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Abstract

We study the motion-planning problem for a convex m-gon P in a planar polygonal
environment () bounded by n edges. We give the first algorithm that constructs the
entire free configuration space (the 3-dimensional space of all free placements of P in
@) in time that is near-quadratic in mn, which is nearly optimal in the worst case.
The algorithm is also conceptually simple. Previous solutions were incomplete, more
expensive, or produced only part of the free configuration space. Combining our solution
with parametric searching, we obtain an algorithm that finds the largest placement of
P in @ in time that is also near-quadratic in mn. In addition, we describe an algorithm
that preprocesses the computed free configuration space so that reachability queries can
be answered in polylogarithmic time.
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1 Introduction

Problem statement. Let P be a closed convex m-gon. We consider the problem of
planning a collision-free motion for P inside a closed planar polygonal enwvironment Q,
bounded by a total of n edges. We allow P to translate and rotate. A (congruent) placement
of P is thus any congruent copy of P (without reflections). A placement of P is free if it
is fully contained in (), and semifree if it is free and the boundary 90Q of @) touches the
boundary 0P of P. Any placement of P can be represented by three real parameters
(z,y,0), where (x,7) € R? is the position of a reference point of P and 6 € [—7, 7] is the
counter-clockwise angle by which P is rotated from some fixed orientation. The space of all
placements of P, known as configuration space, is thus identified with R? x S, where S is the
unit circle. The free configuration space C of P in @) is the space of all free placements of
P in @, and the boundary 9C corresponds to the set of all semifree placements. Note that
C is a closed set. If scaling of P is also permitted, the configuration space can be identified
with R x S.

Figure 1. Motion planning for a convex polygon inside a polygonal environment

We consider two types of problems in this context:

Motion Planning: Construct C, the space of all free congruent placements of P. Preprocess
C so that one can determine efficiently whether two given placements I, F' of P lie
in the same connected component of C; that is, whether there exists a collision-free
motion of P inside () from one of these placements to the other. If so, then also return
a path from I to F' that lies within C. See Figure 1.

Largest Placement: Allowing scaling, find a largest similar copy of P that fits inside Q.

Previous results. Both problems are central problems in robotics and manufacturing,
and have been studied intensively in computational geometry, during the past two decades.
Some of the initial results on this problem can be found in [14, 26, 34, 38]; these algorithms
are either inefficient or consider only special cases (e.g., where P is assumed to be a line
segment). See recent surveys for summary of known results in motion planning [23, 35]. The
first significant progress was made by Leven and Sharir [27], who analyzed the combinatorial
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complezity of C when no scaling is allowed, which can be measured by the number of free
critical placements of P. A placement Z of P is called critical if there exist three distinct
pairs (e1,v1), (e2,v9), and (e3,vs3), so that for each i = 1,2,3, either e; is an obstacle
edge and v; is a vertex of P or e; is an edge of P and v; is an obstacle vertex, and so
that the vertex v; touches the edge e; at placement Z. Leven and Sharir showed that this
quantity and thus the complexity of C are both O(mnAg(mn)). Here \s(q) is the maximum
length of (g, s)-Davenport-Schinzel sequences [36], which is nearly linear in ¢ for any fixed
5. They also showed that the complexity of C is Q(m?n?) in the worst case. Thus the
complexity of C is near-quadratic in mn. The goal then was to compute C in time that
is also near-quadratic in mn. The first result in this direction was obtained by Kedem
and Sharir [24], where an O(mnAg(mn)log mn)-time algorithm was proposed. However,
this algorithm turned out to have a technical difficulty. The algorithm constructs C in two
stages. The first stage computes a superset of all the vertices of C, where each such vertex is
a free critical placement of P in (), as defined above, and then aims to filter out the spurious
vertices (non-free placements). The filtering process is rather complicated, and some of the
cases are not handled correctly [24].

Two subsequent papers aimed to fix Kedem and Sharir’s algorithm. The first solution,
given by Sharir and Toledo [37], processes @ into several range-searching data structures,
and then it queries these structures with each placement of P produced by the algorithm
of Kedem and Sharir [24] to discard non-free placements. The overall running time of their
algorithm is close to O(m3n?). This is significantly more expensive for large values of m,
which is what we assume here. The second solution, proposed by Kedem et al. [25], correctly
computes the connected components of C that contain I and F', but does not always compute
the entire free space. The time complexity of their algorithm is O(mnAg(mn)logmn). For
other solutions to the problem, which are less efficient but also apply to the case when P is
nonconvex, see [10]. These results leave the open problem of whether the entire free space
can be computed in time that is near quadratic in mn.

The case in which scaling is allowed and we seek the largest placement of P inside ) has
been studied in [14, 17, 37]. Chazelle gave an O(m3n?®(m + n) log(m + n))-time algorithm
to compute the largest placement of P inside (). Using generalized Delaunay triangulations
induced by P in @, Chew and Kedem [17] gave an O(m*n%a(n)logn)-time algorithm for
computing a largest free similar placement of P in @; here a(n) is the inverse Ackermann’s
function. A variant of this algorithm also solves the motion-planning problem for P in @,
with the additional advantage of finding a “high-clearance” motion, where P aims to stay
as far away from the boundary of @) as possible; see [17] for a more precise definition of high
clearance. Sharir and Toledo [37] proposed another algorithm that combines parametric
searching [29] with a construction of the entire configuration space for the fixed-size case, as
in the preceding paragraph; the running time of their algorithm is close to O(m3n?). If only
translation and scaling are allowed, the largest homothetic placement of P inside @) can be
computed in time O(mnlogn), using the generalized Voronoi diagram of dQ induced by P
[22, 28].
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In [2], a much simpler situation is discussed where @ is also a convex polygon. The
resulting problems are still challenging and have an interesting geometric structure. It is
shown there that a largest scaled copy of P that can fit inside ) can be computed in
O(mn?logn) time. The maximum combinatorial complexity of the four-dimensional space
C' of all similar placements of P inside @ is proven to be ©(mn?). It is shown that ' can
be computed in O(mn?logn) time. It is interesting that no better bounds are known for
the space of all congruent placements.

New results and methods. We present a randomized divide-and-conquer algorithm for
computing C, whose expected running time is O(mnAg(mn)logmnlogn). The merge step
of the algorithm is based on a line-sweep algorithm. Our technique is quite general and can
be applied to other problems, as discussed in a remark at the end of Section 2.3. This is
the first correct solution for computing all of C whose running time is near quadratic in mn.
Our algorithm is rather simple, at least conceptually. It has the advantage that it is easy to
parallelize, which is needed in our solution to the largest-placement problem, see Section 4.
Even for the task of computing only a portion of C, our algorithms are simpler than the ones
in [25, 37]. In addition, we can preprocess C in O((mn)?*¢)) time so that we can efficiently
answer reachability queries: for any two placements of P, we can determine in O(logmn)
time whether there is a collision-free motion from one to the other (i.e., whether they lie
in the same connected component of C). A variant of the algorithm can also produce a
path connecting the two placements, in additional time proportional to the combinatorial
complexity of the path. No claims of optimality of the resulting path are made.

Using an approach based on parametric searching, similar to that of [37], we can find the
largest similar placement of P in @, in randomized expected time O(mnAg(mn) log® mnlog? n),
thus improving significantly over the previous bounds in [17, 37]. Parametric searching re-
quires an “oracle” procedure that has to determine, for a given size of P, whether the
corresponding C is nonempty, which we can do using our algorithm for computing the en-
tire C. Notice that we can neither use the algorithm by Kedem et al. [25] here nor the one
by Kedem and Sharir [24], since the former may miss some of the components of C and the
latter may produce placements that are not free.

The paper is organized as follows. Section 2 describes the randomized algorithm for
computing the free configuration space. Section 3 presents the data structures for answering
reachability queries, and Section 4 describes the algorithm for computing a largest copy of
P that can be placed inside Q.

2 Constructing the Free Configuration Space

Consider a convex m-gon P translating and rotating rigidly in a general polygonal environ-
ment () bounded by n edges, without scaling. Recall that a placement of P can be parame-
terized by (x,7, 0), where (z,y) € R? is the position of a reference point of P and 6 € [—n, 7]
is the counter-clockwise angle by which P is rotated from some fixed reference orientation.
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For the sake of convenience, we will represent a placement of P by (z,y,tan(6/2)), so that
the set of all placements is R3. Note that, under this representation, special treatment is
required for § = +7 because, for any (z,y) € R?, (x,y, —7) and (z,y, +m) represent the
same physical placement of P. In brief, even though at these points tang — +o0, we
represent them explicitly. At the end of our construction we identify the two cross sections
0 = —m, @ = +m, and glue them together. This is necessary to preserve connectivity along

paths that cross the surface 8 = +.

We assume that P and @ are in general position. In our context, this means that no two
obstacle vertices have the same x-coordinate and there is no placement of P at which four
“independent” constraints imposed on P by its possible contacts with () are simultaneously
satisfied. Each constraint corresponds to a set of placements of P at which a vertex of P
touches an edge of (), an edge of P touches a vertex of (), or the segment connecting two
points of contact (between P and Q) is normal to the edge of P or @ involved in one of these
contacts. See Leven and Sharir [27] for details. Figure 2 illustrates several degeneracies (i.e.,
placements not in general position).

Figure 2. Typical degeneracies.

We triangulate Q¢, the complement of (), using Steiner points if necessary, so that the
degree of each vertex in the triangulation is bounded by a constant; such a triangulation can
be constructed, e.g., by computing the vertical decomposition of Q¢ and by triangulating
each trapezoid of the vertical decomposition. ;From now on we assume, for technical
reasons, that Q¢ is the union of n pairwise disjoint open triangular obstacles, some of which
may be unbounded. Note that the new n is larger than the original n by only a constant
factor. Also observe that replacing general polygonal obstacles with disjoint open triangles
adds zero-width “passages” to (). However, it does not affect the free configuration space
C in any significant way, as long as P has non-empty interior.

We will use P(Z) to denote P at a placement Z. We define a contact to be a triple
(e,v,A), where e is an edge of the obstacle A and v is a vertex of P, or e is an edge of P
and v is a vertex of A.l In the former case, there is a unique contact triple corresponding

!Unlike Leven and Sharir [27], we include A in the definition of a contact because a vertex may be shared
by several triangular obstacles, and we prefer to regard (e,v, A1) and (e, v, Az), where v is a common vertex
of Ay and As, as two different contacts (especially while analyzing the running time of the algorithm), even
though, geometrically, they correspond to the same contact.
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to a physical contact of v and e, and in the latter case, since each vertex of @) is incident
to O(1) triangular obstacles, there are only O(1) contact triples corresponding to such a
physical contact. The total number of contacts is therefore O(mn). If A is not important
or is obvious from the context, we will omit A. A placement Z of P involves a contact
(e,v,A) if the vertex v lies on the edge e; Z is called locally free if P(Z) does not intersect
A.

We present a randomized algorithm for computing the boundary 9C of the free config-
uration space C. More precisely, we compute each connected component of 9C, decompose
it into xy-monotone patches, and represent each patch as a planar map, using any stan-
dard representation (see, e.g., [32, 38]). The expected running time of the algorithm is
O(mnAg(mn)log mnlogn) and is thus close to the the worst-case complexity bound for C.
As usual for this type of algorithms, the expectation is over the random choices made by
the algorithm, for any fixed input, and not over any assumed distribution of the input data.

2.1 Overall approach

Our algorithm is based on the following approach. For each (open) triangular obstacle A, let
K (A) denote the set of forbidden placements of P at which it intersects A. These are open
sets, and C is the complement of their union, so it suffices to compute the boundary of the
union K = [J, K(A). For each obstacle Ay, we compute the faces of 0K that lie in 0K (Ay),
and then patch these faces together to construct 0K. This leads to the following simple
high-level description of our algorithm: Fix an obstacle Ay, and compute the intersections
A(A) = K(A)NOK(Ay), for every obstacle A # Ay. Construct the 2-dimensional union of
the sets A(A), and form its complement within 0K (Ag). This complement is exactly the
portion of QK that is contained in 0K (Ay). After applying this procedure to all obstacles
Ap, we have computed all the two-dimensional faces of C and the edges and vertices
incident to them. Thus for each face f of C, we have the list of all faces adjacent to f. We
can glue together these faces, by performing a depth first search on the graph dual to 9C,
to obtain an appropriate discrete representation of the entire boundary of K, and thus also
of dC. We omit the details concerning the gluing process, since they are straightforward
and have been described earlier, see e.g. [21, 38]. Note that this approach does not identify
which connected component of C is adjacent to each face of C. We will show in Section 3.2
that we can compute this information in an additional O(mnAg(mn)logmn) time.

We now describe in detail how to compute 0K (Ay). Note that 0K (Ag) consists of
all (free or non-free) placements of P at which its boundary makes a locally free contact
with 9Ay. We partition 0K (4A) into O(m) patches so that the same locally free contact
(e,v,Ap) is made for all placements of P within each patch. The boundary of each patch
corresponds to placements at which P makes simultaneously two (locally free) contacts with
Ap; here we regard a vertex of P touching a vertex of Ay or an edge of P overlapping an
edge of Ay as “double” contacts. If a patch is not xy-monotone, we further partition it
into a constant number of zy-monotone patches. This allows us to use the (z,y)-coordinate
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system when manipulating objects contained in a patch. Such a partition is easy to obtain
in O(m) time. We refer to the resulting patches as contact surfaces. It is easily checked
that a contact surface has constant description complexity, in the sense that each patch
is a portion of an algebraic surface of bounded degree and its boundary consists of O(1)
algebraic arcs of bounded degree.

Repeating the process for every choice of Aj, we obtain a collection of O(mn) 2-
dimensional contact surfaces. For each such surface # C 0K (Ag), we compute the in-
tersections Ar = w1 K(A), for all obstacles A # A, and construct Ar =7\ (Uaza, Ar),
the complement of their union within 7.2 If 7 represents contacts of an edge e and a vertex
v then A, corresponds to placements at which v is in contact with e and P does not inter-
sect the interior of any obstacle. (As noted earlier, this holds independently of the triangle
Ay containing e or v. Hence, for convenience, we will denote the above contact surface
simply as 7, ,, with the corresponding triangle Ay being implicit in this notation.) Gluing
these complements together will give us K, as above. We refer to the sets A, as virtual
m-obstacles.

v

-

Figure 3. A, may consist of 2(m) connected components. P is a sector of a regular polygon centered
at v; A is placed at a distance from e which is between the radii of the inscribed and circumscribed
circles of the polygon, and e is relatively short, so that P cannot be slid along e and then rotated
so that a different edge is facing up, without overlapping A.

2If two obstacles A;, Ay share a vertex v, then for an edge e € P, we have two contacts (e, v, A1) and
(e,v,A). Let m1 C OK (A1) and m2 C K (A») denote the corresponding contact surfaces, and let 7 denote
the set of all placements at which the edge e of P touches the vertex v. Then 71,7 C 7. Although the two
contact surfaces may not be identical, it is easily seen that Ar, = Ar,, so it suffices to compute only one of
them. If two obstacles A;, A, share an edge e and v is a vertex of P, A; and A, lie on opposite sides of e,
so there are no locally free placements that realize contacts (e,v, A1) and (e, v, Az), so there is no need to
process the corresponding contact surface.

Motion Planning December 9, 2002
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Let m = 7., be a fixed contact surface. We can parameterize 7 by (p, tan g), where p
measures the displacement along e of its contact with v and 6 is the orientation of P. For
an obstacle A, constructing A, is easy: Note that, for any fixed 6, the locus of placements
contained in A, with orientation 6 is a line segment. (Indeed, the only motion available for
P in this set is translation parallel to e; the set of such translations at which the two convex
polygons P and A intersect is a line segment.) The combinatorial nature of an endpoint
of this segment (i.e., the pair of features whose contact defines the endpoint) changes at
only those orientations at which either (a) the line parallel to e through some vertex of P
passes through some vertex of A, or (b) an edge of P becomes parallel to an edge of A.
There are O(m) such orientations and there are only O(1) changes in the structure at each
such orientation, so A, consists of O(m) arcs. As shown in [34], each such arc is a section
of an algebraic curve of degree at most 4. A, can easily be computed in O(mlogm) time
by sorting and processing these orientations in increasing order. The total time needed to
produce the sets A, over all A, is thus O(n) x O(mlogm) = O(mnlogm). The above
arguments imply that each A, is f-monotone (in the coordinate frame representing ).
However, A, need not be connected. Indeed, it can have as many as Q(m) components in
the worst case; see Figure 3.

2.2 Computing A,

We fix a triangular obstacle Ag and compute Ar = 7\ (Ua,a, Ar) using a random-
ized divide-and-conquer approach. We randomly divide the set of virtual m-obstacles into
two equal subsets (so that every such partition occurs with equal probability), recursively
compute the complements of their two unions in 7, denoted by Aj, A2, and compute
Ar = A1 N Ay using a standard sweep-line procedure. Since the boundaries of obstacles
are not disjoint, the edges of A; and Ay may overlap, so extra (albeit standard) care needs
to be taken to handle degeneracies while computing A; N Ay by a sweep-line algorithm.
We assume, as is standard, an appropriate model of computation, in which various basic
operations on the arcs forming the boundaries of the virtual obstacles (such as intersecting
a pair of such arcs) can be performed in O(1) time. If an edge of A; crosses an edge of As,
then their crossing point is a vertex of A; N Ag; and if an edge of A; overlaps an edge of
Ay, then the endpoints of their overlap are vertices of Ay or As, so the total time spent in
the divide and merge steps is O((|Ax| 4+ |A1| +|A2|) log mn), where |A|, |A1], and |Az| are
the numbers of vertices of these respective sets. Let k, denote the total number of vertices
in all the intermediate unions of all recursive subproblems produced by the algorithm. (If
a vertex appears in k intermediate unions, then we count it &k times.) The total time to
compute A, for a fixed 7, including the time spent in computing the virtual m-obstacles,
is O((mn + kr)logmn).

Applying this procedure to each of the O(mn) contact surfaces independently and glu-
ing the results together, we construct 0K in time O((m?n? + Y _k.)logmn), where the
summation is taken over all contact surfaces. We will prove in Section 2.3 that the expected
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value of )"k, is O(mnAg(mn)logn), which implies that the expected running time of the
overall algorithm is O(mn\g(mn)logmnlogn). Hence, we can conclude:

Theorem 2.1 Given a convex polygon P with m edges and a polygonal environment Q
with a total of n edges, we can compute the boundary of the entire free configuration space
C by a randomized algorithm in expected time O(mnAg(mn)logmnlogn).

2.3 Bounding the expected value of ) £,

In this section, we prove that the expected value of ) &k if O(mnAg(mn)logn). For
simplicity, assume that n, the total number of triangular obstacles, is of the form 2" 4+ 1 for
some integer h. Any vertex ¢ that can appear on an intermediate union U produced by the
algorithm, while computing A, for some contact surface m = 7, is either an endpoint of
an edge of a virtual m-obstacle or an intersection of the boundaries of some pair of virtual
m-obstacles. There are a total of O(m?n?) vertices of individual virtual m-obstacles, and
each of them may be counted O(logn) times in ) k. (once at each level of recursion).
Therefore it suffices to bound the number of intersection points between the boundaries of
virtual obstacles. Let ¢ be such an intersection point. Suppose 7 is a portion of 0K (Ag) for
some obstacle Ag. Then ( represents a placement of P at which the following conditions
hold:

(a) P makes three simultaneous contacts with the obstacle boundaries, one of which is
the contact (e,v,Ap) defining 7 and no two contacts involve the same edge-vertex
pair;

(b) P is disjoint from the union of all the obstacles A whose corresponding virtual 7-
obstacles participate in U and there is no other placement in a sufficiently small
neighborhood of { that satisfies the same three contacts; and

(¢) P is disjoint from Aj.

Conditions (b) and (¢) imply that P is openly disjoint from the three obstacles involved in
the three contacts that P makes.

A triple-contact vertez ¢ is a quadruple (Z, Cy,Cs,C3), where Z is a (not necessarily
free) placement of P at which 9P makes three simultaneous (vertex-edge or edge-vertex)
contacts C1, Cs, and (3, each involving a distinct edge-vertex pair, and P is locally free in
the sense that it does not intersect the obstacles corresponding to the three contacts and
that no Z’ in a sufficiently small neighborhood of Z satisfies the same property. Since the
degree of each vertex of @ is bounded by a constant, each placement Z gives rise to O(1)
triple-contact vertices. If the actual contacts are not important, we will not distinguish
between ¢ and the corresponding placement Z of P. We say that a triple-contact vertex
¢ has level k (with respect to the full collection of obstacles) if removal of some k other
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Figure 4. A triple-contact vertex.

obstacles (not containing the at most three that participate in the triple contact) causes
to become a free placement, relative to the remaining obstacles, and no set of fewer than &

obstacles has this property. Note that level-0 vertices are exactly the triple-contact vertices
of C.

If two contacts in a triple-contact vertex are formed by the same obstacle A;, then
an edge of P must overlap an edge of A; at the corresponding placement, or a vertex of
P must coincide with a vertex of A;. Tt is easily checked that the total number of such
placements, regardless of their level, is O(m?n?) and that each of them is counted O(logn)
times in ) _ K. In what follows we will therefore consider only those triple-contact vertices
at which each of the three contacts is made by a different obstacle.

Let F}, denote the number of level-k (triple-contact) vertices for the given P and Q. For
a level-k vertex (, let pi denote the expected number of recursive subproblems of any size
that contain ¢ in their output (we will momentarily prove an upper bound on p; that does
indeed depend only on k and not on the choice of (). Then the expected value of )k is

easily seen to be
n—3
S| =3
m k=0

We first obtain a bound on p. Fix a triple-contact vertex ( that appears on the
boundary of free configuration space with respect to the three obstacles defining the triple
contact. Suppose ( is a vertex at level k, with respect to the full set of obstacles. Note that,
throughout its execution, the algorithm encounters sets of virtual obstacles of cardinality 27,
fori =0,...,h. Fix one such ;. We bound the probability that ( occurs during the execution
of the algorithm, for any contact surface, while processing subproblems involving r = 2
obstacles. The previous discussion implies that  lies at the intersection of three contact
surfaces. Fix one of these contact surfaces m. Then ( appears in some fixed subproblem
involving r obstacles in the construction carried out within 7 if and only if these r obstacles
include the other two obstacles defining ( and do not include any of the k obstacles that
“cover” (. Since every set of r obstacles not containing the obstacle inducing w has the

E
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same probability of being the set of input obstacles to our fixed subproblem, the probability

("23")

of ¢ appearing in the output of the subproblem is ~2=%~. (Recall that we ignore vertices

that are determined by fewer than three obstacles; these vertices appear as vertices of some
virtual m-obstacle, so we already have a bound on their number, as above.) Thus the
expected contribution of a level-k vertex ( to the output size of all subproblems during a

run of the algorithm is
n 3— k:)

Pk < 23 2h 7 21—2

(21)

Here we used the fact that ( may appear in the construction in each of the three different
contact surfaces that define (, and that, in any fixed recursive construction within 7, there
are 2"~* subproblems involving 2 obstacles each. Hence,

E [;m] < Z<sz3 gh~i %j}?)

k=0 1=0
_ 23 211 'anf) (n2’3 Qk) 22 ) (1)
= (%)

To bound this sum, we let G(r) denote the expected number of level-0 vertices for P
in an environment obtained by picking a random sample of r of the n triangular obstacles,
where any subset of r obstacles is chosen with equal probability. We express G(r) in terms of
Fy, Fs, ..., F,_ 3. What is the probability that a level-k vertex ( defined by three contacts,
as above, is counted in G(r)? In other words, what is the probability that it corresponds to
a vertex of the free configuration space, in the environment defined by r randomly selected
obstacles? It is defined by three obstacles and “covered” by k other obstacles, so, arguing as
("%

()

before, the probability is . Thus, the expected number of free triple-contact vertices

arising in the r-sample is

Putting r = 2° + 1, we obtain

n—3 n 3— k: ; n—3 (n—3—k
: 2+ 1« ("5°35Y)
2v—2 2v—2
G z ) = Y R 2)
— 21+1 k=0 2i
Substituting (2) into (1), we obtain
h
E < oh=i_— g2 41
P T
" G2+ 1)
_ 2y
= O iz_;zi(2i+1)
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Recall that each placement of P gives rise to O(1) triple-contact vertices, so G(2° + 1)
is proportional to the combinatorial complexity of the free configuration space C for P
moving amidst 2’ + 1 obstacles, which, as noted above, is known to be O(2'mAg(2'm)) [27]
Therefore

h

2im g (2'm
= Z 2m216+1 = O(mnAg(mn)logn),

Dk
s

1=
as claimed.

Remark: As mentioned in the introduction, our approach is quite general and can be
extended to compute the union of a family of three-dimensional regions in many other cases.
For example, let P = { P}, ..., Py} be a collection of k convex polyhedra in R? with a total of
n faces. We can use the same algorithm to compute the boundary of | J P as follows. For each
face 7 of a polyhedron P; € P, we first compute the set Qr = {7 NP; |1 < j #i <k}, and
then compute 7\ |J @ using the randomized divide-and-conquer algorithm described above.
Using essentially the same reasoning, the total expected running time of the algorithm is
O(k3logn 4 nklog klog? n) time. This is a consequence of the fact, proven in [8], that the
complexity of the union is O(k3+nk log k). If the polyhedra are obtained as Minkowski sums
of some k disjoint convex polyhedra with a common convex polyhedron, the boundary of the
union can be computed in randomized expected O(nklogklog®n) time, as the complexity
of the union is now only O(nklogk) [8, 9].

3 Motion-Planning Queries for P in Q)

In this section we describe data structures that answer efficiently the following two types
of queries involving P and the polygonal environment Q:

Free-placement query: Is a given placement Z of P free with respect to @ (i.e., does
7Z € C)? If Z is free, then, optionally, return also a placement Z’ that lies on 9C
directly above Z in the (+y)-direction (i.e., return the first placement at which P
touches an obstacle as we translate P from Z in the (+y)-direction).

Motion-planning query: Given two placements I and F' of P, determine whether there
is a collision-free path for P inside @ from I to F' (i.e., whether I and F' lie in the same
connected component of C). If the answer is “yes,” then also return such a path for
P from I to F. The first part of the query (to determine only whether F' is reachable
from 1) is called a reachability query.

Both types of queries call for a point-location data structure in the three-dimensional
space C. Since the topology of C can be rather complicated, the known techniques, such
as the point-location data structure by Preparata and Tamassia [33], do not seem to be
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directly applicable. We propose a different point-location data structure, tailored to our
application. We first describe the data structure for free-placement queries and then extend
it to answer reachability and motion-planning queries.

3.1 Free-placement queries

Let E be the set of obstacle edges (here we consider only the original edges of 9Q and
ignore the “inner passages” created by the triangulation of Q¢). Recall that P(Z) denotes
P at a placement Z. For a placement Z and for a subset E' C E, we define Z' = o(Z, E')
to be the first placement at which P intersects a segment of E’ as we translate P from 7
in the (4y)-direction (Figure 5); if P(Z) itself intersects an edge in E', then o(Z, E') = Z.
For a given placement 7, we aim to determine whether Z is free, and if the answer is yes,
we also want to return o(Z, E). To simplify the analysis, we assume that @) is bounded,
so that o(Z, F) always exists. If ) is unbounded, we artificially clip it within a sufficiently
large square, so that all placements of P at which P touches an obstacle vertex lie inside
the square, and add the top edge of the square to E.

Figure 5. A placement Z of P and o(Z, E).

Data structure. We construct a segment tree T on the z-projections of the segments in
E. Each node v € T is associated with an interval d,; let W, = d, X R be the vertical strip
erected on d,. Let p(v) denote the parent of a node v. An interval I is stored at a node v
if &, C I and d,(,) € I. Let E, C E be the set of segments corresponding to the intervals
stored at node v, and let S, C FE denote the set of segments having at least one endpoint
in the interior of W,; we clip the segments of S, and E, within W,. We sort the segments
of F, in the increasing order of their intercepts with any vertical line within W,,, which is a
well-defined order, since the endpoints of the (clipped) segments in FE,, lie on the boundary
of W, and their relative interiors are pairwise disjoint. Note that a segment can appear
in sets S, of at most O(logn) nodes v of T (the nodes lying on the two paths of T to the
leaves whose strips contain the endpoints of the segment).
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We construct two data structures on S,. The first structure answers line-intersection
queries, i.e., queries that determine whether a query line intersects any of the segments in
S,. We dualize each segment e € S, to a double wedge? e*, construct the arrangement of the
resulting double wedges, preprocess the arrangement for planar point-location queries, and
mark each face of the arrangement that is contained in at least one of the double wedges.
The size of this data structure is O(]S,|?) and it can be constructed in time O(]S,|? log |S,|);
see, e.g., [1]. A line L intersects a segment of S, if and only if the point L* dual to L lies
in a marked face. This can be determined in O(log|S,|) time.

Next, we construct a two-level data structure on S,. For each segment e € S,,, we mark
one of its endpoints; let A, be the set of these points. We preprocess A, into a halfplane
range-searching data structure, using the algorithm by Chazelle et al. [16]. Their algorithm
chooses a parameter r (greater than a constant specified by their algorithm) and constructs
a family of canonical subsets of A, so that there are O((|S,|/r7)?*%) canonical subsets of
size between r/ and r/*!, for any integer 1 < j < log, n; here § > 0 is an arbitrarily small
constant. For a query line L, A, can be partitioned into O(log, n) canonical subsets so
that all points within each canonical set lie on the same side of L. This partition can be
computed in O(logn) time. For each canonical set, we construct the following second-level
structure. Let A, ; be the ¢th canonical subset, S, ; C S, the set of segments whose marked
endpoints are in A, ;, and V,; the set of all endpoints of the segments in S, ;. We will
use z = tan /2 to denote the parametric representation of the orientation of P. For each
segment e € S,; and for every vertex p € P, we define two partially defined bivariate
functions y = f,,(x,2) and y = gep(z, 2) as follows: For a given pair (g, 29) let yo be the
y-value so that, at the placement Zy = (x9, yo, 20), the vertex p of P(Zy) lies in the relative
interior of e and P(Z) lies below (resp. above) the line containing e. If yo exists then it is
unique, and we put yo = fep(z0,20) (resp. yo = gep(xo, 20)); otherwise, fe,(xo,20) (resp.
Gep(Z0, 20)) is undefined; see Figure 6(i) for an illustration to the definition of fe ,(-,-).
Next, for each endpoint £ of a segment e in S, ; and for every edge v of P, we define two
functions f¢,(x,2) and g¢ ,(z, 2) as follows. For a given pair (z9, 2), let yo be the y-value
so that at the placement Zy = (xg,yo, 20), the vertex £ lies on v and both obstacle edges
incident to & lie above (resp. below) the line supporting v. If yo exists then it is unique
and we set yo = f¢ (20, 20) (resp. yo = g¢ (0, 20)); otherwise the respective functions are
undefined. see Figure 6(ii) for an illustration to the definition of f¢,(-,-). We compute the
lower envelope F},; of

{fep | € € Sy and p a vertex of P} U{fe, | £ € V;; and v an edge of P}
and the upper envelope G ; of

{gep | € € Sy and p a vertex of P} U {g¢, | £ € V,; and v an edge of P}.

3In the duality that we use, the dual of a point p(a,b) is the line p* : y = —az + b and the dual of a line
L:y=ax+ B is the point L*(a,3). The dual of a segment e = pq is the double wedge formed by the lines
p* and ¢* that does not contain the vertical line passing through the intersection point of p* and ¢* (which

is the point dual to the line supporting e).
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I\IG:L:—IL—:’ICIL:L:‘LII,II 7 /.‘,,, e g\f

g (wO’yO.’ZO) ~ (w1, 2)

(i) (ii)

Figure 6. (i) yo = fep(%0,20); feq(20,20), fer(T0,20) are not defined. (i) y1 = fe(z1,21);
fen(x1,21) is not defined.

These envelopes can be computed and preprocessed in O((m|Sv,i|)2+5) time, for any

d > 0, for point location, so that for any given pair (z, 20), Fy,i(%0,20) and G, i(zo, 20) can
be computed in O(logmn) time [4]. We store these envelopes as the secondary structures of
the ith canonical subset. Choosing r = n® and summing the complexity of these envelopes
over all canonical subsets, the total size of the two-level data structure constructed on S,
is O((m|S,])?*9). Summing over all nodes of the segment tree, the overall size of the data
structure is O((mn)?+?), for slightly larger but still arbitrarily small § > 0. The total time
spent in constructing these structures is O((mn)**?).

Answering a query. The query procedure determines whether Zj is a free placement.
If the answer is “yes,” then it also returns o(Zy, E), the placement that lies on 9C directly
above Zj in the (4y)-direction.

Let Zy = (z0,¥0,20) be a query placement. We can determine in O(logm) time the
leftmost and rightmost vertices, £ and r, of P(Zy). We can test in O(logn) time whether ¢
lies inside an obstacle. If so, we can conclude that Zj is not a free placement. We can thus
assume that £ lies in (). We use the following simple lemma to answer the query.

Lemma 3.1 Let Zy be a placement so that P(Zy) does not lie completely inside Q°. If
P(Zy) intersects (resp. touches) an obstacle, then there exists a node v in the segment tree
T so that at least one of £ and v lies in Wy, and (at least) one of the following two
conditions is satisfied.

(i) P(Zy) intersects (resp. touches) a segment of E,, or

(11) € and r do not lie in W,, and P(Zy) intersects (resp. touches) a segment of S,.
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Proof: Suppose P(Z)) intersects an obstacle. Since P(Zy) € Q°, there must exist an
obstacle edge e that intersects dP(Zy). Let ¢ be an intersection point of e and 0P (Z), and
let u be the leaf of T whose strip W,, contains £. Let w be the unique ancestor of v so that
e € Ey. If £ or r lies in W), then condition (i) holds with v = w. Otherwise, let z be the
lowest ancestor of w such that W), contains one of £ or r. Since z is a proper ancestor of
w, we have e € S,. Hence condition (ii) holds in this case with v = z. O

e

W,
(i) (i) (iif)

Figure 7. (i) e; # e, at a node v € V;. (ii) P(Zy) does not intersect any segment of F, at a node
v € Vi. (iii) P(Zy) does not intersect any segment of S, ; at a node v € V5.

Let Vi ={v €T [l € Wyyyorr €Wy} and Vo = {v € Vi | £, ¢ W,}. The above
lemma suggests that, to test whether P(Z) is free, it suffices to search E, for all v € 1}
and S, for all v € V5. Note that |V3] < |Vi| = O(logn). For each node v € Vj, we test
whether P(Z)) intersects a segment of E,. We first compute the left and right endpoints, ¢*
and r*, respectively, of the portion of the segment ¢r inside W,. We determine in O(logn)
time the segments ey, e, of E, lying immediately above ¢ and r, respectively. If e, # e,,
then ¢*r*, and therefore P(Z)), intersects an obstacle edge and we stop (see Figure 7 (i)).
Otherwise, £*r* does not intersect any segment of F,. We put e = ¢y = e, and determine
in O(logm) time a vertex & € P(Zy) N W, on the top boundary of P(Zy) N W, that touches
the supporting line of P(Zy) N W, parallel to e. If £ lies above e, then P(Zj) intersects
e and therefore Zj is not a free placement. Similarly we can determine in O(logm) time
whether P(Zj) intersects the segment of E, lying immediately below ¢*r*. If P(Z;) does
not intersect these segments of E,, it avoids all segments of E, (clipped within W,). We
can then determine in O(1) time the placement Z, = (xg,y1,20) so that the vertex £ of
P(Z,) touches e (see Figure 7(ii)); if there is no such placement, y; is set to +oo. It is
easily seen that Z, = o(Zy, F,), provided P(Z;) does not intersect any (clipped) segment
of E,. Repeating this step for all nodes of Vj, we can determine in O(log mnlogn) time
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whether P(Z)) intersects any segment of |J
Zy = O'(Zo, UvEVl EU)

Next, for each node v € Vs, we test whether P(Z) intersects any segment of S,. We
first determine in O(logn) time whether the line L supporting the segment ¢r intersects
any segment of S, using the line-intersection data structure. Since LNW, = ¢rN W, C
P(Zy)NW,, we conclude that if L intersects S, then Zj is not free, so we stop immediately.
Otherwise, we query the halfplane range-searching data structure with L. Let S,; be one
of the O(1) canonical subsets of the query output (see Figure 7(iii)).

vevy Evi if it does mnot, then we also obtain

Lemma 3.2 Let Zy be a placement as above. If a canonical subset S, ; lies above (resp.
below) L, then P(Zy) intersects some (clipped) segment of S, ; if and only F, ;(xo, 20) < Yo
(resp. Gyi(z0,20) > yo)-

Proof: Suppose S, ; lies above L. First assume that P(Zp) does not intersect any segment
of S, ;. Let e be a segment of S, ; and p a vertex of P so that their z-projections intersect
at placement Zy of P. If P(Zy) does not intersect S, ;, then e lies above p at placement Z,
i.e., fep(xo,20) > yo. Similarly, if £ is an endpoint of S, ; and y an edge of P so that their
x-projections intersect at placement Zy, then f¢ - (xo,20) > yo. Hence, F, ;(x0, 20) > yo-

Next, assume that P(Zp) intersects a segment e of S, ;. Then either one of the endpoints
¢ of e lies inside P or a vertex p of P lies above e. In the former case, f¢,(70,20) < yo,
where 7 is the edge of P lying vertically above ¢; while in the latter case, fe (20, 20) < Yo-
This completes the proof of the lemma. O

In view of the above lemma, we can determine in O(logmn) time whether P(Z))
intersects any segment of S,;. If P(Zp) does not intersect any segment of S, ;, then
(z0, Fy,i(x0, 20),20) = 0(Zy,Sy,i). Repeating this procedure for all canonical sets of the
query output and for all nodes v € V5, we can determine in O(logmnlogn) time whether
P(Zy) intersects any segment of | J, <y, Sy Ifit does not, we also obtain Zz = o(Zo, ey, Sv)-
Now o(Zy, E) is the lowest of Z; and Z,.

The query time can be improved to O(logmn) by constructing the segment tree with
a larger fan-out, e.g., as described in [16], without increasing the asymptotic size and pre-
processing time. Omitting the technical details of this improvement, we summarize the
analysis in the following theorem:

Theorem 3.3 Given a parameter € > 0, a convex polygon P with m edges, and a polygonal
environment Q with a total of n edges, we can preprocess P and Q in time O((mn)?*¢) into
a data structure of size O((mn)**¢), so that we can determine in O(logmn) time whether
a given placement Zy is free. If Zy is free, we can also compute o(Zy, E) within the same
time bound, where E is the set of edges in Q).
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3.2 Reachability and motion-planning queries

Returning to the original motion-planning query problem, we show that the data structure
given above and the algorithm described in Section 2 can be used to answer reachability
queries efficiently. The idea is to “retract” C onto a one-dimensional network connecting the
vertices of C and reduce the motion-planning problem to path planning in this network. This
retraction approach has been used extensively in the past for motion planning [11, 12, 13, 31].

We preprocess P and @ for free-placement queries, using Theorem 3.3. Next, we com-
pute all the connected components of dC, using the algorithm described in Section 2. The
algorithm computes A, for each contact surface 7 = m,,, and then glues them together.
Actually, it computes a refinement 9C* of dC so that each two-dimensional face of 9C* is
z-monotone, which implies that there is a path along the edges of 0C* between any pair
of vertices of the same connected component of dC*. We preprocess (the xy-projection of)
each A, for efficient planar point-location queries.

A natural choice for constructing the one-dimensional network is the 1-skeleton of dC*,
but it is not sufficiently connected to capture the connectivity of C, because the boundary
of a connected component C; of C need not be connected. Let A; be a connected component
of dC;, and let (; = (x;,y;,2;) be a point on A; with the maximum y-coordinate. We call
A; an inner component of 9C; if CZ-J“ = (zi,y; + ¢, 2;), for sufficiently small € > 0, lies in C;.
We will refer to (; as the apex of A;. If A; is an inner component, then we may assume
that a vertex p of P touches a vertex of () at (;, so (; is either a vertex of A; or a point of
locally maximum y-coordinate on an edge of A;. Furthermore, at P((;) the reference point
o lies vertically above the contact vertex p, i.e., the directed line segment po is parallel to
the y-axis and oriented upwards. Hence, there are only O(mn) apex placements.

Figure 8. An apex placement.

Define ¢ = 0((;, E), where E is the set of all obstacle edges, and let A; be the connected
component of dC containing ¢;. Obviously A; also belongs to dC;. We can compute ¢/ in
O(mn) time using a naive procedure. If {; is not a vertex of A;, we add (; as a vertex of
A; and split at ¢; the edge of A; containing (;. Similarly, we add (] as a vertex of A; and
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split at ¢/ the edge, or the face, containing (/. To split a face f, we pass through (] an arc
~ that lies on f and is parallel to the zz-plane, extend v in both directions until it hits df,
and split the edges of f hit by v at the hitting points. We also add the edge ({;,¢}) to the
resulting network. We repeat this procedure for all inner components of dC. The total time
spent in this step is O(m?n?). This step connects together all the boundary components of
each connected component of C. Let dC** denote the resulting structure, and let G denote
the 1-skeleton of dC**. The following property of G is obvious.

Lemma 3.4 If Z, 7' are two vertices of the same connected component of C, then Z and
7' belong to the same connected component of G.

We perform a depth-first search on GG and identify and label all vertices that lie in the
same connected component of G, so that we can determine in O(1) time whether two given
vertices of G belong to the same connected component. Finally, we construct a spanning
forest T of G, so that for any two vertices ¢,(’ lying in the same connected component of
G, we can return the path from ¢ to ¢/ in T in time proportional to its length.

We now answer a reachability or a motion-planning query as follows. Let I = (x7,yr, 21)
and F = (zp,yr,2r) be two given placements. Using the free-placement data structure,
we first determine whether both I and F are free. If so, we also compute I' = o(I, E) and
F' = o(F, E), and the contact surfaces 7y and 7 containing I’ and F’, respectively. By
locating I' in Ar,, we can determine in O(logmn) time the edge e; that lies immediately
above I' in the (+z)-direction. Let I"” be the point on the edge e; whose y-coordinate is
yrr, let 47 be the arc from I' to I” lying in A;, and parallel to the zz-plane, and let vy
be an endpoint of e;. Similarly, we compute ep, F”,vr, and vp for the final placement F.
Using Lemma 3.4, we can determine in O(1) time whether v; and vr belong to the same
connected component of 9C.

If v; and vr belong to the same component, we can also compute a path from I to F.
Let II; be the path composed of the y-vertical segment II’, the arc 7, and the portion of
er from I” to vy. Define Iz in an analogous manner. Finally, let IT be the path in G from
vr to vp. Then the path obtained by concatenating Iy, I, and Il is a path in C from I to
F. Hence, we obtain the following theorem.

Theorem 3.5 Given a parameter € > 0, a convex polygon P with m edges, and a polygonal
environment Q with a total of n edges, we can preprocess, in additional O((mn)**%) time,
the (already computed) space C of all free congruent placements of P inside Q into a data
structure of size O((mn)?*%) so that, for any two query free placements I and F of P, we
can determine, in O(logmn) time, whether there exists a collision-free motion of P from I
to F. If there exists one, we can return such a path in time proportional to its complezity,
which is at most O(mnAg(mn)).
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4 Finding the Largest Placement of P inside @)

As mentioned in the introduction, we use the parametric-searching technique of Megiddo
([29]; see also [5, 7]) to compute a largest free similar placement of P inside ). The
parametric-searching paradigm requires an “oracle” procedure to determine, for a given
scaling factor s > 0 of P, whether C, the free configuration space corresponding to sP
moving within @, is nonempty. Using Theorem 2.1, we can obtain an oracle that per-
forms this task in expected time O(mnAg(mn)logmnlogn). An efficient implementation
of the parametric search, however, also requires a parallel implementation of the oracle, in
Valiant’s comparison model [39]. Fortunately, the algorithm provided by Theorem 2.1 is
easy to parallelize, because all recursive subproblems at the same depth can be performed
in parallel. In fact, the only part of this algorithm that does not parallelize in a straight-
forward manner is the sweep-line procedure used in the merge step, because the standard
implementation of line-sweeping is inherently sequential. We therefore perform the merge
step in the parallel version using a different approach, based on segment trees, such as the
one used in [7, Section 5]. As argued in [7], the merge step requires O(logmn) time using
O(mnXg(mn)log mn) processors, under Valiant’s model of computation.

Omitting all further details, we conclude that one can compute C in O(logmn logn)
parallel steps, using O(mnAg(mn)log mn) expected number of processors, in Valiant’s com-
parison model. Megiddo [29] showed that if the sequential algorithm for the oracle runs in
time T and the parallel algorithm runs in time 7}, using II processors, then the parametric
searching takes O(T,IT1+T,T, logII) time, provided that all the control-flow decisions made
by the parallel version can be expressed as sign tests of constant-degree polynomials in
the parameter whose critical value is being sought (the scaling factor s, in our case), or
are independent of this parameter. Since this is the case for our algorithm, we obtain the
following result.

Theorem 4.1 Given a convex polygon P with m edges and a polygonal environment @ with
a total of n edges, we can compute a largest free placement of P inside Q) in randomized
expected time O(mnAg(mn)log® mnlog?n).

5 Concluding Remarks

In this paper we studied the motion-planning problem for a convex m-gon P inside a polygo-
nal environment () with a total of n vertices. We presented an efficient algorithm for comput-
ing the entire free configuration space, whose time complexity is O(mnAg(mn) log mnlogn),
which is near optimal in the worst case. We applied the algorithm to solve the following
two problems:

(a) answering free-placement and motion-planning queries for P inside Q,
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(b) finding a largest free placement of P inside Q.

We conclude with two open problems:

1. What is the combinatorial complexity of the four-dimensional configuration space of

all free placements of P in (), when scaling is also allowed? Is it also near-quadratic
in mn? See the introduction for the analogous result when @ is convex.

. Agarwal and Sharir [6] gave a randomized algorithm, with O(n3/2*¢) expected running

time, to find a placement of a longest segment that can be placed inside a simple n-
gon. Can one also obtain subquadratic algorithms for finding a largest placement of
a segment inside an arbitrary polygonal environment, or for finding the largest copy
of a given triangle that can be placed inside a convex polygon?
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