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Introdution 11 IntrodutionProblem statement. Let P be a losed onvex m-gon. We onsider the problem ofplanning a ollision-free motion for P inside a losed planar polygonal environment Q,bounded by a total of n edges. We allow P to translate and rotate. A (ongruent) plaementof P is thus any ongruent opy of P (without reetions). A plaement of P is free if itis fully ontained in Q, and semifree if it is free and the boundary �Q of Q touhes theboundary �P of P . Any plaement of P an be represented by three real parameters(x; y; �), where (x; y) 2 R2 is the position of a referene point of P and � 2 [��; �℄ is theounter-lokwise angle by whih P is rotated from some �xed orientation. The spae of allplaements of P , known as on�guration spae, is thus identi�ed with R2 �S, where S is theunit irle. The free on�guration spae C of P in Q is the spae of all free plaements ofP in Q, and the boundary �C orresponds to the set of all semifree plaements. Note thatC is a losed set. If saling of P is also permitted, the on�guration spae an be identi�edwith R3 � S.
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������P (I)

P (F )
Figure 1. Motion planning for a onvex polygon inside a polygonal environmentWe onsider two types of problems in this ontext:Motion Planning: Construt C, the spae of all free ongruent plaements of P . PreproessC so that one an determine eÆiently whether two given plaements I; F of P liein the same onneted omponent of C; that is, whether there exists a ollision-freemotion of P inside Q from one of these plaements to the other. If so, then also returna path from I to F that lies within C. See Figure 1.Largest Plaement: Allowing saling, �nd a largest similar opy of P that �ts inside Q.Previous results. Both problems are entral problems in robotis and manufaturing,and have been studied intensively in omputational geometry, during the past two deades.Some of the initial results on this problem an be found in [14, 26, 34, 38℄; these algorithmsare either ineÆient or onsider only speial ases (e.g., where P is assumed to be a linesegment). See reent surveys for summary of known results in motion planning [23, 35℄. The�rst signi�ant progress was made by Leven and Sharir [27℄, who analyzed the ombinatorialMotion Planning Deember 9, 2002



Introdution 2omplexity of C when no saling is allowed, whih an be measured by the number of freeritial plaements of P . A plaement Z of P is alled ritial if there exist three distintpairs (e1; v1), (e2; v2), and (e3; v3), so that for eah i = 1; 2; 3, either ei is an obstaleedge and vi is a vertex of P or ei is an edge of P and vi is an obstale vertex, and sothat the vertex vi touhes the edge ei at plaement Z. Leven and Sharir showed that thisquantity and thus the omplexity of C are both O(mn�6(mn)). Here �s(q) is the maximumlength of (q; s)-Davenport-Shinzel sequenes [36℄, whih is nearly linear in q for any �xeds. They also showed that the omplexity of C is 
(m2n2) in the worst ase. Thus theomplexity of C is near-quadrati in mn. The goal then was to ompute C in time thatis also near-quadrati in mn. The �rst result in this diretion was obtained by Kedemand Sharir [24℄, where an O(mn�6(mn) logmn)-time algorithm was proposed. However,this algorithm turned out to have a tehnial diÆulty. The algorithm onstruts C in twostages. The �rst stage omputes a superset of all the verties of C, where eah suh vertex isa free ritial plaement of P in Q, as de�ned above, and then aims to �lter out the spuriousverties (non-free plaements). The �ltering proess is rather ompliated, and some of theases are not handled orretly [24℄.Two subsequent papers aimed to �x Kedem and Sharir's algorithm. The �rst solution,given by Sharir and Toledo [37℄, proesses Q into several range-searhing data strutures,and then it queries these strutures with eah plaement of P produed by the algorithmof Kedem and Sharir [24℄ to disard non-free plaements. The overall running time of theiralgorithm is lose to O(m3n2). This is signi�antly more expensive for large values of m,whih is what we assume here. The seond solution, proposed by Kedem et al. [25℄, orretlyomputes the onneted omponents of C that ontain I and F , but does not always omputethe entire free spae. The time omplexity of their algorithm is O(mn�6(mn) logmn). Forother solutions to the problem, whih are less eÆient but also apply to the ase when P isnononvex, see [10℄. These results leave the open problem of whether the entire free spaean be omputed in time that is near quadrati in mn.The ase in whih saling is allowed and we seek the largest plaement of P inside Q hasbeen studied in [14, 17, 37℄. Chazelle gave an O(m3n3(m + n) log(m + n))-time algorithmto ompute the largest plaement of P inside Q. Using generalized Delaunay triangulationsindued by P in Q, Chew and Kedem [17℄ gave an O(m4n2�(n) log n)-time algorithm foromputing a largest free similar plaement of P in Q; here �(n) is the inverse Akermann'sfuntion. A variant of this algorithm also solves the motion-planning problem for P in Q,with the additional advantage of �nding a \high-learane" motion, where P aims to stayas far away from the boundary of Q as possible; see [17℄ for a more preise de�nition of highlearane. Sharir and Toledo [37℄ proposed another algorithm that ombines parametrisearhing [29℄ with a onstrution of the entire on�guration spae for the �xed-size ase, asin the preeding paragraph; the running time of their algorithm is lose to O(m3n2). If onlytranslation and saling are allowed, the largest homotheti plaement of P inside Q an beomputed in time O(mn logn), using the generalized Voronoi diagram of �Q indued by P[22, 28℄.Motion Planning Deember 9, 2002



Construting the Free Configuration Spae 3In [2℄, a muh simpler situation is disussed where Q is also a onvex polygon. Theresulting problems are still hallenging and have an interesting geometri struture. It isshown there that a largest saled opy of P that an �t inside Q an be omputed inO(mn2 log n) time. The maximum ombinatorial omplexity of the four-dimensional spaeC0 of all similar plaements of P inside Q is proven to be �(mn2). It is shown that C0 anbe omputed in O(mn2 log n) time. It is interesting that no better bounds are known forthe spae of all ongruent plaements.New results and methods. We present a randomized divide-and-onquer algorithm foromputing C, whose expeted running time is O(mn�6(mn) logmn logn). The merge stepof the algorithm is based on a line-sweep algorithm. Our tehnique is quite general and anbe applied to other problems, as disussed in a remark at the end of Setion 2.3. This isthe �rst orret solution for omputing all of C whose running time is near quadrati inmn.Our algorithm is rather simple, at least oneptually. It has the advantage that it is easy toparallelize, whih is needed in our solution to the largest-plaement problem, see Setion 4.Even for the task of omputing only a portion of C, our algorithms are simpler than the onesin [25, 37℄. In addition, we an preproess C in O((mn)2+")) time so that we an eÆientlyanswer reahability queries: for any two plaements of P , we an determine in O(logmn)time whether there is a ollision-free motion from one to the other (i.e., whether they liein the same onneted omponent of C). A variant of the algorithm an also produe apath onneting the two plaements, in additional time proportional to the ombinatorialomplexity of the path. No laims of optimality of the resulting path are made.Using an approah based on parametri searhing, similar to that of [37℄, we an �nd thelargest similar plaement of P inQ, in randomized expeted timeO(mn�6(mn) log3mn log2 n),thus improving signi�antly over the previous bounds in [17, 37℄. Parametri searhing re-quires an \orale" proedure that has to determine, for a given size of P , whether theorresponding C is nonempty, whih we an do using our algorithm for omputing the en-tire C. Notie that we an neither use the algorithm by Kedem et al. [25℄ here nor the oneby Kedem and Sharir [24℄, sine the former may miss some of the omponents of C and thelatter may produe plaements that are not free.The paper is organized as follows. Setion 2 desribes the randomized algorithm foromputing the free on�guration spae. Setion 3 presents the data strutures for answeringreahability queries, and Setion 4 desribes the algorithm for omputing a largest opy ofP that an be plaed inside Q.2 Construting the Free Con�guration SpaeConsider a onvex m-gon P translating and rotating rigidly in a general polygonal environ-ment Q bounded by n edges, without saling. Reall that a plaement of P an be parame-terized by (x; y; �), where (x; y) 2 R2 is the position of a referene point of P and � 2 [��; �℄is the ounter-lokwise angle by whih P is rotated from some �xed referene orientation.Motion Planning Deember 9, 2002



Construting the Free Configuration Spae 4For the sake of onveniene, we will represent a plaement of P by (x; y; tan(�=2)), so thatthe set of all plaements is R3 . Note that, under this representation, speial treatment isrequired for � = �� beause, for any (x; y) 2 R2 , (x; y;��) and (x; y;+�) represent thesame physial plaement of P . In brief, even though at these points tan �2 ! �1, werepresent them expliitly. At the end of our onstrution we identify the two ross setions� = ��, � = +�, and glue them together. This is neessary to preserve onnetivity alongpaths that ross the surfae � = ��.We assume that P and Q are in general position. In our ontext, this means that no twoobstale verties have the same x-oordinate and there is no plaement of P at whih four\independent" onstraints imposed on P by its possible ontats with Q are simultaneouslysatis�ed. Eah onstraint orresponds to a set of plaements of P at whih a vertex of Ptouhes an edge of Q, an edge of P touhes a vertex of Q, or the segment onneting twopoints of ontat (between P and Q) is normal to the edge of P or Q involved in one of theseontats. See Leven and Sharir [27℄ for details. Figure 2 illustrates several degeneraies (i.e.,plaements not in general position).
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Figure 2. Typial degeneraies.We triangulate Q, the omplement of Q, using Steiner points if neessary, so that thedegree of eah vertex in the triangulation is bounded by a onstant; suh a triangulation anbe onstruted, e.g., by omputing the vertial deomposition of Q and by triangulatingeah trapezoid of the vertial deomposition. >From now on we assume, for tehnialreasons, that Q is the union of n pairwise disjoint open triangular obstales, some of whihmay be unbounded. Note that the new n is larger than the original n by only a onstantfator. Also observe that replaing general polygonal obstales with disjoint open trianglesadds zero-width \passages" to Q. However, it does not a�et the free on�guration spaeC in any signi�ant way, as long as P has non-empty interior.We will use P (Z) to denote P at a plaement Z. We de�ne a ontat to be a triple(e; v;�), where e is an edge of the obstale � and v is a vertex of P , or e is an edge of Pand v is a vertex of �.1 In the former ase, there is a unique ontat triple orresponding1Unlike Leven and Sharir [27℄, we inlude � in the de�nition of a ontat beause a vertex may be sharedby several triangular obstales, and we prefer to regard (e; v;�1) and (e; v;�2), where v is a ommon vertexof �1 and �2, as two di�erent ontats (espeially while analyzing the running time of the algorithm), eventhough, geometrially, they orrespond to the same ontat.Motion Planning Deember 9, 2002



Construting the Free Configuration Spae 5to a physial ontat of v and e, and in the latter ase, sine eah vertex of Q is inidentto O(1) triangular obstales, there are only O(1) ontat triples orresponding to suh aphysial ontat. The total number of ontats is therefore O(mn). If � is not importantor is obvious from the ontext, we will omit �. A plaement Z of P involves a ontat(e; v;�) if the vertex v lies on the edge e; Z is alled loally free if P (Z) does not interset�. We present a randomized algorithm for omputing the boundary �C of the free on�g-uration spae C. More preisely, we ompute eah onneted omponent of �C, deomposeit into xy-monotone pathes, and represent eah path as a planar map, using any stan-dard representation (see, e.g., [32, 38℄). The expeted running time of the algorithm isO(mn�6(mn) logmn logn) and is thus lose to the the worst-ase omplexity bound for C.As usual for this type of algorithms, the expetation is over the random hoies made bythe algorithm, for any �xed input, and not over any assumed distribution of the input data.2.1 Overall approahOur algorithm is based on the following approah. For eah (open) triangular obstale �, letK(�) denote the set of forbidden plaements of P at whih it intersets �. These are opensets, and C is the omplement of their union, so it suÆes to ompute the boundary of theunionK = S�K(�). For eah obstale �0, we ompute the faes of �K that lie in �K(�0),and then path these faes together to onstrut �K. This leads to the following simplehigh-level desription of our algorithm: Fix an obstale �0, and ompute the intersetionsA(�) = K(�)\�K(�0), for every obstale � 6= �0. Construt the 2-dimensional union ofthe sets A(�), and form its omplement within �K(�0). This omplement is exatly theportion of �K that is ontained in �K(�0). After applying this proedure to all obstales�0, we have omputed all the two-dimensional faes of �C and the edges and vertiesinident to them. Thus for eah fae f of �C, we have the list of all faes adjaent to f . Wean glue together these faes, by performing a depth �rst searh on the graph dual to �C,to obtain an appropriate disrete representation of the entire boundary of K, and thus alsoof �C. We omit the details onerning the gluing proess, sine they are straightforwardand have been desribed earlier, see e.g. [21, 38℄. Note that this approah does not identifywhih onneted omponent of C is adjaent to eah fae of C. We will show in Setion 3.2that we an ompute this information in an additional O(mn�6(mn) logmn) time.We now desribe in detail how to ompute �K(�0). Note that �K(�0) onsists ofall (free or non-free) plaements of P at whih its boundary makes a loally free ontatwith ��0. We partition �K(�0) into O(m) pathes so that the same loally free ontat(e; v;�0) is made for all plaements of P within eah path. The boundary of eah pathorresponds to plaements at whih P makes simultaneously two (loally free) ontats with�0; here we regard a vertex of P touhing a vertex of �0 or an edge of P overlapping anedge of �0 as \double" ontats. If a path is not xy-monotone, we further partition itinto a onstant number of xy-monotone pathes. This allows us to use the (x; y)-oordinateMotion Planning Deember 9, 2002



Construting the Free Configuration Spae 6system when manipulating objets ontained in a path. Suh a partition is easy to obtainin O(m) time. We refer to the resulting pathes as ontat surfaes. It is easily hekedthat a ontat surfae has onstant desription omplexity, in the sense that eah pathis a portion of an algebrai surfae of bounded degree and its boundary onsists of O(1)algebrai ars of bounded degree.Repeating the proess for every hoie of �0, we obtain a olletion of O(mn) 2-dimensional ontat surfaes. For eah suh surfae � � �K(�0), we ompute the in-tersetions �� = � \K(�), for all obstales � 6= �0, and onstrut A� = � n (S� 6=�0 ��),the omplement of their union within �.2 If � represents ontats of an edge e and a vertexv then A� orresponds to plaements at whih v is in ontat with e and P does not inter-set the interior of any obstale. (As noted earlier, this holds independently of the triangle�0 ontaining e or v. Hene, for onveniene, we will denote the above ontat surfaesimply as �e;v, with the orresponding triangle �0 being impliit in this notation.) Gluingthese omplements together will give us �K, as above. We refer to the sets �� as virtual�-obstales.
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P v eFigure 3. �� may onsist of 
(m) onneted omponents. P is a setor of a regular polygon enteredat v; � is plaed at a distane from e whih is between the radii of the insribed and irumsribedirles of the polygon, and e is relatively short, so that P annot be slid along e and then rotatedso that a di�erent edge is faing up, without overlapping �.2If two obstales �1;�2 share a vertex v, then for an edge e 2 P , we have two ontats (e; v;�1) and(e; v;�2). Let �1 � �K(�1) and �2 � �K(�2) denote the orresponding ontat surfaes, and let � denotethe set of all plaements at whih the edge e of P touhes the vertex v. Then �1; �2 � �. Although the twoontat surfaes may not be idential, it is easily seen that A�1 = A�2 , so it suÆes to ompute only one ofthem. If two obstales �1, �2 share an edge e and v is a vertex of P , �1 and �2 lie on opposite sides of e,so there are no loally free plaements that realize ontats (e; v;�1) and (e; v;�2), so there is no need toproess the orresponding ontat surfae.Motion Planning Deember 9, 2002



Construting the Free Configuration Spae 7Let � = �e;v be a �xed ontat surfae. We an parameterize � by (�; tan �2), where �measures the displaement along e of its ontat with v and � is the orientation of P . Foran obstale �, onstruting �� is easy: Note that, for any �xed �, the lous of plaementsontained in �� with orientation � is a line segment. (Indeed, the only motion available forP in this set is translation parallel to e; the set of suh translations at whih the two onvexpolygons P and � interset is a line segment.) The ombinatorial nature of an endpointof this segment (i.e., the pair of features whose ontat de�nes the endpoint) hanges atonly those orientations at whih either (a) the line parallel to e through some vertex of Ppasses through some vertex of �, or (b) an edge of P beomes parallel to an edge of �.There are O(m) suh orientations and there are only O(1) hanges in the struture at eahsuh orientation, so ��� onsists of O(m) ars. As shown in [34℄, eah suh ar is a setionof an algebrai urve of degree at most 4. �� an easily be omputed in O(m logm) timeby sorting and proessing these orientations in inreasing order. The total time needed toprodue the sets ��, over all �, is thus O(n) � O(m logm) = O(mn logm). The abovearguments imply that eah �� is �-monotone (in the oordinate frame representing �).However, �� need not be onneted. Indeed, it an have as many as 
(m) omponents inthe worst ase; see Figure 3.2.2 Computing A�We �x a triangular obstale �0 and ompute A� = � n (S� 6=�0 ��) using a random-ized divide-and-onquer approah. We randomly divide the set of virtual �-obstales intotwo equal subsets (so that every suh partition ours with equal probability), reursivelyompute the omplements of their two unions in �, denoted by A1; A2, and omputeA� = A1 \ A2 using a standard sweep-line proedure. Sine the boundaries of obstalesare not disjoint, the edges of A1 and A2 may overlap, so extra (albeit standard) are needsto be taken to handle degeneraies while omputing A1 \ A2 by a sweep-line algorithm.We assume, as is standard, an appropriate model of omputation, in whih various basioperations on the ars forming the boundaries of the virtual obstales (suh as intersetinga pair of suh ars) an be performed in O(1) time. If an edge of A1 rosses an edge of A2,then their rossing point is a vertex of A1 \ A2; and if an edge of A1 overlaps an edge ofA2, then the endpoints of their overlap are verties of A1 or A2, so the total time spent inthe divide and merge steps is O((jA�j+ jA1j+ jA2j) logmn), where jA�j, jA1j, and jA2j arethe numbers of verties of these respetive sets. Let �� denote the total number of vertiesin all the intermediate unions of all reursive subproblems produed by the algorithm. (Ifa vertex appears in k intermediate unions, then we ount it k times.) The total time toompute A�, for a �xed �, inluding the time spent in omputing the virtual �-obstales,is O((mn+ ��) logmn).Applying this proedure to eah of the O(mn) ontat surfaes independently and glu-ing the results together, we onstrut �K in time O((m2n2 +P� ��) logmn), where thesummation is taken over all ontat surfaes. We will prove in Setion 2.3 that the expetedMotion Planning Deember 9, 2002



Construting the Free Configuration Spae 8value ofP� �� is O(mn�6(mn) log n), whih implies that the expeted running time of theoverall algorithm is O(mn�6(mn) logmn logn). Hene, we an onlude:Theorem 2.1 Given a onvex polygon P with m edges and a polygonal environment Qwith a total of n edges, we an ompute the boundary of the entire free on�guration spaeC by a randomized algorithm in expeted time O(mn�6(mn) logmn logn).2.3 Bounding the expeted value of P� ��In this setion, we prove that the expeted value of P� �� if O(mn�6(mn) logn). Forsimpliity, assume that n, the total number of triangular obstales, is of the form 2h+1 forsome integer h. Any vertex � that an appear on an intermediate union U produed by thealgorithm, while omputing A� for some ontat surfae � = �e;v, is either an endpoint ofan edge of a virtual �-obstale or an intersetion of the boundaries of some pair of virtual�-obstales. There are a total of O(m2n2) verties of individual virtual �-obstales, andeah of them may be ounted O(log n) times in P� �� (one at eah level of reursion).Therefore it suÆes to bound the number of intersetion points between the boundaries ofvirtual obstales. Let � be suh an intersetion point. Suppose � is a portion of �K(�0) forsome obstale �0. Then � represents a plaement of P at whih the following onditionshold:(a) P makes three simultaneous ontats with the obstale boundaries, one of whih isthe ontat (e; v;�0) de�ning � and no two ontats involve the same edge-vertexpair;(b) P is disjoint from the union of all the obstales � whose orresponding virtual �-obstales partiipate in U and there is no other plaement in a suÆiently smallneighborhood of � that satis�es the same three ontats; and() P is disjoint from �0.Conditions (b) and () imply that P is openly disjoint from the three obstales involved inthe three ontats that P makes.A triple-ontat vertex � is a quadruple (Z;C1; C2; C3), where Z is a (not neessarilyfree) plaement of P at whih �P makes three simultaneous (vertex-edge or edge-vertex)ontats C1; C2, and C3, eah involving a distint edge-vertex pair, and P is loally free inthe sense that it does not interset the obstales orresponding to the three ontats andthat no Z 0 in a suÆiently small neighborhood of Z satis�es the same property. Sine thedegree of eah vertex of Q is bounded by a onstant, eah plaement Z gives rise to O(1)triple-ontat verties. If the atual ontats are not important, we will not distinguishbetween � and the orresponding plaement Z of P . We say that a triple-ontat vertex� has level k (with respet to the full olletion of obstales) if removal of some k otherMotion Planning Deember 9, 2002



Construting the Free Configuration Spae 9
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Figure 4. A triple-ontat vertex.obstales (not ontaining the at most three that partiipate in the triple ontat) auses �to beome a free plaement, relative to the remaining obstales, and no set of fewer than kobstales has this property. Note that level-0 verties are exatly the triple-ontat vertiesof C.If two ontats in a triple-ontat vertex are formed by the same obstale �i, thenan edge of P must overlap an edge of �i at the orresponding plaement, or a vertex ofP must oinide with a vertex of �i. It is easily heked that the total number of suhplaements, regardless of their level, is O(m2n2) and that eah of them is ounted O(log n)times inP� ��. In what follows we will therefore onsider only those triple-ontat vertiesat whih eah of the three ontats is made by a di�erent obstale.Let Fk denote the number of level-k (triple-ontat) verties for the given P and Q. Fora level-k vertex �, let pk denote the expeted number of reursive subproblems of any sizethat ontain � in their output (we will momentarily prove an upper bound on pk that doesindeed depend only on k and not on the hoie of �). Then the expeted value of P� �� iseasily seen to be E "X� ��# = n�3Xk=0Fkpk:We �rst obtain a bound on pk. Fix a triple-ontat vertex � that appears on theboundary of free on�guration spae with respet to the three obstales de�ning the tripleontat. Suppose � is a vertex at level k, with respet to the full set of obstales. Note that,throughout its exeution, the algorithm enounters sets of virtual obstales of ardinality 2i,for i = 0; : : : ; h. Fix one suh i. We bound the probability that � ours during the exeutionof the algorithm, for any ontat surfae, while proessing subproblems involving r = 2iobstales. The previous disussion implies that � lies at the intersetion of three ontatsurfaes. Fix one of these ontat surfaes �. Then � appears in some �xed subprobleminvolving r obstales in the onstrution arried out within � if and only if these r obstalesinlude the other two obstales de�ning � and do not inlude any of the k obstales that\over" �. Sine every set of r obstales not ontaining the obstale induing � has theMotion Planning Deember 9, 2002



Construting the Free Configuration Spae 10same probability of being the set of input obstales to our �xed subproblem, the probabilityof � appearing in the output of the subproblem is (n�3�kr�2 )(n�1r ) . (Reall that we ignore vertiesthat are determined by fewer than three obstales; these verties appear as verties of somevirtual �-obstale, so we already have a bound on their number, as above.) Thus theexpeted ontribution of a level-k vertex � to the output size of all subproblems during arun of the algorithm is pk � hXi=0 3 � 2h�i �n�3�k2i�2 ��n�12i � :Here we used the fat that � may appear in the onstrution in eah of the three di�erentontat surfaes that de�ne �, and that, in any �xed reursive onstrution within �, thereare 2h�i subproblems involving 2i obstales eah. Hene,E "X� ��# � n�3Xk=0 Fk hXi=0 3 � 2h�i �n�3�k2i�2 ��n�12i � != hXi=0 3 � 2h�i n�3Xk=0 �n�3�k2i�2 ��n�12i � Fk : (1)To bound this sum, we let G(r) denote the expeted number of level-0 verties for Pin an environment obtained by piking a random sample of r of the n triangular obstales,where any subset of r obstales is hosen with equal probability. We express G(r) in terms ofF1; F2; : : : ; Fn�3. What is the probability that a level-k vertex � de�ned by three ontats,as above, is ounted in G(r)? In other words, what is the probability that it orresponds toa vertex of the free on�guration spae, in the environment de�ned by r randomly seletedobstales? It is de�ned by three obstales and \overed" by k other obstales, so, arguing asbefore, the probability is (n�3�kr�3 )(nr) . Thus, the expeted number of free triple-ontat vertiesarising in the r-sample is G(r) = n�3Xk=0 �n�3�kr�3 ��nr� Fk:Putting r = 2i + 1, we obtainG(2i + 1) = n�3Xk=0 �n�3�k2i�2 �� n2i+1� Fk = 2i + 1n n�3Xk=0 �n�3�k2i�2 ��n�12i � Fk : (2)Substituting (2) into (1), we obtainE "X� ��# � hXi=0 3 � 2h�i n2i + 1G(2i + 1)= O(n2) � hXi=0 G(2i + 1)2i(2i + 1) :Motion Planning Deember 9, 2002



Motion-Planning Queries for P in Q 11Reall that eah plaement of P gives rise to O(1) triple-ontat verties, so G(2i + 1)is proportional to the ombinatorial omplexity of the free on�guration spae C for Pmoving amidst 2i+1 obstales, whih, as noted above, is known to be O(2im�6(2im)) [27℄.Therefore E "X� ��# = O(n2) � hXi=0 2im�6(2im)2i(2i + 1) = O(mn�6(mn) log n);as laimed.Remark: As mentioned in the introdution, our approah is quite general and an beextended to ompute the union of a family of three-dimensional regions in many other ases.For example, let P = fP1; : : : ; Pkg be a olletion of k onvex polyhedra in R3 with a total ofn faes. We an use the same algorithm to ompute the boundary ofSP as follows. For eahfae � of a polyhedron Pi 2 P, we �rst ompute the set Q� = f� \Pj j 1 � j 6= i � kg, andthen ompute �nSQ� using the randomized divide-and-onquer algorithm desribed above.Using essentially the same reasoning, the total expeted running time of the algorithm isO(k3 log n+ nk log k log2 n) time. This is a onsequene of the fat, proven in [8℄, that theomplexity of the union is O(k3+nk log k). If the polyhedra are obtained as Minkowski sumsof some k disjoint onvex polyhedra with a ommon onvex polyhedron, the boundary of theunion an be omputed in randomized expeted O(nk log k log2 n) time, as the omplexityof the union is now only O(nk log k) [8, 9℄.3 Motion-Planning Queries for P in QIn this setion we desribe data strutures that answer eÆiently the following two typesof queries involving P and the polygonal environment Q:Free-plaement query: Is a given plaement Z of P free with respet to Q (i.e., doesZ 2 C)? If Z is free, then, optionally, return also a plaement Z 0 that lies on �Cdiretly above Z in the (+y)-diretion (i.e., return the �rst plaement at whih Ptouhes an obstale as we translate P from Z in the (+y)-diretion).Motion-planning query: Given two plaements I and F of P , determine whether thereis a ollision-free path for P insideQ from I to F (i.e., whether I and F lie in the sameonneted omponent of C). If the answer is \yes," then also return suh a path forP from I to F . The �rst part of the query (to determine only whether F is reahablefrom I) is alled a reahability query.Both types of queries all for a point-loation data struture in the three-dimensionalspae C. Sine the topology of C an be rather ompliated, the known tehniques, suhas the point-loation data struture by Preparata and Tamassia [33℄, do not seem to beMotion Planning Deember 9, 2002



Motion-Planning Queries for P in Q 12diretly appliable. We propose a di�erent point-loation data struture, tailored to ourappliation. We �rst desribe the data struture for free-plaement queries and then extendit to answer reahability and motion-planning queries.3.1 Free-plaement queriesLet E be the set of obstale edges (here we onsider only the original edges of �Q andignore the \inner passages" reated by the triangulation of Q). Reall that P (Z) denotesP at a plaement Z. For a plaement Z and for a subset E0 � E, we de�ne Z 0 = �(Z;E0)to be the �rst plaement at whih P intersets a segment of E0 as we translate P from Zin the (+y)-diretion (Figure 5); if P (Z) itself intersets an edge in E0, then �(Z;E0) = Z.For a given plaement Z, we aim to determine whether Z is free, and if the answer is yes,we also want to return �(Z;E). To simplify the analysis, we assume that Q is bounded,so that �(Z;E) always exists. If Q is unbounded, we arti�ially lip it within a suÆientlylarge square, so that all plaements of P at whih P touhes an obstale vertex lie insidethe square, and add the top edge of the square to E.
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������P (�(Z;E))P (Z)Figure 5. A plaement Z of P and �(Z;E).Data struture. We onstrut a segment tree T on the x-projetions of the segments inE. Eah node v 2 T is assoiated with an interval Æv ; let Wv = Æv � R be the vertial stripereted on Æv. Let p(v) denote the parent of a node v. An interval I is stored at a node vif Æv � I and Æp(v) 6� I. Let Ev � E be the set of segments orresponding to the intervalsstored at node v, and let Sv � E denote the set of segments having at least one endpointin the interior of Wv; we lip the segments of Sv and Ev within Wv. We sort the segmentsof Ev in the inreasing order of their interepts with any vertial line within Wv, whih is awell-de�ned order, sine the endpoints of the (lipped) segments in Ev lie on the boundaryof Wv and their relative interiors are pairwise disjoint. Note that a segment an appearin sets Sv of at most O(logn) nodes v of T (the nodes lying on the two paths of T to theleaves whose strips ontain the endpoints of the segment).Motion Planning Deember 9, 2002



Motion-Planning Queries for P in Q 13We onstrut two data strutures on Sv. The �rst struture answers line-intersetionqueries, i.e., queries that determine whether a query line intersets any of the segments inSv. We dualize eah segment e 2 Sv to a double wedge3 e�, onstrut the arrangement of theresulting double wedges, preproess the arrangement for planar point-loation queries, andmark eah fae of the arrangement that is ontained in at least one of the double wedges.The size of this data struture is O(jSvj2) and it an be onstruted in time O(jSvj2 log jSvj);see, e.g., [1℄. A line L intersets a segment of Sv if and only if the point L� dual to L liesin a marked fae. This an be determined in O(log jSvj) time.Next, we onstrut a two-level data struture on Sv. For eah segment e 2 Sv, we markone of its endpoints; let Av be the set of these points. We preproess Av into a halfplanerange-searhing data struture, using the algorithm by Chazelle et al. [16℄. Their algorithmhooses a parameter r (greater than a onstant spei�ed by their algorithm) and onstrutsa family of anonial subsets of Av so that there are O((jSvj=rj)2+Æ) anonial subsets ofsize between rj and rj+1, for any integer 1 � j � logr n; here Æ > 0 is an arbitrarily smallonstant. For a query line L, Av an be partitioned into O(logr n) anonial subsets sothat all points within eah anonial set lie on the same side of L. This partition an beomputed in O(log n) time. For eah anonial set, we onstrut the following seond-levelstruture. Let Av;i be the ith anonial subset, Sv;i � Sv the set of segments whose markedendpoints are in Av;i, and Vv;i the set of all endpoints of the segments in Sv;i. We willuse z = tan �=2 to denote the parametri representation of the orientation of P . For eahsegment e 2 Sv;i and for every vertex p 2 P , we de�ne two partially de�ned bivariatefuntions y = fe;p(x; z) and y = ge;p(x; z) as follows: For a given pair (x0; z0) let y0 be they-value so that, at the plaement Z0 = (x0; y0; z0), the vertex p of P (Z0) lies in the relativeinterior of e and P (Z0) lies below (resp. above) the line ontaining e. If y0 exists then it isunique, and we put y0 = fe;p(x0; z0) (resp. y0 = ge;p(x0; z0)); otherwise, fe;p(x0; z0) (resp.ge;p(x0; z0)) is unde�ned; see Figure 6(i) for an illustration to the de�nition of fe;p(�; �).Next, for eah endpoint � of a segment e in Sv;i and for every edge  of P , we de�ne twofuntions f�;(x; z) and g�;(x; z) as follows. For a given pair (x0; z0), let y0 be the y-valueso that at the plaement Z0 = (x0; y0; z0), the vertex � lies on  and both obstale edgesinident to � lie above (resp. below) the line supporting . If y0 exists then it is uniqueand we set y0 = f�;(x0; z0) (resp. y0 = g�;(x0; z0)); otherwise the respetive funtions areunde�ned. see Figure 6(ii) for an illustration to the de�nition of f�;(�; �). We ompute thelower envelope Fv;i offfe;p j e 2 Sv;i and p a vertex of Pg [ ff�; j � 2 Vv;i and  an edge of Pgand the upper envelope Gv;i offge;p j e 2 Sv;i and p a vertex of Pg [ fg�; j � 2 Vv;i and  an edge of Pg:3In the duality that we use, the dual of a point p(a; b) is the line p� : y = �ax+ b and the dual of a lineL : y = �x+ � is the point L�(�; �). The dual of a segment e = pq is the double wedge formed by the linesp� and q� that does not ontain the vertial line passing through the intersetion point of p� and q� (whihis the point dual to the line supporting e).Motion Planning Deember 9, 2002



Motion-Planning Queries for P in Q 14
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r 
Figure 6. (i) y0 = fe;p(x0; z0); fe;q(x0; z0), fe;r(x0; z0) are not de�ned. (ii) y1 = f�;(x1; z1);f�;(x1; z1) is not de�ned.These envelopes an be omputed and preproessed in O((mjSv;ij)2+Æ) time, for anyÆ > 0, for point loation, so that for any given pair (x0; z0), Fv;i(x0; z0) and Gv;i(x0; z0) anbe omputed in O(logmn) time [4℄. We store these envelopes as the seondary strutures ofthe ith anonial subset. Choosing r = nÆ and summing the omplexity of these envelopesover all anonial subsets, the total size of the two-level data struture onstruted on Svis O((mjSvj)2+Æ). Summing over all nodes of the segment tree, the overall size of the datastruture is O((mn)2+Æ), for slightly larger but still arbitrarily small Æ > 0. The total timespent in onstruting these strutures is O((mn)2+Æ).Answering a query. The query proedure determines whether Z0 is a free plaement.If the answer is \yes," then it also returns �(Z0; E), the plaement that lies on �C diretlyabove Z0 in the (+y)-diretion.Let Z0 = (x0; y0; z0) be a query plaement. We an determine in O(logm) time theleftmost and rightmost verties, ` and r, of P (Z0). We an test in O(logn) time whether `lies inside an obstale. If so, we an onlude that Z0 is not a free plaement. We an thusassume that ` lies in Q. We use the following simple lemma to answer the query.Lemma 3.1 Let Z0 be a plaement so that P (Z0) does not lie ompletely inside Q. IfP (Z0) intersets (resp. touhes) an obstale, then there exists a node v in the segment treeT so that at least one of ` and r lies in Wp(v) and (at least) one of the following twoonditions is satis�ed.(i) P (Z0) intersets (resp. touhes) a segment of Ev, or(ii) ` and r do not lie in Wv and P (Z0) intersets (resp. touhes) a segment of Sv.Motion Planning Deember 9, 2002



Motion-Planning Queries for P in Q 15Proof: Suppose P (Z0) intersets an obstale. Sine P (Z0) 6� Q, there must exist anobstale edge e that intersets �P (Z0). Let � be an intersetion point of e and �P (Z0), andlet u be the leaf of T whose strip Wu ontains �. Let w be the unique anestor of u so thate 2 Ew. If ` or r lies in Wp(w), then ondition (i) holds with v = w. Otherwise, let z be thelowest anestor of w suh that Wp(z) ontains one of ` or r. Sine z is a proper anestor ofw, we have e 2 Sz. Hene ondition (ii) holds in this ase with v = z. 2
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er e` r = r� e`̀ = `� � r� P (Zv) Sv;i
L

Wv(ii)Wv(i)
r

(iii)Figure 7. (i) e` 6= er at a node v 2 V1. (ii) P (Z0) does not interset any segment of Ev at a nodev 2 V1. (iii) P (Z0) does not interset any segment of Sv;i at a node v 2 V2.Let V1 = fv 2 T j ` 2 Wp(v) or r 2 Wp(v)g and V2 = fv 2 V1 j `; r 62 Wvg. The abovelemma suggests that, to test whether P (Z0) is free, it suÆes to searh Ev for all v 2 V1and Sv for all v 2 V2. Note that jV2j � jV1j = O(logn). For eah node v 2 V1, we testwhether P (Z0) intersets a segment of Ev. We �rst ompute the left and right endpoints, `�and r�, respetively, of the portion of the segment `r inside Wv. We determine in O(log n)time the segments e`; er of Ev lying immediately above ` and r, respetively. If e` 6= er,then `�r�, and therefore P (Z0), intersets an obstale edge and we stop (see Figure 7 (i)).Otherwise, `�r� does not interset any segment of Ev. We put e = e` = er and determinein O(logm) time a vertex � 2 P (Z0)\Wv on the top boundary of P (Z0)\Wv that touhesthe supporting line of P (Z0) \Wv parallel to e. If � lies above e, then P (Z0) intersetse and therefore Z0 is not a free plaement. Similarly we an determine in O(logm) timewhether P (Z0) intersets the segment of Ev lying immediately below `�r�. If P (Z0) doesnot interset these segments of Ev, it avoids all segments of Ev (lipped within Wv). Wean then determine in O(1) time the plaement Zv = (x0; y1; z0) so that the vertex � ofP (Zv) touhes e (see Figure 7(ii)); if there is no suh plaement, y1 is set to +1. It iseasily seen that Zv = �(Z0; Ev), provided P (Z0) does not interset any (lipped) segmentof Ev. Repeating this step for all nodes of V1, we an determine in O(logmn logn) timeMotion Planning Deember 9, 2002



Motion-Planning Queries for P in Q 16whether P (Z0) intersets any segment of Sv2V1 Ev; if it does not, then we also obtainZ1 = �(Z0;Sv2V1 Ev).Next, for eah node v 2 V2, we test whether P (Z0) intersets any segment of Sv. We�rst determine in O(log n) time whether the line L supporting the segment `r intersetsany segment of Sv, using the line-intersetion data struture. Sine L \Wv = `r \Wv �P (Z0)\Wv, we onlude that if L intersets Sv, then Z0 is not free, so we stop immediately.Otherwise, we query the halfplane range-searhing data struture with L. Let Sv;i be oneof the O(1) anonial subsets of the query output (see Figure 7(iii)).Lemma 3.2 Let Z0 be a plaement as above. If a anonial subset Sv;i lies above (resp.below) L, then P (Z0) intersets some (lipped) segment of Sv;i if and only Fv;i(x0; z0) < y0(resp. Gv;i(x0; z0) > y0).Proof: Suppose Sv;i lies above L. First assume that P (Z0) does not interset any segmentof Sv;i. Let e be a segment of Sv;i and p a vertex of P so that their x-projetions intersetat plaement Z0 of P . If P (Z0) does not interset Sv;i, then e lies above p at plaement Z0,i.e., fe;p(x0; z0) � y0. Similarly, if � is an endpoint of Sv;i and  an edge of P so that theirx-projetions interset at plaement Z0, then f�;(x0; z0) � y0. Hene, Fv;i(x0; z0) � y0.Next, assume that P (Z0) intersets a segment e of Sv;i. Then either one of the endpoints� of e lies inside P or a vertex p of P lies above e. In the former ase, f�;(x0; z0) < y0,where  is the edge of P lying vertially above �; while in the latter ase, fe;p(x0; z0) < y0.This ompletes the proof of the lemma. 2In view of the above lemma, we an determine in O(logmn) time whether P (Z0)intersets any segment of Sv;i. If P (Z0) does not interset any segment of Sv;i, then(x0; Fv;i(x0; z0); z0) = �(Z0; Sv;i). Repeating this proedure for all anonial sets of thequery output and for all nodes v 2 V2, we an determine in O(logmn logn) time whetherP (Z0) intersets any segment ofSv2V2 Sv. If it does not, we also obtain Z2 = �(Z0;Sv2V2 Sv).Now �(Z0; E) is the lowest of Z1 and Z2.The query time an be improved to O(logmn) by onstruting the segment tree witha larger fan-out, e.g., as desribed in [16℄, without inreasing the asymptoti size and pre-proessing time. Omitting the tehnial details of this improvement, we summarize theanalysis in the following theorem:Theorem 3.3 Given a parameter " > 0, a onvex polygon P with m edges, and a polygonalenvironment Q with a total of n edges, we an preproess P and Q in time O((mn)2+") intoa data struture of size O((mn)2+"), so that we an determine in O(logmn) time whethera given plaement Z0 is free. If Z0 is free, we an also ompute �(Z0; E) within the sametime bound, where E is the set of edges in Q.Motion Planning Deember 9, 2002



Motion-Planning Queries for P in Q 173.2 Reahability and motion-planning queriesReturning to the original motion-planning query problem, we show that the data struturegiven above and the algorithm desribed in Setion 2 an be used to answer reahabilityqueries eÆiently. The idea is to \retrat" C onto a one-dimensional network onneting theverties of C and redue the motion-planning problem to path planning in this network. Thisretration approah has been used extensively in the past for motion planning [11, 12, 13, 31℄.We preproess P and Q for free-plaement queries, using Theorem 3.3. Next, we om-pute all the onneted omponents of �C, using the algorithm desribed in Setion 2. Thealgorithm omputes A� for eah ontat surfae � = �e;v, and then glues them together.Atually, it omputes a re�nement �C� of �C so that eah two-dimensional fae of �C� isx-monotone, whih implies that there is a path along the edges of �C� between any pairof verties of the same onneted omponent of �C�. We preproess (the xy-projetion of)eah A� for eÆient planar point-loation queries.A natural hoie for onstruting the one-dimensional network is the 1-skeleton of �C�,but it is not suÆiently onneted to apture the onnetivity of C, beause the boundaryof a onneted omponent Ci of C need not be onneted. Let Ai be a onneted omponentof �Ci, and let �i = (xi; yi; zi) be a point on Ai with the maximum y-oordinate. We allAi an inner omponent of �Ci if �+i = (xi; yi + "; zi), for suÆiently small " > 0, lies in Ci.We will refer to �i as the apex of Ai. If Ai is an inner omponent, then we may assumethat a vertex p of P touhes a vertex of Q at �i, so �i is either a vertex of Ai or a point ofloally maximum y-oordinate on an edge of Ai. Furthermore, at P (�i) the referene pointo lies vertially above the ontat vertex p, i.e., the direted line segment po is parallel tothe y-axis and oriented upwards. Hene, there are only O(mn) apex plaements.
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Figure 8. An apex plaement.De�ne � 0i = �(�i; E), where E is the set of all obstale edges, and let Aj be the onnetedomponent of �C ontaining � 0i. Obviously Aj also belongs to �Ci. We an ompute � 0i inO(mn) time using a naive proedure. If �i is not a vertex of Ai, we add �i as a vertex ofAi and split at �i the edge of Ai ontaining �i. Similarly, we add � 0i as a vertex of Aj andMotion Planning Deember 9, 2002



Motion-Planning Queries for P in Q 18split at � 0i the edge, or the fae, ontaining � 0i. To split a fae f , we pass through � 0i an ar that lies on f and is parallel to the xz-plane, extend  in both diretions until it hits �f ,and split the edges of f hit by  at the hitting points. We also add the edge (�i; � 0i) to theresulting network. We repeat this proedure for all inner omponents of �C. The total timespent in this step is O(m2n2). This step onnets together all the boundary omponents ofeah onneted omponent of C. Let �C�� denote the resulting struture, and let G denotethe 1-skeleton of �C��. The following property of G is obvious.Lemma 3.4 If Z;Z 0 are two verties of the same onneted omponent of C, then Z andZ 0 belong to the same onneted omponent of G.We perform a depth-�rst searh on G and identify and label all verties that lie in thesame onneted omponent of G, so that we an determine in O(1) time whether two givenverties of G belong to the same onneted omponent. Finally, we onstrut a spanningforest T of G, so that for any two verties �; � 0 lying in the same onneted omponent ofG, we an return the path from � to � 0 in T in time proportional to its length.We now answer a reahability or a motion-planning query as follows. Let I = (xI ; yI ; zI)and F = (xF ; yF ; zF ) be two given plaements. Using the free-plaement data struture,we �rst determine whether both I and F are free. If so, we also ompute I 0 = �(I; E) andF 0 = �(F;E), and the ontat surfaes �I and �F ontaining I 0 and F 0, respetively. Byloating I 0 in A�I , we an determine in O(logmn) time the edge eI that lies immediatelyabove I 0 in the (+x)-diretion. Let I 00 be the point on the edge eI whose y-oordinate isyI0 , let I be the ar from I 0 to I 00 lying in A�I and parallel to the xz-plane, and let vIbe an endpoint of eI . Similarly, we ompute eF ; F 00; F , and vF for the �nal plaement F .Using Lemma 3.4, we an determine in O(1) time whether vI and vF belong to the sameonneted omponent of �C.If vI and vF belong to the same omponent, we an also ompute a path from I to F .Let �I be the path omposed of the y-vertial segment II 0, the ar I , and the portion ofeI from I 00 to vI . De�ne �F in an analogous manner. Finally, let � be the path in G fromvI to vF . Then the path obtained by onatenating �I , �, and �F is a path in C from I toF . Hene, we obtain the following theorem.Theorem 3.5 Given a parameter " > 0, a onvex polygon P with m edges, and a polygonalenvironment Q with a total of n edges, we an preproess, in additional O((mn)2+") time,the (already omputed) spae C of all free ongruent plaements of P inside Q into a datastruture of size O((mn)2+") so that, for any two query free plaements I and F of P , wean determine, in O(logmn) time, whether there exists a ollision-free motion of P from Ito F . If there exists one, we an return suh a path in time proportional to its omplexity,whih is at most O(mn�6(mn)).Motion Planning Deember 9, 2002



Finding the Largest Plaement of P inside Q 194 Finding the Largest Plaement of P inside QAs mentioned in the introdution, we use the parametri-searhing tehnique of Megiddo([29℄; see also [5, 7℄) to ompute a largest free similar plaement of P inside Q. Theparametri-searhing paradigm requires an \orale" proedure to determine, for a givensaling fator s > 0 of P , whether Cs, the free on�guration spae orresponding to sPmoving within Q, is nonempty. Using Theorem 2.1, we an obtain an orale that per-forms this task in expeted time O(mn�6(mn) logmn logn). An eÆient implementationof the parametri searh, however, also requires a parallel implementation of the orale, inValiant's omparison model [39℄. Fortunately, the algorithm provided by Theorem 2.1 iseasy to parallelize, beause all reursive subproblems at the same depth an be performedin parallel. In fat, the only part of this algorithm that does not parallelize in a straight-forward manner is the sweep-line proedure used in the merge step, beause the standardimplementation of line-sweeping is inherently sequential. We therefore perform the mergestep in the parallel version using a di�erent approah, based on segment trees, suh as theone used in [7, Setion 5℄. As argued in [7℄, the merge step requires O(logmn) time usingO(mn�6(mn) logmn) proessors, under Valiant's model of omputation.Omitting all further details, we onlude that one an ompute C in O(logmn logn)parallel steps, using O(mn�6(mn) logmn) expeted number of proessors, in Valiant's om-parison model. Megiddo [29℄ showed that if the sequential algorithm for the orale runs intime Ts and the parallel algorithm runs in time Tp using � proessors, then the parametrisearhing takes O(Tp�+TsTp log�) time, provided that all the ontrol-ow deisions madeby the parallel version an be expressed as sign tests of onstant-degree polynomials inthe parameter whose ritial value is being sought (the saling fator s, in our ase), orare independent of this parameter. Sine this is the ase for our algorithm, we obtain thefollowing result.Theorem 4.1 Given a onvex polygon P with m edges and a polygonal environment Q witha total of n edges, we an ompute a largest free plaement of P inside Q in randomizedexpeted time O(mn�6(mn) log3mn log2 n).5 Conluding RemarksIn this paper we studied the motion-planning problem for a onvexm-gon P inside a polygo-nal environmentQ with a total of n verties. We presented an eÆient algorithm for omput-ing the entire free on�guration spae, whose time omplexity is O(mn�6(mn) logmn logn),whih is near optimal in the worst ase. We applied the algorithm to solve the followingtwo problems:(a) answering free-plaement and motion-planning queries for P inside Q,Motion Planning Deember 9, 2002
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