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Abstract

We present an efficient algorithm for the following problem: Given a collection T' =
{Ay,...,A,} of n triangles in the plane, such that there exists a subset S C T' (unknown
to us), of { K n triangles, such that (Jo g A = Jacr A, construct efficiently the union of
the triangles in T'. We show that this problem can be solved in randomized expected time
O(n*?logn + nélog” n), which is subquadratic for & = o(n/log”n). In our solution, we

use a variant of the method of Bronnimann and Goodrich [10] for finding a set cover in a
set system of finite VC-dimension. We present a detailed implementation of this variant,
which makes it run within the asserted time bound. Our approach is fairly general, and
we show that it can be extended to compute efficiently the union of simply shaped bodies
of constant description complexity in R?, when the union is determined by a small subset
of the bodies.

1 Introduction

Many problems in computational geometry involve the task of constructing the boundary
of the union of n geometric objects in the plane or in higher dimensions. Problems of this
kind include motion planning [22], where we wish to construct the forbidden portions of the
configuration space; hidden surface removal for visibility problems in three dimensions [27];
finding the minimal Hausdorff distance between two sets of points (or of segments) in IR? [19];
applications in geographic information systems [13], and many others. In this paper, we focus
mainly on the problem of constructing the union of n triangles in IR?, but we also show that our
algorithm can be extended to other geometric objects in the plane and in higher dimensions.

Computing the union by constructing the full arrangement of the n input triangles requires
©(n?) time in the worst case, which, in many instances, is wasteful, since the combinatorial
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complexity of the union boundary might be considerably smaller. Nevertheless, an algorithm
for this problem that runs in subquadratic time when the boundary of the union has sub-
quadratic complexity' is unlikely to exist, since this problem belongs to the family of 3SUM-
hard problems [18], which are problems that are very likely to require (n?) time in the worst
case; see below for more details.

However, subquadratic algorithms exist in several special cases, such as the case of fat
triangles (namely, every angle of each triangle is at least some constant positive angle), or
of triangles that arise in the union of Minkowski sums of a fixed convex polygon with a set
of pairwise disjoint convex polygons (which is the problem one faces in translational motion
planning of a convez polygon). In these cases, the union has only linear or near-linear complex-
ity [20, 23, 24], and more efficient algorithms, based on either deterministic divide-and-conquer,
or on randomized incremental construction, can be devised, and are presented in the above-
cited papers.

If the input consists of general triangles, then the complexity of the union can be ©(n?) in
the worst case. If it happens to be smaller, one can attempt to compute the union by employing
the randomized incremental construction (RIC) of Agarwal and Har-Peled [1], whose analysis is
based on Mulmuley’s theta series [27]. Briefly, the algorithm inserts the triangles one at a time
in a random order, and maintains the union incrementally, updating it after each insertion. As
is well known (and discussed in [15]), the RIC algorithm has good performance, even when the
size of the arrangement is quadratic, provided that the depth d(v) (i.e., the number of input
triangles containing v in their interior) of most of the vertices v in the arrangement induced
by the n input triangles is large enough. We refer to such vertices as being deep. Otherwise,
when most of the vertices in the arrangement are shallow, the RIC algorithm performs poorly.
In this case, one can employ the Disjoint Cover (DC) algorithm, proposed in [15], which has
good performance in practice. This algorithm also inserts the triangles one at a time, but it
computes an insertion order that attempts to cover as many shallow vertices as possible in each
insertion step. However, from a theoretical point of view (and in view of certain pathological
examples, presented in [15]), the DC algorithm can produce Q(n?) vertices of the arrangement,
even if the size of the output (i.e., the number of vertices on the boundary of the union) is
only linear or constant, and it can be beaten by the RIC algorithm in such cases.

Output sensitivity. In this paper we present an efficient algorithm that computes the union
in an “output-sensitive” manner. There are two obvious ways to define output sensitivity. The
first is to measure the output size in terms of the size of the smallest subset S C T that satisfies
US =UT, where | JS (resp., UT') denotes the union of the triangles in S (resp., in T'). The
second measure is in terms of the size of the smallest subset S’ such that 0T C 9JS’. See
Figure 1 for an illustration of the two measures. Note that if the output size is £, according to
either measure, the actual complexity of the union may be as large as ©(£?) (but not larger).

The second measure of output size is likely to be too weak. Indeed, consider the reduction,
as presented in [18], of an instance of 3SUM (namely, the problem of determining whether there
exist a € A, b € B, ¢ € C satisfying a+ b+ ¢ = 0, for three given sets A, B, C of real numbers)

!This is one variant of output sensitivity that one may wish to attain. In this paper we use a different notion
of output sensitivity, described later in the introduction.



1 Introduction 3

(a)

Figure 1: (a) An arrangement of six triangles, illustrating the first measure of output sensitivity.
The triangles ¢; and ty cover the entire union, so the output size is 2. (b) Illustrating the
second measure of output sensitivity. The union boundary is determined only by the triangles
t1,...,ts, even though the triangles ¢5 and tg cover the hole created by |J,-,t;. The output
size is 4 according to the second measure, and 6 according to the first one.

to an instance of the problem of determining whether the union of a given set of triangles fully
covers the unit square. We can further reduce this latter problem to our problem, as follows.
Let A denote an algorithm that efficiently computes the union of n triangles in the plane, in
terms of the second measure, and let T'4(n,£) denote its running time, expressed as a function
of n and of the “output size” ¢&. We assume that T4 (n, &) = o(n?) when ¢ = o(n). In order to
determine efficiently whether the given triangles fully cover the unit square, we consider only
the portions of the triangles that are contained in the unit square, and retriangulate them, if
necessary. In addition, we add four thin and narrow triangles that cover the boundary of the
unit square. We now run A on the newly constructed instance. Clearly, there are no holes
in the union of the newly created triangles if and only if the original union contains the unit
square. In this case, the boundary of the new union consists of only four triangles, and thus A
will terminate in a predictable subquadratic time. We thus run A. If it terminates within the
anticipated (subquadratic) time, we can determine, at no extra cost, whether the union covers
the unit square. Otherwise, we stop A, and correctly report that the union of the original
triangles does not cover the unit square. Hence an efficient output-sensitive solution, under
the second measure, would have yielded a subquadratic solution to 3sum, and is thus unlikely
to exist.

In contrast, the first measure does lend itself to an efficient output-sensitive solution, which
is the main result of this paper.

Our results. Specifically, we present an efficient algorithm to construct the boundary of
the union of a set T = {Ay,...,A,} of n triangles in the plane, under the assumption that
there exists a subset S C T of £ < n triangles (unknown to us) such that [JS = [JT. We
present an algorithm, whose running time is 0(714/3 log n + né log? n), which is subquadratic
when ¢ = o(n/log?n). Our approach is a randomized algorithm, based on the method of
Bronnimann and Goodrich for finding a set cover or a hitting set in a set system of finite
VC-dimension, as presented in [10] (see Section 2.1 for a brief review of this method). In our
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case, the objects are the triangles of T', and each vertex v of the arrangement A(7T') defines
aset T, ={A € T |v € int(A)}. A hitting set for this system is a set S C T such that
US = U7, and thus a minimum-size hitting set is the object that we wish to compute. In
general, the Bronnimann-Goodrich technique is not efficient enough for our purposes, but we
use a variant of the algorithm which can be implemented efficiently. Specifically, we apply
the algorithm of Bronnimann and Goodrich in an “approximate setting”, fine-tuning it (using
randomization) so that it constructs a subset 7" of O(€ log £) triangles of T', whose union covers
the overwhelming majority of the vertices in the arrangement A(T'). This allows us, with some
care, to compute the portion of |JT that lies outside |J7” in an efficient explicit manner.
We note that, when measuring the expected number of vertices generated by the algorithm,
it suffices (and is appropriate) to consider only vertices at positive depth, since vertices at
depth 0 are the vertices of the union, and they have to be constructed by any algorithm that
computes the union. We call the latter quantity, namely the number of positive-depth vertices
generated by the algorithm, the residual cost of the algorithm.

In Section 2.1 we briefly recall the algorithm of Bronnimann and Goodrich, and present
our approximate version of it. Then we derive an upper bound on the expected residual cost of
the algorithm in its approximate version. Section 3 describes a detailed implementation of our
algorithm. In this implementation, we use generic and simple techniques, that can be easily
extended to other geometric objects of constant description complexity? in the plane and in
IRY. These extensions are discussed in Section 4. We give concluding remarks and suggestions
for further research in Section 5.

2 The Union Construction as a Set Cover Problem

2.1 An overview of the Bronnimann-Goodrich technique

A technique for finding a set cover of a set system of finite VC-dimension is described in detail
by Bronnimann and Goodrich [10]; for the sake of completeness, we provide a brief overview
of this approach, in the context of the union construction problem.

We denote by V' the set of vertices of the arrangement A(7') at positive depth (considering
only intersection points of the triangle boundaries and ignoring triangle vertices). Our set
system is dual to the set system (V,T'), and is defined as (7', V*), where

V*=A{T,:v eV},

and where T}, consists of all the triangles A € T' that contain » in their interior. Since this set
system is dual to (V,T), which has some finite VC-dimension d (see, e.g., [6]), it follows that
the VC-dimension of (7, V*) is also finite; as a matter of fact, it does not exceed 29! [8]. As
already mentioned, out goal is to find a hitting set for (T,V™*), that is, a subset H C T that
has a nonempty intersection with every set T, € V*, v € V.

2A set in R? is said to have constant description complezity if it is a semi-algebraic set defined as a Boolean
combination of a constant number of polynomial equalities and inequalities of constant maximum degree in a
constant number of variables.
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The algorithm of Bronnimann and Goodrich finds a hitting set, whose size is O(h* log h*),
where h* is the smallest size of any hitting set. Note that the reported hitting set is actually
a set cover for the primal set system (V,T), where a set cover, in this case, is a collection
C C T of triangles, whose union covers the entire set V. (For technical reasons, the method of
Bronnimann and Goodrich computes a set cover via a hitting set of the dual set system, which
is why we also work with the dual system; see [10] for further details.) Since, by definition, the
size of the optimal cover is assumed to be &, it follows that the size of the set cover reported
by the algorithm is at most O(& log¢).

We first describe the algorithm of Bronnimann and Goodrich in its “ideal setting”, where
the entire set V is given, and then show how to modify this setting, so that it suffices to
consider only a small subset of vertices.

The Bronnimann-Goodrich algorithm has two key subroutines: (i) A net finder F for
(T, V*), which is an algorithm that, given a parameter r > 1 and a weight distribution w on
T, computes a (1/r)-net for the weighted system (7,V*) [6]. A (1/r)-net is a subset N C T
which has a nonempty intersection with each set in V* whose total weight is at least 1/r of
the total weight of T'. (ii) A werifier V, that, given a subset H C T, either states (correctly)
that H is a hitting set, or returns a nonempty “witness” set T,, € V*, for some v, such that
T, N H = ). In our context, V has simply to output a vertex v € V which is not contained in
the interior of | J H.

The Bronnimann-Goodrich algorithm then proceeds as follows. We guess the value of &
(homing in on the right value using an exponential search). We assign weights to the triangles
in 7. Initially, all weights are 1. We then use the net finder F to construct a (1/2¢)-net N for
(T, V*). If the verifier V outputs some set T, that N does not hit, we double the weights of
the triangles in T, and repeat the process with the new weights. As shown in [10], a hitting
set is found after at most 4¢ log (n/€) iterations.

The problem with this ideal setting is that it requires the construction of all the (positive-
depth) vertices of A(T), which is much too much to ask for, since it can be too expensive
(V' can be quadratic in the worst case, while ¢ can still be very small). Instead, we use a
smaller randomly sampled subset R C V of r elements, whose actual computation is presented
in Section 3. We then feed the verifier ¥V with R instead of the entire set V. We show that
once the verifier ¥V announces that the subset H, reported by the net finder F, covers R, the
actual number of vertices of V' that remain uncovered is relatively small, with high probability.
We then compute the uncovered vertices in an explicit manner, and thereby complete the
construction of |J7'.

2.2 A subquadratic residual cost via sampling

We begin the analysis of our implementation of the Bronnimann-Goodrich technique with the
following lemma, which provides a lower bound for the size of the sample R, which is sufficient
to guarantee the property asserted at the end of the preceding subsection.

In what follows, we say that an event occurs with overwhelming probability (or w.o.p., for
short), if the probability that it does not occur is at most n—lc, for some constant ¢ > 1.
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Lemma 2.1 Let T = {Ay,...,A,} be a given collection of n triangles in the plane, let V
denote the set of vertices of the arrangement A(T) at positive depth, let k denote the size of
V', and suppose that there are only & triangles of T whose union is equal to |JT. Let S C T
denote a subset of triangles, and let R C'V be a random sample of r = Q(tlogn) positive-depth
vertices sampled after S has been fized, for some parameter t > 1 and with a sufficiently large
constant of proportionality. If S covers all but r, < r wvertices of R, then, w.o.p., the actual
number kg of vertices of V that are not covered by the elements of S satisfies

Kg §max{%,ﬁgrs}, (1)

for some absolute constant 8 > 1.

Proof: For simplicity of exposition, we present the analysis under the model where R is

obtained by drawing each point of V' independently with probability p = . Nevertheless,

the assertion of the lemma also holds for other models of sampling R, in particular, for the

model we use in the actual implementation of the algorithm; see Section 3 and Appendix A for

details. Since each point in V' \ |J S is chosen independently with probability =, the expected
T

number of vertices of R that are not covered by S is -xg.

It suffices to consider the case kg > %, for otherwise (1) clearly holds.
Since R is sampled after S has been fixed, the number rg of vertices of R that are not

covered by [JS is a random variable, which can be expressed as the sum of k, mutually
independent indicator variables, X, ... ’X“s’ each satisfying

Pr[X;,=1]=p; Pr(X;=0=1-p, fori=1,....k

s
Fix a parameter ry > 0, and consider the event
r
Ag: ry— —Hhs < —1Y9.
Using a large deviation bound given in [6, Theorem A.13], it follows that

’7‘02

Pr[Ag] <e *&"s. (2)

Putting ro = /2cor k4 logn, for some constant ¢y > 1, (2) implies that the probability
that the event Ag does not occur is at most —

—5- Hence, w.0.p.,

r [
re — —kg > —4/2c0—k, logn
S 5 S = 5 S ?

re > 1/%/4,5 [ %I{S — \/2cologn] .

Since we have assumed that £ > 7, and that r = Q(tlogn), with a sufficiently large constant
of proportionality, it follows that, w.o.p.,

1/£ﬁ5—\/20010gn>a1/£n5, (3)
K K

or
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for some absolute constant 0 < a < 1, which implies that

<f€
Ky < —1g,
S~ ar®

and thus the lemma follows. O

Remarks: 1) Note that Lemma 2.1, as well as its variant discussed in the Appendix, deal with
abstract sets, and do not exploit any special property of vertices in arrangements of triangles.
We will therefore be able to use the lemma, more or less verbatim, in the extensions presented
in Section 4.

2) We re-emphasize that Lemma 2.1 relies on the assumption that R is sampled after S has
been chosen (in our implementation, this choice will also be random). In particular, for the
lemma to be applicable at each iteration of the Bronnimann-Goodrich algorithm, R should be
redrawn from scratch before applying the verifier V. (See Section 3 for further details.)

Lemma 2.1 implies that if the triangles in S cover all the elements of R (and thus r, = 0),
then, w.o.p., ks < § (in fact, it is sufficient that r, = O (%)) We thus construct the union
of the input triangles in two steps, where in the first we find a set H of O(£log¢) triangles
that covers all but at most % vertices of V', and compute the union |J H, and in the second we
handle efficiently all the remaining vertices of V' that H does not cover; see below for details.
It thus follows that the overall expected number of positive depth vertices generated by the
algorithm is O(£%log? ¢) (which is the number of vertices of the arrangement of the triangles
in H) in the first part, and at most § in the second part.

In summary, we have shown

Theorem 2.2 Let T' = {Ay,...,A,} be a given collection of n triangles in the plane, and
assume that there exists a subset H C T of & < n triangles (unknown to us) such that
UH=UT. Let V, k and t be as in Lemma 2.1. Then one can implement the Bronnimann-
Goodrich algorithm, so that its residual cost is O(£?log? & + £), w.o.p. In particular, for

t = max {g%, 1}, the residual cost is O(£2 log? €).

Discussion. Clearly, if our only concern is to have the algorithm generate as few positive-
depth vertices as possible, we should choose t as large as possible, thereby making R larger,
and the set of vertices of V not covered by H smaller. For example, as noted, if we choose
t = max {g%’ 1}, then the residual cost of the algorithm is at most O(¢%log? €), w.o.p. Since
there are only ¢ triangles that define the union, the combinatorial complexity of the boundary
of the union is only O(£2). This implies that, for the above choice of ¢, the overall number of
vertices that the algorithm generates is O(¢2 log® ¢), which is subquadratic for & = o(n/logn).
However, if we are concerned with the actual running time, large values of ¢ will slow down
the algorithm, because sampling the sets R will be more expensive. Hence, in the actual
implementation of the algorithm, presented in Section 3 below, we will choose a smaller value
for ¢, in order to optimize the bound on the actual running time of the algorithm. This will
also affect the bound on the residual cost.

We also note that the bound O(£21log? ¢) on the complexity of the union of the triangles
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computed in the first part of the algorithm may be too pessimistic in practice. If the complexity
of the union |J H turns out to be smaller, the residual cost will be smaller too.

3 Implementation of the Algorithm

The actual cost of the algorithm depends on the cost of several support routines (in addition
to the cost of the actual generation of positive-depth vertices), such as (i) constructing the
random samples R; (ii) finding a (1/2¢)-net for the set system (7', V*); (iii) implementing the
verifier V, which, in our case, is an algorithm that efficiently decides whether a given subset
S of triangles covers another given subset R of positive-depth vertices; and (iv) the actual
construction of the union of the input triangles, after an approximate hitting set has been
found. We present here an implementation that uses generic and simple techniques, and yields
a subquadratic output-sensitive algorithm for constructing the union.

In the following description, we denote by h the size of the set H computed in the first
stage of the algorithm.

Sampling R

The task at hand is to construct, at each iteration of the algorithm, a random sample of (an
expected number of) r = ctlog n positive-depth vertices of A(T'), for appropriate values of the
parameter ¢ and the constant c¢. (As already mentioned, and will be discussed below, we have
to draw a new subset R in each iteration of the algorithm, in order to eliminate any dependence
between the present subset of triangles reported by the net finder F and the (current) sample
R.)

We sample R using the following simple-minded approach. Suppose that we have a guess
for the values of £ and k (see below for details concerning these guesses). Let x* denote the
number of vertices on the boundary of |JT. If K = O(x*) then the entire arrangement has
only O(k*) = O(£2) vertices, and can thus be constructed in time O(nlogn + £?), using any
of the standard techniques [27]. We may thus assume that x > x*. We also may assume
that x> max{¢?,n*/3}. Otherwise, we construct the entire arrangement in time O((n + £2 +
n/3)logn) = O((€% + n*/3) logn).

We now perform #
pendently, a pair of edges of distinct triangles in T', for an appropriate constant ¢’ > 1. Clearly,

a real vertex of the arrangement A(7T) is chosen in a single step with probability ’;4(',’;“)*, and

2

sampling steps, where in each step we choose, uniformly and inde-

thus the expectation of the number 7’ of pairs of edges that actually intersect is

kit dr(})
90)  «

Using the same deviation bound, as shown in Lemma 2.1, it can be shown that, w.o.p., the

= 0O(r).
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actual number of such pairs satisfies

n
' >E((r') - 7%@ logn = E(r') — \/yrlogmn,

2

for some constant v > 1. Since /yrlogn < r (by the choice of r and «), there is a constant
0 < a < 1, which can be made arbitrarily small (for a proper choice of ) such that, w.o.p.,

> 1 - a)E([) =0(r),

for a sufficiently large constant of proportionality, that depends on ¢’ and +.

Not all sampled vertices have positive depth. However, since Kk > k*, the overwhelming
majority of the sampled vertices will have positive depth. By choosing ¢’ to be sufficiently
large, at least r of these vertices will have positive depth, w.o.p.

Implementing a net finder 7 and a verifier V

As already described in the preceding section, we assign weights to the elements of T' (initially,
each triangle gets the weight 1), and use a net finder F to construct a (1/2¢)-net for the
weighted dual system (7,V*). We then apply the verifier V, in order to decide whether H
covers (the newly resampled subset) R. If it does, the first part of the algorithm terminates,
and we proceed to the actual construction of the union; otherwise, V returns a particular
witness subset T, € V*, for some v € R, such that T, N H = (). We then double the weights of
the triangles in T),, construct a new (1/2¢)-net and a new sample R, and repeat this process
until we find a subset of triangles that fully covers R. The analysis in [10] can be modified
to show that the number of iterations that this algorithm performs is O(£log (n/€)). Indeed,
as long as there exists some vertex of the new sample R that is not covered by the set H
constructed by F, we keep on doubling the weights of the triangles covering this vertex, and
according to the analysis of the algorithm [10], the overall number of such iterations does not
exceed 4¢log (n/€). On the other hand, if R is fully covered by H, we stop this process (and
may perform a smaller number of iterations), and start the actual construction of the union.

We start with the description of the net finder 7. We use a simple method, reviewed briefly
in [10] and presented by Matousek [25], for reducing the weighted case to the unweighted one.
In this method, we scale all weights of the triangles in 7', such that the sum w(7T) of the
weights of all the elements of T satisfies w(T) = n. We then take |w(A) + 1| copies of each
element A € T' (where w(A) is the scaled weight of A). Note that the multiset 77, that we
have constructed, contains all the elements of T" and has at most 2n elements. It is shown
in [25] that an e-net for (the unweighted set) T" is also an e-net for the weighted set 7'. Finding
a (1/2¢)-net for 7' can be done by drawing O(¢ log¢) random elements of 7’. As shown, e.g.,
in [6], an appropriate choice of the constant of proportionality ensures that such a random
sample is a (1/2¢)-net, with overwhelming probability. Clearly, creating the multiset 7" takes
O(n) time, and drawing O(¢ log¢) random elements of 7" takes an additional O(¢log&) time.
Thus the overall running time of the net finder is O(n), for total time of O(n¢log(n/£)) over
all iterations of the algorithm. (Note that if the random sample is not a (1/2£)-net (which may
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t3

t1

Figure 2: The second stage of the actual construction of the union. U denotes the union of the
h triangles in the hitting set H, and ¢1,9 and t3 denote the remaining triangles to be inserted
into the union. Only the portions of t1, %5 and t3 that lie outside U are relevant.

happen with an overwhelmingly small probability), the number of iterations of the algorithm
may exceed 4¢ log (n/€), and, in this case, we may stop the whole process and restart it from
scratch. Nevertheless, the fact that the process fails with an overwhelmingly small probability
ensures that the number of such trials is not larger than some constant factor.)

In the implementation of the verifier V, we use brute force, and iterate over all the vertices
of R and the triangles of H in O(r&log¢) time, to determine whether there exists a vertex in
R that is not covered by the triangles of H. We denote the set of all such vertices of R by Ry.
Suppose Ry is not empty (otherwise, the first part of the algorithm terminates). We sample
a random vertex v from Ry, and obtain, by brute force, the set T, of all triangles in T' that
contain v in their interior (clearly, T, N H = ), and double their weights. However, since R
may in general also contain zero-depth vertices, T, will be empty for such vertices. In this
case we continue sampling vertices out of Ry, and stop when we find a positive-depth vertex.
Since the overwhelming majority of the vertices in R have positive depth, we will obtain such
a vertex, w.o.p., after at most O(logn) samples, as is easily verified. Hence, w.o.p., the total
cost of this substep is O(nlogn). Since we repeat this procedure for O (¢ log (n/€)) steps, the
overall cost of this stage is

O(&log (n/€)(rélog & + nlogn)) = O(r&* log & log (n/€) + nélog (n/€) logn),

and this bounds the overall running time, for both the net finder F and the verifier V, over all
iterations of the first part of the algorithm.

The actual construction of the union

The implementation of the actual construction of the union proceeds through two stages. We
first construct the union of the triangles in the set H, and then compute the portion of A(T)
outside this union. As argued earlier, this portion contains, w.o.p., at most % positive-depth
vertices of A(T).
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We first construct the union of the h triangles of H in O(h?) = O(£%log?¢) time (using,
e.g., randomized incremental construction [27]). Next, we efficiently find the intersections of
the boundary of each of the remaining triangles A with the boundary of |J H, in order to
collect all the portions of OA lying outside | J H. We denote the set of all such portions, over
all the remaining triangles, by C. (See Figure 2 for an illustration.)

In order to find those portions efficiently, we use the algorithm of Bentley and Ottmann [9]
for reporting all &k intersections in a set of n simply shaped Jordan arcs in O(nlogn + klogn)
time. We partition the set of the remaining triangles into [UQT] subsets, each containing

O(&logé) triangles. We denote the collection of all these subsets by S = {Sl, A S(Eln 1 }
og

Next, we compute, for every subset S € S, the arrangement A(S) induced by the triangles in
S, and then run the Bentley-Ottmann algorithm on the combined collection of the edges of
A(S) and the O(h?) edges of |J H. Since the edges of A(S) are pairwise openly disjoint, and
so are the edges of |J H, the algorithm will only report intersections between the boundary
of |JH and the remaining triangles. Since the overall number of such intersections, over all
subsets in S, is at most 7, the overall cost of reporting all intersections is

0 ((L - €2 1og? {) logn + b logn) = O(n€log&logn + b logn).
&logé t t

Next, we trim the edges of the remaining triangles to their portions outside |J H, and then

construct the entire union using another line sweeping procedure on these exterior edge portions

and the boundary edges of | J H [9]. Since there are at most § positive-depth vertices that are

constructed during this process, the algorithm takes O ((n + &% log? € + %) log n) time.

This completes the detailed description of our algorithm, which is summarized in the fol-
lowing procedure, for which £ is an input parameter. Since ¢ is not known a priori, we run
this procedure with the values ¢ =1,2,4,...,2%, ... (where i < logn), thereby guaranteeing a
constant approximation of the actual value of £&. The choice of r (that is, of the parameter )
in this procedure will be specified later.

Procedure CONSTRUCTUNION(T, &)

1. Construct |JT by a line sweeping procedure on the triangles in T'. Stop the procedure as
soon as it constructs more than max{£?,n*/3} vertices. If it terminates goto 16.

2 Initialize all weights of the triangles in T" to 1.

3 repeat

4 H + (1/2¢)-net of size O(&logé) for the weighted system (7', V*).

5. Construct a new random sample R of r vertices out of the vertices of A(T).

6 Apply the verifier V to H and R.

7 if H covers R goto 11.

8 else

9 Double the weights of all the triangles in the subset T, reported by V.

10. endrepeat

11. Construct the union of the triangles in H.

12.  Partition T into subsets Sy, ..., Suln ] of size O(& log &) each.
og

13.  For each S;, compute A(S;) and find all intersections between its edges and 0 H,
using a line-sweeping procedure.
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14. Trim the edges of the remaining triangles to their portions outside | J H. Denote the
set of the resulting segments by C.

15. Construct | JT by a line sweeping procedure on C and the boundary edges of | J H.

16. end

We substitute » = ctlogn, for some absolute constant ¢, and for the parameter ¢ that we
still need to fix. Since h the size of H is O(£log&), and since the algorithm terminates after
O(&log (n/€)) iterations, the overall cost of the algorithm is

O((n + x)logn),
("7 ¢ log (n/€) + né log (n/€) logn + hre log (n/€) + nhlogn + & logn + h? logn) -

' O((n + k) logn),
el o ("?Qtf lognlog (n/€) + né(log (n/€) + log &) logn + 2t log € log n log (n/€) + 5 logn) '

Choosing
t = max VE ;15
Elogn

log (n/€) + &k log? n 4 né(log (n/€) + log &) logn) } .

the running time bound becomes

min {O((n +#)logn), O (\’;—;

Since K = O(n?) and ¢ < n, this is upper bounded by

2

min{O((n + k) logn), O <%logn+n£log2 n) } .

The two terms involving & are equal when x = n*/3. Hence the running time is always bounded
by O(n*3logn + nélog?n).

In summary, we have shown:

Theorem 3.1 Let T be a set of n triangles in the plane whose union is equal to the union
of an unknown subset of & < n triangles. Then the union can be constructed in randomized

expected time O (n4/3 log n 4 né log? n), which is subquadratic for any &€ = o (I%L?n)

4 Extensions

In this section we show how to extend our algorithm to compute the union of other planar
shapes, as well as unions of simply shaped bodies in three and higher dimensions.

The analysis of the algorithm of [10] holds for any range space of finite VC dimension.
Consider an input set S of bodies in IR?, and let V denote the set of positive-depth vertices
of A(S). It is well known that the range space (S, V™) has finite VC dimension if the objects
have constant description complexity. This can be shown, for instance, by the linearization
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technique (see, e.g., [26]). In this case, the number of vertices that the objects in the set H,
reported by the net finder F, can generate, among themselves, is O(¢%log? ¢). In addition,
Lemma 2.1 continues to hold in this case, since it does not make any assumptions on the
input shapes. It thus follows that Theorem 2.2 can be easily extended to bodies in R¢ of
constant description complexity, and that the residual cost of the algorithm, in this case, is
O(&%1og” & + £), w.0.p.

The actual implementation of the various stages of the algorithm can also be easily extended
to bodies in IR? of constant description complexity. We begin with the planar case, and then
discuss in Section 4.1 the extension to higher dimensions.

In the case of simply shaped planar regions, we apply similar subroutines, that run within
the same time bounds as stated in Section 3. In the sampling procedure, each pair of region
boundaries intersect in a constant number of points, and we collect all these intersections to
form R. Since our system has finite VC-dimension, we can construct a (1/2¢)-net for this
system in much the same way as in Section 3. In addition, the verifier V can still detect
whether a given vertex v is contained in the interior of another given region in O(1) time, and
thus these two subroutines will run within the same asymptotic time bounds as in the case
of triangles. (In fact, these properties hold for bodies of constant description complexity in
higher dimensions as well, and thus the net finder F and the verifier ¥ will run within the same
asymptotic time bounds in these cases too). In the actual construction of the union, we use
the algorithm of Bentley and Ottmann [9], which can be applied for any set of Jordan arcs of
constant description complexity, with the same asymptotic time bound, as stated in Section 3.

We can thus easily derive the following theorem:

Theorem 4.1 Let S be a set of n planar regions of constant description complexity, whose
union is equal to the union of an unknown subset of & < n regions. Then the union can be
constructed in randomized expected time O (n4/3 log n + né log? n), which is subquadratic for

any§:o<L>.

log? n

4.1 The union of simply shaped bodies in R?

We begin with the extension of our algorithm to the case of bodies of constant description
complexity in three dimensions, and then describe the generalization to higher dimensions.

In three dimensions, we may assume in the sampling procedure that x > max{¢3 n?}.
Otherwise, we construct the union in time O((n? + &%) logn), as follows. We fix a body B € S
and intersect its boundary F with each object B’ € S\ {B}. We obtain a collection of n — 1
Jordan regions of constant description complexity on F. The complement of their union is
the portion of F' that appears on d|JS. Computing this complement can be done in time
O(nlogn + kplogn), where kg is the number of vertices of A(S) that lie on F, using an
appropriate variant of the line-sweeping algorithm of Bentley and Ottmann [9]. Repeating this
procedure for each boundary F, the total cost is O((n? + k)logn) = O((n? + £3)logn), as
claimed.

The main part of the algorithm then proceeds in much the same way as before. For example,
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Figure 3: The case where the input bodies are simplices in three dimensions. The facet F
belongs to one of the first h simplices. The thick lines are the boundaries of |JH on F.
The thin lines are the intersections of the n — h remaining simplex boundaries with F'. The
intersections appearing in the shaded regions lie in the interior of the union of the n simplices,
and need not be computed explicitly.

when we construct a sample R of vertices, we perform, in analogy with the two-dimensional

procedure, Clrlgg) sampling steps, for an appropriate constant ¢ > 1, where in each step we
choose, uniformly and independently, a triple of distinct input bodies in S, and collect all
resulting boundary intersections to form R. A similar analysis to that described in Section 3
shows that, with an appropriate choice of the constant ¢, at least r of the chosen triples
generate real vertices that have positive depth, w.o.p.

As noted above, the net finder F and the verifier V can be implemented in a similar
manner to that described in Section 3, and run within the same asymptotic time bounds

(and this holds in higher dimensions as well). It follows that, choosing ¢ = max {%, 1},
the first part of the algorithm computes a subset H of S of size h = O({log¢&), in time
O(ré? log log (n/€) + n€log (n/€) logn), such that at most £ positive-depth vertices of A(S)

lie outside the (interior of the) union |J H.

After constructing |J H, we need to compute all the intersections between the remaining
bodies and the boundary of | J H. This is done as follows. For each body B € S (particularly,
B may belong to H), we take its boundary F', and compute the set of its exposed portions
that lie outside |JH \ {B}. This is done by constructing the intersections By, = B'(F for
each B’ € H \ {B}, and then compute the complement of their union within F. Since the
regions BY, are bounded by curves of constant description complexity, their arrangement has
O(h?) complexity, and it can be constructed in O(h?logn) time. We denote by Er the set of
edges of the arrangement that appear on the boundary of the union of the regions BY,. Clearly
|Er| = O(h?). We then intersect F' with all the remaining n — h input bodies, obtaining a
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set of curves Sg bounding the intersection regions. Our goal is to find the portions of the

curves in Sp that are not contained in the interior of | J H; see Figure 3 for an illustration.

We first report the intersections between the curves in Sy and Ep in O(nhlogn + I logn)

time, where Iz is the number of such intersections, in a similar manner to that described in

the two-dimensional case. Since the overall number of these intersections, over all facets F, is
K

less than 7, the overall time needed to report all these intersections, over all these facets, is

O(n*hlogn + ; logn).

We now trim, on each boundary F', the edges of the cross sections of the remaining input
bodies, to their portions within the exposed bodies on F', and continue in a similar manner to
that described in the two-dimensional case; that is, we run a line sweeping procedure on these
portions and the curves in Er. The running time of this procedure, over all boundaries F', is
O ((n* 4+ nh? + £) logn).

The overall running time of the algorithm, in this case, is thus

) O((n? + k) logn),
o (%5 log (n/€) + né log (n/€) log n + hré log (n/€) + n2hlogn + & log n) =

) O((n? + k) logn),
m 9 (%tf lognlog (n/€) + %t log £ lognlog (n/€) + n%Elog € logn + %logn> '

Choosing, as above,

t=max{ 1l

Elogn’
the running time bound becomes

n3

min{O((n2 + 1) logn), O <\/Elog

(n/€) + &k log? n 4+ n¢ log & log n) } .
Since k = O(n?) and ¢ < n, this is upper bounded by
.

NG

The two terms involving » are equal when x = n?. Hence the running time is always bounded

by

mim{O((n2 + k) logn), O < log n + n*¢ log? n) } .

O(n?logn + n?¢log? n) = O(n2€log?n),

which is subcubic for ¢ = o ( n )

log® n

Let B be a set of n bodies of constant description complexity in IR?, and let S C B be the
(unknown) subset of ¢ bodies whose union is equal to | B. We compute the union by recursing
on the dimension. That is, we fix a body B € B, take its boundary F', and intersect it with each
body B' € B\ {B}. We then compute the union of these intersection bodies, and construct
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its component within . The union of all these components, over all boundaries F', yields the
boundary of dB. Note that if B € B\ S then the union of the intersection bodies along 0B
covers the entire boundary of B. In fact, the union of the intersections with the bodies of &
already covers the boundary. Similarly, if B € S then the union of the intersection bodies
along 0B is equal to the union of the intersections with the bodies of S. In either case, with an
appropriate parametrization of the boundaries, we obtain n (d — 1)-dimensional instances of
the union construction problem, each with output size < £, according to our measure. We thus
compute these (d — 1)-dimensional unions recursively, and stop the recursion when d = 3. This
leads to an overall algorithm that runs in randomized expected time O(n?~'¢ log? n). That is,
we have:

Theorem 4.2 Let S be a set of n bodies of constant description complezity in R?, whose
union s equal to the union of an unknown subset of & < n bodies. Then the union can be
constructed in randomized expected time O(n?1¢1log? n), which is asymptotically smaller than

ndforanyfzo( n )

log®n

5 Concluding Remarks

We have presented an output-sensitive algorithm for the problem of constructing efficiently
the union of n triangles in the plane, whose running time is expressed in terms of the smallest
size £ of an unknown subset of the triangles whose union is equal to the union of the entire
set. We have used a variant of the technique of Bronnimann and Goodrich [10] for finding
a set cover in a set system of finite VC-dimension. We have also presented a detailed and
fairly generic implementation of this method, showing that the above problem can be solved in

randomized expected time O(n4/3 log n + né log” n), which is subquadratic for € = o (mL?n)

The algorithm does not have to know the value of ¢ in advance. Instead, it runs an exponential
search on ¢, which approximates well the correct value of £, up to a constant factor.

We showed that our approach can be easily extended to simply shaped bodies of constant
description complexity in R?, for d > 2, where the union is determined by ¢ bodies. In the
planar case, the running time remains O(n*?logn + nélogn). In d > 3, the union can be
constructed in randomized expected time O(n4='¢ log? n), which is asymptotically smaller than

n? for ¢ = o (1052”). For d > 3, we computed the union recursively on d, by constructing the
union along each object boundary separately. However, this recursion had to stop at d = 3.
Indeed, for d = 3, applying the two-dimensional algorithm on the boundary of each input

body, yields an overall O (n7/3 log n 4+ n?¢ log? n) expected running time, which is worse than

the bound that we have obtained when £ = o (ﬁ)g;)

A direction for further research is to determine whether there exist simpler efficient ap-
proaches to the union construction problem studied in this paper. We note that the standard
randomized incremental construction (RIC) of [27] may fail in this case. In fact, the standard
bad example for the RIC, consisting of n triangles that form ©(n?) shallow vertices that are all
covered by one large triangle (or, more generally, sparsely covered by & < n triangles), shows
that the RIC may fail to construct the union in an output-sensitive manner.
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Another direction for further research is to extend our approach to instances involving
unions in three dimensions where the worst-case complexity of the union is only quadratic or
near-quadratic (see [4, 7, 28] for known instances of this kind). Our approach runs in subcubic
time, when ¢ is small, but does not improve upon standard, output-insensitive techniques when
the union complexity is near-quadratic. The simplest instance of such a problem would be:
Given a collection of n balls in IR?, whose union is equal to the union of some ¢ < n of the
balls, can the union be constructed in subquadratic time?

Finally, we note that in an earlier version of the algorithm [17], we used a different approach,
based on a careful implementation of the DC algorithm of [15]. The previous approach is more
complicated, yields a somewhat less efficient solution, which is subquadratic only for a smaller
range of the values of the parameter ¢, and is more difficult to extend to other geometric
shapes and to higher dimensions. Our new approach, based on the technique of Bronnimann
and Goodrich, is simpler, more generic, improves our previous result, and extends to other
shapes and to higher dimensions.

Acknowledgments. The authors wish to thank Ken Clarkson and Sariel Har-Peled for use-
ful discussions on this problem. In particular, Sariel’s insistence that we use the Bronnimann-
Goodrich technique (instead of the DC algorithm in the earlier version [17]) has finally led to
the improved algorithm presented in this paper.
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A The Actual Model for Sampling R

r(3)

As described in Section 3, we draw the elements of R by randomly making —2~ independent
selections of a vertex out of V', for some constant ¢’ > 1, where in each trial, each vertex

(or more precisely, each pair of triangles) is chosen with probability ﬁ (thus the same vertex
2

may be sampled more than once). The probability p that a vertex v € VT is chosen (at least

once) is equal to
cCTr—"—
1 K
p=1-[1-— : (4)
(3)

It is easily checked that p is smaller than c’%. Moreover, one can also easily show that

/,.\2
p>ol T (5)
K K

In this model, the variables Xi,..., X, _ (as were defined in Lemma 2.1) are no longer
independent. Examining the proof of the deviation bound given in [6, Theorem A.13], we note
that the only place where it uses the assumption that these variables are independent, is in
the derivation of the equality

eti says: | have checked that (more than once).
E [erﬁl Axi} —II5,E [e’\Xl}
= )

for any A\. Moreover, the analysis in [6] only uses the value A = pTT“, where rq is defined as in

Lemma 2.1. An inspection of the derivation of these bounds in [6] shows that they continue
to hold when .

E [ezizsl )‘XZ} < H:flE [e)‘XZ} .
Furthermore, Lemma 2.1 continues to hold when the weaker inequality

E [erﬁl )‘XZ} < 7H5251E [e)‘XZ} (6)
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holds, for some positive constant . This has the effect of multiplying the probability that (1)
fails by -y, which implies that (1) still holds, w.o.p. Hence, it suffices to show that (6) holds
for the above value of .

In our model,
;5 E [e”ﬂ = (eAer (1 *p))ﬁs = (1 +p(et — 1))

and

where 7 = min{cr’SQ),nS}. (Note that Pr[r, =m] =0, for any m > r*.)

In each of the - T}EQ) drawing trials, the probability that we have selected a vertex v, and
K

that it is not covered by S, is ¢ = ﬁ 2= 7s.. Since these trials are independent, we have
2 2

—~~
~—

*

=

Priv, =l = (7)o g

m

Hence (8) becomes

*

r *
<T >qm[1 - q]r 7me)\m —
0 m

m=

*

(e)‘q +1-— q)r .
In other words, putting e* — 1 = \g, we need to show that
(L+Xog)" <y (1+Xop)™s,
for some constant v > 0. We will show that
(1+X00)" < (14 09)" (1+ Aop)"s

which implies the preceding inequality because (1 + )\gp)%r = O(1). Indeed, (1+ )\[]p)QCIT <
e2¢' Xopr Using the fact that A <1+ 2\, for 0 < X < 1, and substituting A = 1%, \g = e —1

3
PKg

we have

1TTQ

/ 4c
€2C Aopr <e s,

Since we assume in Lemma 2.1 that rg = 2, /(30%/‘%5 log n, for some constant ¢y > 1, the latter
expression is smaller than
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using the assumption of Lemma 2.1 that kg > .

Substituting r = ¢t log n, for some constant ¢, and ¢ = max {%, 1}, as above, and using

the assumption that & > max{¢? n*/3} (see Section 3)

, 1 Io) log2n>
620)‘01""<max{eo(€2),e ( " }:O(l).

It thus remains to show that

(14 209)" < (14 Xop)™"""s. (9)

We first assume that () < k4. We thus show that

K
! n
crlg

(1 + Ao%) "

< (14 Agp)* 755 |

or that

c’rlgg) C’T(z) i 20’T+I{S 2 , +
( h ) <>‘UHTS) > ( o KS) (1+ Xop)".
i=0 L (2) i=0 L

Note that 2¢'r +x, > #, due to the assumption that T}S?) < Kg. It thus sufficient to show
that

) i) < (1

for each 0 < i < = T(Q). Clearly, this inequality holds for i = 0, and using (5), for each i > 0,

K
it implies that . ‘
LT N PN
2r+Ky) — K

IN

It therefore suffices to show that ,'{75 <1- T or that 1 — # <1- T or that
2c rt+kg K 2c rtkg K
K
k>cdr+ 75, (10)

which clearly holds, since k, < k and r < k.
We now show that (9) holds when # > k. We thus show that

o
2¢c 7'+/es

(1+AOZL—5)) < (14 Xp) 7

2
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2c’7'+/e

Using the fact that (1 4+ Xop) "s > 1+ Aop (

< 17(*7“ 1+2c’r
ml

or that (1 — %) (1 + M) > 1, using the assumption on k. The latter implies that x — ¢'r —

Ks

KTS > 0, which clearly holds due to (10).

2¢' r+Kg

) and (5), it is sufficient to show that

We note that (9) holds for any value of Ay > 0, and the assumption on A is used only when
showing that (1 + )\gp)QCIT = O(1). This completes the proof of (6) for the above considered
values of .



