points of the triangle boundaries and ignoring triangle vertices). Our setsystem is dual to the set system (V; T ), and is de�ned as (T; V �), whereV � = fTv : v 2 V g;and where Tv consists of all the triangles � 2 T that contain v in their interior. Since this setsystem is dual to (V; T ), which has some �nite VC-dimension d (see, e.g., [6]), it follows thatthe VC-dimension of (T; V �) is also �nite; as a matter of fact, it does not exceed 2d+1 [8]. Asalready mentioned, out goal is to �nd a hitting set for (T; V �), that is, a subset H � T thathas a nonempty intersection with every set Tv 2 V �, v 2 V .2A set in IRd is said to have constant description complexity if it is a semi-algebraic set de�ned as a Booleancombination of a constant number of polynomial equalities and inequalities of constant maximum degree in aconstant number of variables.



2 The Union Construction as a Set Cover Problem 5The algorithm of Br�onnimann and Goodrich �nds a hitting set, whose size is O(h� log h�),where h� is the smallest size of any hitting set. Note that the reported hitting set is actuallya set cover for the primal set system (V; T ), where a set cover, in this case, is a collectionC � T of triangles, whose union covers the entire set V . (For technical reasons, the method ofBr�onnimann and Goodrich computes a set cover via a hitting set of the dual set system, whichis why we also work with the dual system; see [10] for further details.) Since, by de�nition, thesize of the optimal cover is assumed to be �, it follows that the size of the set cover reportedby the algorithm is at most O(� log �).We �rst describe the algorithm of Br�onnimann and Goodrich in its \ideal setting", wherethe entire set V is given, and then show how to modify this setting, so that it suÆces toconsider only a small subset of vertices.The Br�onnimann-Goodrich algorithm has two key subroutines: (i) A net �nder F for(T; V �), which is an algorithm that, given a parameter r � 1 and a weight distribution w onT , computes a (1=r)-net for the weighted system (T; V �) [6]. A (1=r)-net is a subset N � T ,which has a nonempty intersection with each set in V � whose total weight is at least 1=r ofthe total weight of T . (ii) A veri�er V, that, given a subset H � T , either states (correctly)that H is a hitting set, or returns a nonempty \witness" set Tv 2 V �, for some v, such thatTv \H = ;. In our context, V has simply to output a vertex v 2 V which is not contained inthe interior of SH.The Br�onnimann-Goodrich algorithm then proceeds as follows. We guess the value of �(homing in on the right value using an exponential search). We assign weights to the trianglesin T . Initially, all weights are 1. We then use the net �nder F to construct a (1=2�)-net N for(T; V �). If the veri�er V outputs some set Tv that N does not hit, we double the weights ofthe triangles in Tv, and repeat the process with the new weights. As shown in [10], a hittingset is found after at most 4� log (n=�) iterations.The problem with this ideal setting is that it requires the construction of all the (positive-depth) vertices of A(T ), which is much too much to ask for, since it can be too expensive(V can be quadratic in the worst case, while � can still be very small). Instead, we use asmaller randomly sampled subset R � V of r elements, whose actual computation is presentedin Section 3. We then feed the veri�er V with R instead of the entire set V . We show thatonce the veri�er V announces that the subset H, reported by the net �nder F , covers R, theactual number of vertices of V that remain uncovered is relatively small, with high probability.We then compute the uncovered vertices in an explicit manner, and thereby complete theconstruction of ST .2.2 A subquadratic residual cost via samplingWe begin the analysis of our implementation of the Br�onnimann-Goodrich technique with thefollowing lemma, which provides a lower bound for the size of the sample R, which is suÆcientto guarantee the property asserted at the end of the preceding subsection.In what follows, we say that an event occurs with overwhelming probability (or w.o.p., forshort), if the probability that it does not occur is at most 1nc , for some constant c � 1.



2 The Union Construction as a Set Cover Problem 6Lemma 2.1 Let T = f�1; : : : ;�ng be a given collection of n triangles in the plane, let Vdenote the set of vertices of the arrangement A(T ) at positive depth, let � denote the size ofV , and suppose that there are only � triangles of T whose union is equal to ST . Let S � Tdenote a subset of triangles, and let R � V be a random sample of r = 
(tlogn) positive-depthvertices sampled after S has been �xed, for some parameter t � 1 and with a suÆciently largeconstant of proportionality. If S covers all but rS < r vertices of R, then, w.o.p., the actualnumber �S of vertices of V that are not covered by the elements of S satis�es�S � maxn�t ; � �r rSo; (1)for some absolute constant � > 1.Proof: For simplicity of exposition, we present the analysis under the model where R isobtained by drawing each point of V independently with probability p = r� . Nevertheless,the assertion of the lemma also holds for other models of sampling R, in particular, for themodel we use in the actual implementation of the algorithm; see Section 3 and Appendix A fordetails. Since each point in V nSS is chosen independently with probability r� , the expectednumber of vertices of R that are not covered by S is r��S .It suÆces to consider the case �S > �t , for otherwise (1) clearly holds.Since R is sampled after S has been �xed, the number rS of vertices of R that are notcovered by SS is a random variable, which can be expressed as the sum of �S mutuallyindependent indicator variables, X1; : : : ;X�S , each satisfyingPr[Xi = 1] = p; Pr[Xi = 0] = 1� p; for i = 1; : : : ; �S :Fix a parameter r0 > 0, and consider the eventAS : rS � r��S < �r0:Using a large deviation bound given in [6, Theorem A.13], it follows thatPr[AS ] < e� r022 r��S : (2)Putting r0 = p2c0 r��S log n, for some constant c0 � 1, (2) implies that the probabilitythat the event AS does not occur is at most 1nc0 . Hence, w.o.p.,rS � r��S � �r2c0 r��S logn;or rS �r r��S �r r��S �p2c0 log n� :Since we have assumed that �S > �t , and that r = 
(t log n), with a suÆciently large constantof proportionality, it follows that, w.o.p.,r r��S �p2c0 logn > �r r��S ; (3)



2 The Union Construction as a Set Cover Problem 7for some absolute constant 0 < � < 1, which implies that�S � ��rrS ;and thus the lemma follows. 2Remarks: 1) Note that Lemma 2.1, as well as its variant discussed in the Appendix, deal withabstract sets, and do not exploit any special property of vertices in arrangements of triangles.We will therefore be able to use the lemma, more or less verbatim, in the extensions presentedin Section 4.2) We re-emphasize that Lemma 2.1 relies on the assumption that R is sampled after S hasbeen chosen (in our implementation, this choice will also be random). In particular, for thelemma to be applicable at each iteration of the Br�onnimann-Goodrich algorithm, R should beredrawn from scratch before applying the veri�er V. (See Section 3 for further details.)Lemma 2.1 implies that if the triangles in S cover all the elements of R (and thus rS = 0),then, w.o.p., �S � �t (in fact, it is suÆcient that rS = O � rt �). We thus construct the unionof the input triangles in two steps, where in the �rst we �nd a set H of O(� log �) trianglesthat covers all but at most �t vertices of V , and compute the union SH, and in the second wehandle eÆciently all the remaining vertices of V that H does not cover; see below for details.It thus follows that the overall expected number of positive depth vertices generated by thealgorithm is O(�2 log2 �) (which is the number of vertices of the arrangement of the trianglesin H) in the �rst part, and at most �t in the second part.In summary, we have shownTheorem 2.2 Let T = f�1; : : : ;�ng be a given collection of n triangles in the plane, andassume that there exists a subset H � T of � � n triangles (unknown to us) such thatSH = ST . Let V , � and t be as in Lemma 2.1. Then one can implement the Br�onnimann-Goodrich algorithm, so that its residual cost is O(�2 log2 � + �t ), w.o.p. In particular, fort = maxn ��2 ; 1o, the residual cost is O(�2 log2 �).Discussion. Clearly, if our only concern is to have the algorithm generate as few positive-depth vertices as possible, we should choose t as large as possible, thereby making R larger,and the set of vertices of V not covered by H smaller. For example, as noted, if we chooset = maxn ��2 ; 1o, then the residual cost of the algorithm is at most O(�2 log2 �), w.o.p. Sincethere are only � triangles that de�ne the union, the combinatorial complexity of the boundaryof the union is only O(�2). This implies that, for the above choice of t, the overall number ofvertices that the algorithm generates is O(�2 log2 �), which is subquadratic for � = o(n= log n).However, if we are concerned with the actual running time, large values of t will slow downthe algorithm, because sampling the sets R will be more expensive. Hence, in the actualimplementation of the algorithm, presented in Section 3 below, we will choose a smaller valuefor t, in order to optimize the bound on the actual running time of the algorithm. This willalso a�ect the bound on the residual cost.We also note that the bound O(�2 log2 �) on the complexity of the union of the triangles



3 Implementation of the Algorithm 8computed in the �rst part of the algorithm may be too pessimistic in practice. If the complexityof the union SH turns out to be smaller, the residual cost will be smaller too.3 Implementation of the AlgorithmThe actual cost of the algorithm depends on the cost of several support routines (in additionto the cost of the actual generation of positive-depth vertices), such as (i) constructing therandom samples R; (ii) �nding a (1=2�)-net for the set system (T; V �); (iii) implementing theveri�er V, which, in our case, is an algorithm that eÆciently decides whether a given subsetS of triangles covers another given subset R of positive-depth vertices; and (iv) the actualconstruction of the union of the input triangles, after an approximate hitting set has beenfound. We present here an implementation that uses generic and simple techniques, and yieldsa subquadratic output-sensitive algorithm for constructing the union.In the following description, we denote by h the size of the set H computed in the �rststage of the algorithm.Sampling RThe task at hand is to construct, at each iteration of the algorithm, a random sample of (anexpected number of) r = ct log n positive-depth vertices of A(T ), for appropriate values of theparameter t and the constant c. (As already mentioned, and will be discussed below, we haveto draw a new subset R in each iteration of the algorithm, in order to eliminate any dependencebetween the present subset of triangles reported by the net �nder F and the (current) sampleR.)We sample R using the following simple-minded approach. Suppose that we have a guessfor the values of � and � (see below for details concerning these guesses). Let �� denote thenumber of vertices on the boundary of ST . If � = O(��) then the entire arrangement hasonly O(��) = O(�2) vertices, and can thus be constructed in time O(n logn + �2), using anyof the standard techniques [27]. We may thus assume that � � ��. We also may assumethat �� maxf�2; n4=3g. Otherwise, we construct the entire arrangement in time O((n+ �2 +n4=3) log n) = O((�2 + n4=3) log n).We now perform c0r(n2)� sampling steps, where in each step we choose, uniformly and inde-pendently, a pair of edges of distinct triangles in T , for an appropriate constant c0 > 1. Clearly,a real vertex of the arrangement A(T ) is chosen in a single step with probability �+��9(n2) , andthus the expectation of the number r0 of pairs of edges that actually intersect is�+ ��9�n2� � c0r�n2�� = �(r):Using the same deviation bound, as shown in Lemma 2.1, it can be shown that, w.o.p., the



3 Implementation of the Algorithm 9actual number of such pairs satis�esr0 � E(r0)�s
 ��n2� r�n2�� logn = E(r0)�p
r log n;for some constant 
 � 1. Since p
r log n � r (by the choice of r and 
), there is a constant0 < � < 1, which can be made arbitrarily small (for a proper choice of 
) such that, w.o.p.,r0 � (1� �)E(r0) = �(r);for a suÆciently large constant of proportionality, that depends on c0 and 
.Not all sampled vertices have positive depth. However, since � � ��, the overwhelmingmajority of the sampled vertices will have positive depth. By choosing c0 to be suÆcientlylarge, at least r of these vertices will have positive depth, w.o.p.Implementing a net �nder F and a veri�er VAs already described in the preceding section, we assign weights to the elements of T (initially,each triangle gets the weight 1), and use a net �nder F to construct a (1=2�)-net for theweighted dual system (T; V �). We then apply the veri�er V, in order to decide whether Hcovers (the newly resampled subset) R. If it does, the �rst part of the algorithm terminates,and we proceed to the actual construction of the union; otherwise, V returns a particularwitness subset Tv 2 V �, for some v 2 R, such that Tv \H = ;. We then double the weights ofthe triangles in Tv, construct a new (1=2�)-net and a new sample R, and repeat this processuntil we �nd a subset of triangles that fully covers R. The analysis in [10] can be modi�edto show that the number of iterations that this algorithm performs is O(� log (n=�)). Indeed,as long as there exists some vertex of the new sample R that is not covered by the set Hconstructed by F , we keep on doubling the weights of the triangles covering this vertex, andaccording to the analysis of the algorithm [10], the overall number of such iterations does notexceed 4� log (n=�). On the other hand, if R is fully covered by H, we stop this process (andmay perform a smaller number of iterations), and start the actual construction of the union.We start with the description of the net �nder F . We use a simple method, reviewed brie
yin [10] and presented by Matou�sek [25], for reducing the weighted case to the unweighted one.In this method, we scale all weights of the triangles in T , such that the sum w(T ) of theweights of all the elements of T satis�es w(T ) = n. We then take bw(�) + 1c copies of eachelement � 2 T (where w(�) is the scaled weight of �). Note that the multiset T 0, that wehave constructed, contains all the elements of T and has at most 2n elements. It is shownin [25] that an "-net for (the unweighted set) T 0 is also an "-net for the weighted set T . Findinga (1=2�)-net for T 0 can be done by drawing O(� log �) random elements of T 0. As shown, e.g.,in [6], an appropriate choice of the constant of proportionality ensures that such a randomsample is a (1=2�)-net, with overwhelming probability. Clearly, creating the multiset T 0 takesO(n) time, and drawing O(� log �) random elements of T 0 takes an additional O(� log �) time.Thus the overall running time of the net �nder is O(n), for total time of O(n� log (n=�)) overall iterations of the algorithm. (Note that if the random sample is not a (1=2�)-net (which may
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U

t2
t1 t3Figure 2: The second stage of the actual construction of the union. U denotes the union of theh triangles in the hitting set H, and t1; t2 and t3 denote the remaining triangles to be insertedinto the union. Only the portions of t1; t2 and t3 that lie outside U are relevant.happen with an overwhelmingly small probability), the number of iterations of the algorithmmay exceed 4� log (n=�), and, in this case, we may stop the whole process and restart it fromscratch. Nevertheless, the fact that the process fails with an overwhelmingly small probabilityensures that the number of such trials is not larger than some constant factor.)In the implementation of the veri�er V, we use brute force, and iterate over all the verticesof R and the triangles of H in O(r� log �) time, to determine whether there exists a vertex inR that is not covered by the triangles of H. We denote the set of all such vertices of R by RH .Suppose RH is not empty (otherwise, the �rst part of the algorithm terminates). We samplea random vertex v from RH , and obtain, by brute force, the set Tv of all triangles in T thatcontain v in their interior (clearly, Tv \H = ;), and double their weights. However, since Rmay in general also contain zero-depth vertices, Tv will be empty for such vertices. In thiscase we continue sampling vertices out of RH , and stop when we �nd a positive-depth vertex.Since the overwhelming majority of the vertices in R have positive depth, we will obtain sucha vertex, w.o.p., after at most O(log n) samples, as is easily veri�ed. Hence, w.o.p., the totalcost of this substep is O(n log n). Since we repeat this procedure for O (� log (n=�)) steps, theoverall cost of this stage isO(� log (n=�)(r� log � + n logn)) = O(r�2 log � log (n=�) + n� log (n=�) logn);and this bounds the overall running time, for both the net �nder F and the veri�er V, over alliterations of the �rst part of the algorithm.The actual construction of the unionThe implementation of the actual construction of the union proceeds through two stages. We�rst construct the union of the triangles in the set H, and then compute the portion of A(T )outside this union. As argued earlier, this portion contains, w.o.p., at most �t positive-depthvertices of A(T ).



3 Implementation of the Algorithm 11We �rst construct the union of the h triangles of H in O(h2) = O(�2 log2 �) time (using,e.g., randomized incremental construction [27]). Next, we eÆciently �nd the intersections ofthe boundary of each of the remaining triangles � with the boundary of SH, in order tocollect all the portions of @� lying outside SH. We denote the set of all such portions, overall the remaining triangles, by C. (See Figure 2 for an illustration.)In order to �nd those portions eÆciently, we use the algorithm of Bentley and Ottmann [9]for reporting all k intersections in a set of n simply shaped Jordan arcs in O(n logn+ k logn)time. We partition the set of the remaining triangles into d n� log � e subsets, each containingO(� log �) triangles. We denote the collection of all these subsets by S = nS1; : : : ; Sd n� log � eo.Next, we compute, for every subset S 2 S, the arrangement A(S) induced by the triangles inS, and then run the Bentley-Ottmann algorithm on the combined collection of the edges ofA(S) and the O(h2) edges of SH. Since the edges of A(S) are pairwise openly disjoint, andso are the edges of SH, the algorithm will only report intersections between the boundaryof SH and the remaining triangles. Since the overall number of such intersections, over allsubsets in S, is at most �t , the overall cost of reporting all intersections isO�� n� log � � �2 log2 �� logn+ �t logn� = O(n� log � log n+ �t log n):Next, we trim the edges of the remaining triangles to their portions outside SH, and thenconstruct the entire union using another line sweeping procedure on these exterior edge portionsand the boundary edges of SH [9]. Since there are at most �t positive-depth vertices that areconstructed during this process, the algorithm takes O ��n+ �2 log2 � + �t � log n� time.This completes the detailed description of our algorithm, which is summarized in the fol-lowing procedure, for which � is an input parameter. Since � is not known a priori, we runthis procedure with the values � = 1; 2; 4; : : : ; 2i; : : : (where i� logn), thereby guaranteeing aconstant approximation of the actual value of �. The choice of r (that is, of the parameter t)in this procedure will be speci�ed later.Procedure ConstructUnion(T , �)1. Construct ST by a line sweeping procedure on the triangles in T . Stop the procedure as. soon as it constructs more than maxf�2; n4=3g vertices. If it terminates goto 16.2. Initialize all weights of the triangles in T to 1.3. repeat4. H  (1=2�)-net of size O(� log �) for the weighted system (T; V �).5. Construct a new random sample R of r vertices out of the vertices of A(T ).6. Apply the veri�er V to H and R.7. if H covers R goto 11.8. else9. Double the weights of all the triangles in the subset Tv reported by V.10. endrepeat11. Construct the union of the triangles in H.12. Partition T into subsets S1; : : : ; Sd n� log � e of size O(� log �) each.13. For each Si, compute A(Si) and �nd all intersections between its edges and @SH,. using a line-sweeping procedure.



4 Extensions 1214. Trim the edges of the remaining triangles to their portions outside SH. Denote the. set of the resulting segments by C.15. Construct ST by a line sweeping procedure on C and the boundary edges of SH.16. endWe substitute r = ct log n, for some absolute constant c, and for the parameter t that westill need to �x. Since h the size of H is O(� log �), and since the algorithm terminates afterO(� log (n=�)) iterations, the overall cost of the algorithm ismin( O((n+ �) log n);O �n2� r� log (n=�) + n� log (n=�) log n+ hr� log (n=�) + nh logn+ �t logn+ h2 log n� ) =min( O((n+ �) log n);O �n2� t� log n log (n=�) + n�(log (n=�) + log �) log n+ �2t log � log n log (n=�) + �t logn� ) :Choosing t = max� p�� log n; 1� ;the running time bound becomesmin�O((n+ �) log n); O� n2p� log (n=�) + �p� log2 n+ n�(log (n=�) + log �) log n�� :Since � = O(n2) and � � n, this is upper bounded bymin�O((n+ �) log n); O� n2p� log n+ n� log2 n�� :The two terms involving � are equal when � = n4=3. Hence the running time is always boundedby O(n4=3 log n+ n� log2 n).In summary, we have shown:Theorem 3.1 Let T be a set of n triangles in the plane whose union is equal to the unionof an unknown subset of � � n triangles. Then the union can be constructed in randomizedexpected time O �n4=3 log n+ n� log2 n�, which is subquadratic for any � = o� nlog2 n�.4 ExtensionsIn this section we show how to extend our algorithm to compute the union of other planarshapes, as well as unions of simply shaped bodies in three and higher dimensions.The analysis of the algorithm of [10] holds for any range space of �nite VC dimension.Consider an input set S of bodies in IRd, and let V denote the set of positive-depth verticesof A(S). It is well known that the range space (S; V �) has �nite VC dimension if the objectshave constant description complexity. This can be shown, for instance, by the linearization



4 Extensions 13technique (see, e.g., [26]). In this case, the number of vertices that the objects in the set H,reported by the net �nder F , can generate, among themselves, is O(�d logd �). In addition,Lemma 2.1 continues to hold in this case, since it does not make any assumptions on theinput shapes. It thus follows that Theorem 2.2 can be easily extended to bodies in IRd ofconstant description complexity, and that the residual cost of the algorithm, in this case, isO(�d logd � + �t ), w.o.p.The actual implementation of the various stages of the algorithm can also be easily extendedto bodies in IRd of constant description complexity. We begin with the planar case, and thendiscuss in Section 4.1 the extension to higher dimensions.In the case of simply shaped planar regions, we apply similar subroutines, that run withinthe same time bounds as stated in Section 3. In the sampling procedure, each pair of regionboundaries intersect in a constant number of points, and we collect all these intersections toform R. Since our system has �nite VC-dimension, we can construct a (1=2�)-net for thissystem in much the same way as in Section 3. In addition, the veri�er V can still detectwhether a given vertex v is contained in the interior of another given region in O(1) time, andthus these two subroutines will run within the same asymptotic time bounds as in the caseof triangles. (In fact, these properties hold for bodies of constant description complexity inhigher dimensions as well, and thus the net �nder F and the veri�er V will run within the sameasymptotic time bounds in these cases too). In the actual construction of the union, we usethe algorithm of Bentley and Ottmann [9], which can be applied for any set of Jordan arcs ofconstant description complexity, with the same asymptotic time bound, as stated in Section 3.We can thus easily derive the following theorem:Theorem 4.1 Let S be a set of n planar regions of constant description complexity, whoseunion is equal to the union of an unknown subset of � � n regions. Then the union can beconstructed in randomized expected time O �n4=3 log n+ n� log2 n�, which is subquadratic forany � = o� nlog2 n�.4.1 The union of simply shaped bodies in IRdWe begin with the extension of our algorithm to the case of bodies of constant descriptioncomplexity in three dimensions, and then describe the generalization to higher dimensions.In three dimensions, we may assume in the sampling procedure that � � maxf�3; n2g.Otherwise, we construct the union in time O((n2+ �3) log n), as follows. We �x a body B 2 Sand intersect its boundary F with each object B0 2 S n fBg. We obtain a collection of n� 1Jordan regions of constant description complexity on F . The complement of their union isthe portion of F that appears on @SS. Computing this complement can be done in timeO(n log n + �B log n), where �B is the number of vertices of A(S) that lie on F , using anappropriate variant of the line-sweeping algorithm of Bentley and Ottmann [9]. Repeating thisprocedure for each boundary F , the total cost is O((n2 + �) log n) = O((n2 + �3) log n), asclaimed.The main part of the algorithm then proceeds in much the same way as before. For example,
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F

Figure 3: The case where the input bodies are simplices in three dimensions. The facet Fbelongs to one of the �rst h simplices. The thick lines are the boundaries of SH on F .The thin lines are the intersections of the n � h remaining simplex boundaries with F . Theintersections appearing in the shaded regions lie in the interior of the union of the n simplices,and need not be computed explicitly.when we construct a sample R of vertices, we perform, in analogy with the two-dimensionalprocedure, c0r(n3)� sampling steps, for an appropriate constant c0 > 1, where in each step wechoose, uniformly and independently, a triple of distinct input bodies in S, and collect allresulting boundary intersections to form R. A similar analysis to that described in Section 3shows that, with an appropriate choice of the constant c0, at least r of the chosen triplesgenerate real vertices that have positive depth, w.o.p.As noted above, the net �nder F and the veri�er V can be implemented in a similarmanner to that described in Section 3, and run within the same asymptotic time bounds(and this holds in higher dimensions as well). It follows that, choosing t = maxn p�� logn ; 1o,the �rst part of the algorithm computes a subset H of S of size h = O(� log �), in timeO(r�2 log � log (n=�) + n� log (n=�) logn), such that at most �t positive-depth vertices of A(S)lie outside the (interior of the) union SH.After constructing SH, we need to compute all the intersections between the remainingbodies and the boundary of SH. This is done as follows. For each body B 2 S (particularly,B may belong to H), we take its boundary F , and compute the set of its exposed portionsthat lie outside SH n fBg. This is done by constructing the intersections B0F = B0TF foreach B0 2 H n fBg, and then compute the complement of their union within F . Since theregions B0F are bounded by curves of constant description complexity, their arrangement hasO(h2) complexity, and it can be constructed in O(h2 log n) time. We denote by EF the set ofedges of the arrangement that appear on the boundary of the union of the regions B0F . ClearlyjEF j = O(h2). We then intersect F with all the remaining n � h input bodies, obtaining a



4 Extensions 15set of curves SF bounding the intersection regions. Our goal is to �nd the portions of thecurves in SF that are not contained in the interior of SH; see Figure 3 for an illustration.We �rst report the intersections between the curves in SF and EF in O(nh log n + IF logn)time, where IF is the number of such intersections, in a similar manner to that described inthe two-dimensional case. Since the overall number of these intersections, over all facets F , isless than �t , the overall time needed to report all these intersections, over all these facets, isO(n2h log n+ �t log n):We now trim, on each boundary F , the edges of the cross sections of the remaining inputbodies, to their portions within the exposed bodies on F , and continue in a similar manner tothat described in the two-dimensional case; that is, we run a line sweeping procedure on theseportions and the curves in EF . The running time of this procedure, over all boundaries F , isO ��n2 + nh2 + �t � log n�.The overall running time of the algorithm, in this case, is thusmin( O((n2 + �) log n);O �n3� r� log (n=�) + n� log (n=�) logn+ hr� log (n=�) + n2h log n+ �t log n� ) =min( O((n2 + �) log n);O �n3� t� log n log (n=�) + �2t log � logn log (n=�) + n2� log � log n+ �t log n� ) :Choosing, as above, t = max� p�� log n; 1� ;the running time bound becomesmin�O((n2 + �) log n); O� n3p� log (n=�) + �p� log2 n+ n2� log � log n�� :Since � = O(n3) and � � n, this is upper bounded bymin�O((n2 + �) log n); O� n3p� log n+ n2� log2 n�� :The two terms involving � are equal when � = n2. Hence the running time is always boundedby O(n2 log n+ n2� log2 n) = O(n2� log2 n);which is subcubic for � = o� nlog2 n�.Let B be a set of n bodies of constant description complexity in IRd, and let S � B be the(unknown) subset of � bodies whose union is equal to SB. We compute the union by recursingon the dimension. That is, we �x a body B 2 B, take its boundary F , and intersect it with eachbody B0 2 B n fBg. We then compute the union of these intersection bodies, and construct



5 Concluding Remarks 16its component within F . The union of all these components, over all boundaries F , yields theboundary of @B. Note that if B 2 B n S then the union of the intersection bodies along @Bcovers the entire boundary of B. In fact, the union of the intersections with the bodies of Salready covers the boundary. Similarly, if B 2 S then the union of the intersection bodiesalong @B is equal to the union of the intersections with the bodies of S. In either case, with anappropriate parametrization of the boundaries, we obtain n (d � 1)-dimensional instances ofthe union construction problem, each with output size � �, according to our measure. We thuscompute these (d�1)-dimensional unions recursively, and stop the recursion when d = 3. Thisleads to an overall algorithm that runs in randomized expected time O(nd�1� log2 n). That is,we have:Theorem 4.2 Let S be a set of n bodies of constant description complexity in IRd, whoseunion is equal to the union of an unknown subset of � � n bodies. Then the union can beconstructed in randomized expected time O(nd�1� log2 n), which is asymptotically smaller thannd for any � = o� nlog2 n�.5 Concluding RemarksWe have presented an output-sensitive algorithm for the problem of constructing eÆcientlythe union of n triangles in the plane, whose running time is expressed in terms of the smallestsize � of an unknown subset of the triangles whose union is equal to the union of the entireset. We have used a variant of the technique of Br�onnimann and Goodrich [10] for �ndinga set cover in a set system of �nite VC-dimension. We have also presented a detailed andfairly generic implementation of this method, showing that the above problem can be solved inrandomized expected time O(n4=3 log n+ n� log2 n), which is subquadratic for � = o� nlog2 n�.The algorithm does not have to know the value of � in advance. Instead, it runs an exponentialsearch on �, which approximates well the correct value of �, up to a constant factor.We showed that our approach can be easily extended to simply shaped bodies of constantdescription complexity in IRd, for d � 2, where the union is determined by � bodies. In theplanar case, the running time remains O(n4=3 log n + n� log2 n). In d � 3, the union can beconstructed in randomized expected time O(nd�1� log2 n), which is asymptotically smaller thannd for � = o� nlog2 n�. For d > 3, we computed the union recursively on d, by constructing theunion along each object boundary separately. However, this recursion had to stop at d = 3.Indeed, for d = 3, applying the two-dimensional algorithm on the boundary of each inputbody, yields an overall O �n7=3 log n+ n2� log2 n� expected running time, which is worse thanthe bound that we have obtained when � = o� n1=3log n�.A direction for further research is to determine whether there exist simpler eÆcient ap-proaches to the union construction problem studied in this paper. We note that the standardrandomized incremental construction (RIC) of [27] may fail in this case. In fact, the standardbad example for the RIC, consisting of n triangles that form �(n2) shallow vertices that are allcovered by one large triangle (or, more generally, sparsely covered by � � n triangles), showsthat the RIC may fail to construct the union in an output-sensitive manner.
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A The Actual Model for Sampling R 20holds, for some positive constant 
. This has the e�ect of multiplying the probability that (1)fails by 
, which implies that (1) still holds, w.o.p. Hence, it suÆces to show that (6) holdsfor the above value of �.In our model, ��Si=1E he�Xii = �e�p+ (1� p)��S = �1 + p(e� � 1)��S : (7)and E heP�Si=1 �Xii = r�Xm=0Pr [rS = m] e�m; (8)where r� = min� c0r(n2)� ; �S�. (Note that Pr [rS = m] = 0, for any m > r�.)In each of the c0r(n2)� drawing trials, the probability that we have selected a vertex v, andthat it is not covered by S, is q = �(n2) � �S� = �S(n2) . Since these trials are independent, we havePr [rS = m] = �r�m�qm[1� q]r��m:Hence (8) becomes r�Xm=0�r�m�qm[1� q]r��me�m =�e�q + 1� q�r� :In other words, putting e� � 1 = �0, we need to show that(1 + �0q)r � 
 (1 + �0p)�S ;for some constant 
 > 0. We will show that(1 + �0q)r� � (1 + �0p)2c0r (1 + �0p)�S ;which implies the preceding inequality because (1 + �0p)2c0r = O(1). Indeed, (1 + �0p)2c0r <e2c0�0pr. Using the fact that e� � 1 + 2�, for 0 � � � 1, and substituting � = r0p�S , �0 = e� � 1we have e2c0�0pr � e4c0 rr0�S :Since we assume in Lemma 2.1 that r0 = 2pc0 r��S log n, for some constant c0 � 1, the latterexpression is smaller than e8c0 r�Spc0 r��S log n = eO�rr r log n��S �;which is always upper bounded by eO( r�ptr log n);



A The Actual Model for Sampling R 21using the assumption of Lemma 2.1 that �S � �t .Substituting r = ct log n, for some constant c, and t = maxn p�� log n ; 1o, as above, and usingthe assumption that �� maxf�2; n4=3g (see Section 3)e2c0�0pr < max(eO� 1�2 �; eO� log2 n� �) = O(1):It thus remains to show that(1 + �0q)r� � (1 + �0p)2c0r+�S : (9)We �rst assume that c0r(n2)� � �S . We thus show that�1 + �0�S� � c0r(n2)� � (1 + �0p)2c0r+�S ;or that c0r(n2)�Xi=0 � c0r(n2)�i � �0 �S�n2�!i � 2c0r+�SXi=0 �2c0r + �Si � (1 + �0p)i :Note that 2c0r+�S > c0r(n2)� , due to the assumption that c0r(n2)� � �S . It thus suÆcient to showthat � c0r(n2)�i � �0 �S�n2�!i � �2c0r + �Si � (1 + �0p)i ;for each 0 � i � c0r(n2)� . Clearly, this inequality holds for i = 0, and using (5), for each i > 0,it implies that � �S2c0r + �S �i � �1� c0r� �i :It therefore suÆces to show that �S2c0r+�S � 1� c0r� , or that 1� 2c0r2c0r+�S � 1� c0r� , or that� � c0r + �S2 ; (10)which clearly holds, since �S � � and r � �.We now show that (9) holds when c0r(n2)� > �S . We thus show that 1 + �0 �S�n2�! � (1 + �0p) 2c0r+�S�S :



A The Actual Model for Sampling R 22Using the fact that (1 + �0p) 2c0r+�S�S � 1 + �0p�2c0r+�S�S � and (5), it is suÆcient to show that�S�n2� � c0 r� �1� c0r� ��1 + 2c0r�S � ;or that �1� c0r� ��1 + 2c0r�S � � 1, using the assumption on �S . The latter implies that �� c0r��S2 � 0, which clearly holds due to (10).We note that (9) holds for any value of �0 > 0, and the assumption on � is used only whenshowing that (1 + �0p)2c0r = O(1). This completes the proof of (6) for the above consideredvalues of �.


