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ha SharirxDe
ember 9, 2002Abstra
tWe study the motion-planning problem for a 
onvex m-gon P in a planar polygonalenvironment Q bounded by n edges. We give the �rst algorithm that 
onstru
ts theentire free 
on�guration spa
e (the 3-dimensional spa
e of all free pla
ements of P inQ) in time that is near-quadrati
 in mn, whi
h is nearly optimal in the worst 
ase.The algorithm is also 
on
eptually simple. Previous solutions were in
omplete, moreexpensive, or produ
ed only part of the free 
on�guration spa
e. Combining our solutionwith parametri
 sear
hing, we obtain an algorithm that �nds the largest pla
ement ofP in Q in time that is also near-quadrati
 in mn. In addition, we des
ribe an algorithmthat prepro
esses the 
omputed free 
on�guration spa
e so that rea
hability queries 
anbe answered in polylogarithmi
 time.
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Introdu
tion 11 Introdu
tionProblem statement. Let P be a 
losed 
onvex m-gon. We 
onsider the problem ofplanning a 
ollision-free motion for P inside a 
losed planar polygonal environment Q,bounded by a total of n edges. We allow P to translate and rotate. A (
ongruent) pla
ementof P is thus any 
ongruent 
opy of P (without re
e
tions). A pla
ement of P is free if itis fully 
ontained in Q, and semifree if it is free and the boundary �Q of Q tou
hes theboundary �P of P . Any pla
ement of P 
an be represented by three real parameters(x; y; �), where (x; y) 2 R2 is the position of a referen
e point of P and � 2 [��; �℄ is the
ounter-
lo
kwise angle by whi
h P is rotated from some �xed orientation. The spa
e of allpla
ements of P , known as 
on�guration spa
e, is thus identi�ed with R2 �S, where S is theunit 
ir
le. The free 
on�guration spa
e C of P in Q is the spa
e of all free pla
ements ofP in Q, and the boundary �C 
orresponds to the set of all semifree pla
ements. Note thatC is a 
losed set. If s
aling of P is also permitted, the 
on�guration spa
e 
an be identi�edwith R3 � S.
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Figure 1. Motion planning for a 
onvex polygon inside a polygonal environmentWe 
onsider two types of problems in this 
ontext:Motion Planning: Constru
t C, the spa
e of all free 
ongruent pla
ements of P . Prepro
essC so that one 
an determine eÆ
iently whether two given pla
ements I; F of P liein the same 
onne
ted 
omponent of C; that is, whether there exists a 
ollision-freemotion of P inside Q from one of these pla
ements to the other. If so, then also returna path from I to F that lies within C. See Figure 1.Largest Pla
ement: Allowing s
aling, �nd a largest similar 
opy of P that �ts inside Q.Previous results. Both problems are 
entral problems in roboti
s and manufa
turing,and have been studied intensively in 
omputational geometry, during the past two de
ades.Some of the initial results on this problem 
an be found in [14, 26, 34, 38℄; these algorithmsare either ineÆ
ient or 
onsider only spe
ial 
ases (e.g., where P is assumed to be a linesegment). See re
ent surveys for summary of known results in motion planning [23, 35℄. The�rst signi�
ant progress was made by Leven and Sharir [27℄, who analyzed the 
ombinatorialMotion Planning De
ember 9, 2002



Introdu
tion 2
omplexity of C when no s
aling is allowed, whi
h 
an be measured by the number of free
riti
al pla
ements of P . A pla
ement Z of P is 
alled 
riti
al if there exist three distin
tpairs (e1; v1), (e2; v2), and (e3; v3), so that for ea
h i = 1; 2; 3, either ei is an obsta
leedge and vi is a vertex of P or ei is an edge of P and vi is an obsta
le vertex, and sothat the vertex vi tou
hes the edge ei at pla
ement Z. Leven and Sharir showed that thisquantity and thus the 
omplexity of C are both O(mn�6(mn)). Here �s(q) is the maximumlength of (q; s)-Davenport-S
hinzel sequen
es [36℄, whi
h is nearly linear in q for any �xeds. They also showed that the 
omplexity of C is 
(m2n2) in the worst 
ase. Thus the
omplexity of C is near-quadrati
 in mn. The goal then was to 
ompute C in time thatis also near-quadrati
 in mn. The �rst result in this dire
tion was obtained by Kedemand Sharir [24℄, where an O(mn�6(mn) logmn)-time algorithm was proposed. However,this algorithm turned out to have a te
hni
al diÆ
ulty. The algorithm 
onstru
ts C in twostages. The �rst stage 
omputes a superset of all the verti
es of C, where ea
h su
h vertex isa free 
riti
al pla
ement of P in Q, as de�ned above, and then aims to �lter out the spuriousverti
es (non-free pla
ements). The �ltering pro
ess is rather 
ompli
ated, and some of the
ases are not handled 
orre
tly [24℄.Two subsequent papers aimed to �x Kedem and Sharir's algorithm. The �rst solution,given by Sharir and Toledo [37℄, pro
esses Q into several range-sear
hing data stru
tures,and then it queries these stru
tures with ea
h pla
ement of P produ
ed by the algorithmof Kedem and Sharir [24℄ to dis
ard non-free pla
ements. The overall running time of theiralgorithm is 
lose to O(m3n2). This is signi�
antly more expensive for large values of m,whi
h is what we assume here. The se
ond solution, proposed by Kedem et al. [25℄, 
orre
tly
omputes the 
onne
ted 
omponents of C that 
ontain I and F , but does not always 
omputethe entire free spa
e. The time 
omplexity of their algorithm is O(mn�6(mn) logmn). Forother solutions to the problem, whi
h are less eÆ
ient but also apply to the 
ase when P isnon
onvex, see [10℄. These results leave the open problem of whether the entire free spa
e
an be 
omputed in time that is near quadrati
 in mn.The 
ase in whi
h s
aling is allowed and we seek the largest pla
ement of P inside Q hasbeen studied in [14, 17, 37℄. Chazelle gave an O(m3n3(m + n) log(m + n))-time algorithmto 
ompute the largest pla
ement of P inside Q. Using generalized Delaunay triangulationsindu
ed by P in Q, Chew and Kedem [17℄ gave an O(m4n2�(n) log n)-time algorithm for
omputing a largest free similar pla
ement of P in Q; here �(n) is the inverse A
kermann'sfun
tion. A variant of this algorithm also solves the motion-planning problem for P in Q,with the additional advantage of �nding a \high-
learan
e" motion, where P aims to stayas far away from the boundary of Q as possible; see [17℄ for a more pre
ise de�nition of high
learan
e. Sharir and Toledo [37℄ proposed another algorithm that 
ombines parametri
sear
hing [29℄ with a 
onstru
tion of the entire 
on�guration spa
e for the �xed-size 
ase, asin the pre
eding paragraph; the running time of their algorithm is 
lose to O(m3n2). If onlytranslation and s
aling are allowed, the largest homotheti
 pla
ement of P inside Q 
an be
omputed in time O(mn logn), using the generalized Voronoi diagram of �Q indu
ed by P[22, 28℄.Motion Planning De
ember 9, 2002



Constru
ting the Free Configuration Spa
e 3In [2℄, a mu
h simpler situation is dis
ussed where Q is also a 
onvex polygon. Theresulting problems are still 
hallenging and have an interesting geometri
 stru
ture. It isshown there that a largest s
aled 
opy of P that 
an �t inside Q 
an be 
omputed inO(mn2 log n) time. The maximum 
ombinatorial 
omplexity of the four-dimensional spa
eC0 of all similar pla
ements of P inside Q is proven to be �(mn2). It is shown that C0 
anbe 
omputed in O(mn2 log n) time. It is interesting that no better bounds are known forthe spa
e of all 
ongruent pla
ements.New results and methods. We present a randomized divide-and-
onquer algorithm for
omputing C, whose expe
ted running time is O(mn�6(mn) logmn logn). The merge stepof the algorithm is based on a line-sweep algorithm. Our te
hnique is quite general and 
anbe applied to other problems, as dis
ussed in a remark at the end of Se
tion 2.3. This isthe �rst 
orre
t solution for 
omputing all of C whose running time is near quadrati
 inmn.Our algorithm is rather simple, at least 
on
eptually. It has the advantage that it is easy toparallelize, whi
h is needed in our solution to the largest-pla
ement problem, see Se
tion 4.Even for the task of 
omputing only a portion of C, our algorithms are simpler than the onesin [25, 37℄. In addition, we 
an prepro
ess C in O((mn)2+")) time so that we 
an eÆ
ientlyanswer rea
hability queries: for any two pla
ements of P , we 
an determine in O(logmn)time whether there is a 
ollision-free motion from one to the other (i.e., whether they liein the same 
onne
ted 
omponent of C). A variant of the algorithm 
an also produ
e apath 
onne
ting the two pla
ements, in additional time proportional to the 
ombinatorial
omplexity of the path. No 
laims of optimality of the resulting path are made.Using an approa
h based on parametri
 sear
hing, similar to that of [37℄, we 
an �nd thelargest similar pla
ement of P inQ, in randomized expe
ted timeO(mn�6(mn) log3mn log2 n),thus improving signi�
antly over the previous bounds in [17, 37℄. Parametri
 sear
hing re-quires an \ora
le" pro
edure that has to determine, for a given size of P , whether the
orresponding C is nonempty, whi
h we 
an do using our algorithm for 
omputing the en-tire C. Noti
e that we 
an neither use the algorithm by Kedem et al. [25℄ here nor the oneby Kedem and Sharir [24℄, sin
e the former may miss some of the 
omponents of C and thelatter may produ
e pla
ements that are not free.The paper is organized as follows. Se
tion 2 des
ribes the randomized algorithm for
omputing the free 
on�guration spa
e. Se
tion 3 presents the data stru
tures for answeringrea
hability queries, and Se
tion 4 des
ribes the algorithm for 
omputing a largest 
opy ofP that 
an be pla
ed inside Q.2 Constru
ting the Free Con�guration Spa
eConsider a 
onvex m-gon P translating and rotating rigidly in a general polygonal environ-ment Q bounded by n edges, without s
aling. Re
all that a pla
ement of P 
an be parame-terized by (x; y; �), where (x; y) 2 R2 is the position of a referen
e point of P and � 2 [��; �℄is the 
ounter-
lo
kwise angle by whi
h P is rotated from some �xed referen
e orientation.Motion Planning De
ember 9, 2002



Constru
ting the Free Configuration Spa
e 4For the sake of 
onvenien
e, we will represent a pla
ement of P by (x; y; tan(�=2)), so thatthe set of all pla
ements is R3 . Note that, under this representation, spe
ial treatment isrequired for � = �� be
ause, for any (x; y) 2 R2 , (x; y;��) and (x; y;+�) represent thesame physi
al pla
ement of P . In brief, even though at these points tan �2 ! �1, werepresent them expli
itly. At the end of our 
onstru
tion we identify the two 
ross se
tions� = ��, � = +�, and glue them together. This is ne
essary to preserve 
onne
tivity alongpaths that 
ross the surfa
e � = ��.We assume that P and Q are in general position. In our 
ontext, this means that no twoobsta
le verti
es have the same x-
oordinate and there is no pla
ement of P at whi
h four\independent" 
onstraints imposed on P by its possible 
onta
ts with Q are simultaneouslysatis�ed. Ea
h 
onstraint 
orresponds to a set of pla
ements of P at whi
h a vertex of Ptou
hes an edge of Q, an edge of P tou
hes a vertex of Q, or the segment 
onne
ting twopoints of 
onta
t (between P and Q) is normal to the edge of P or Q involved in one of these
onta
ts. See Leven and Sharir [27℄ for details. Figure 2 illustrates several degenera
ies (i.e.,pla
ements not in general position).
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Figure 2. Typi
al degenera
ies.We triangulate Q
, the 
omplement of Q, using Steiner points if ne
essary, so that thedegree of ea
h vertex in the triangulation is bounded by a 
onstant; su
h a triangulation 
anbe 
onstru
ted, e.g., by 
omputing the verti
al de
omposition of Q
 and by triangulatingea
h trapezoid of the verti
al de
omposition. >From now on we assume, for te
hni
alreasons, that Q
 is the union of n pairwise disjoint open triangular obsta
les, some of whi
hmay be unbounded. Note that the new n is larger than the original n by only a 
onstantfa
tor. Also observe that repla
ing general polygonal obsta
les with disjoint open trianglesadds zero-width \passages" to Q. However, it does not a�e
t the free 
on�guration spa
eC in any signi�
ant way, as long as P has non-empty interior.We will use P (Z) to denote P at a pla
ement Z. We de�ne a 
onta
t to be a triple(e; v;�), where e is an edge of the obsta
le � and v is a vertex of P , or e is an edge of Pand v is a vertex of �.1 In the former 
ase, there is a unique 
onta
t triple 
orresponding1Unlike Leven and Sharir [27℄, we in
lude � in the de�nition of a 
onta
t be
ause a vertex may be sharedby several triangular obsta
les, and we prefer to regard (e; v;�1) and (e; v;�2), where v is a 
ommon vertexof �1 and �2, as two di�erent 
onta
ts (espe
ially while analyzing the running time of the algorithm), eventhough, geometri
ally, they 
orrespond to the same 
onta
t.Motion Planning De
ember 9, 2002



Constru
ting the Free Configuration Spa
e 5to a physi
al 
onta
t of v and e, and in the latter 
ase, sin
e ea
h vertex of Q is in
identto O(1) triangular obsta
les, there are only O(1) 
onta
t triples 
orresponding to su
h aphysi
al 
onta
t. The total number of 
onta
ts is therefore O(mn). If � is not importantor is obvious from the 
ontext, we will omit �. A pla
ement Z of P involves a 
onta
t(e; v;�) if the vertex v lies on the edge e; Z is 
alled lo
ally free if P (Z) does not interse
t�. We present a randomized algorithm for 
omputing the boundary �C of the free 
on�g-uration spa
e C. More pre
isely, we 
ompute ea
h 
onne
ted 
omponent of �C, de
omposeit into xy-monotone pat
hes, and represent ea
h pat
h as a planar map, using any stan-dard representation (see, e.g., [32, 38℄). The expe
ted running time of the algorithm isO(mn�6(mn) logmn logn) and is thus 
lose to the the worst-
ase 
omplexity bound for C.As usual for this type of algorithms, the expe
tation is over the random 
hoi
es made bythe algorithm, for any �xed input, and not over any assumed distribution of the input data.2.1 Overall approa
hOur algorithm is based on the following approa
h. For ea
h (open) triangular obsta
le �, letK(�) denote the set of forbidden pla
ements of P at whi
h it interse
ts �. These are opensets, and C is the 
omplement of their union, so it suÆ
es to 
ompute the boundary of theunionK = S�K(�). For ea
h obsta
le �0, we 
ompute the fa
es of �K that lie in �K(�0),and then pat
h these fa
es together to 
onstru
t �K. This leads to the following simplehigh-level des
ription of our algorithm: Fix an obsta
le �0, and 
ompute the interse
tionsA(�) = K(�)\�K(�0), for every obsta
le � 6= �0. Constru
t the 2-dimensional union ofthe sets A(�), and form its 
omplement within �K(�0). This 
omplement is exa
tly theportion of �K that is 
ontained in �K(�0). After applying this pro
edure to all obsta
les�0, we have 
omputed all the two-dimensional fa
es of �C and the edges and verti
esin
ident to them. Thus for ea
h fa
e f of �C, we have the list of all fa
es adja
ent to f . We
an glue together these fa
es, by performing a depth �rst sear
h on the graph dual to �C,to obtain an appropriate dis
rete representation of the entire boundary of K, and thus alsoof �C. We omit the details 
on
erning the gluing pro
ess, sin
e they are straightforwardand have been des
ribed earlier, see e.g. [21, 38℄. Note that this approa
h does not identifywhi
h 
onne
ted 
omponent of C is adja
ent to ea
h fa
e of C. We will show in Se
tion 3.2that we 
an 
ompute this information in an additional O(mn�6(mn) logmn) time.We now des
ribe in detail how to 
ompute �K(�0). Note that �K(�0) 
onsists ofall (free or non-free) pla
ements of P at whi
h its boundary makes a lo
ally free 
onta
twith ��0. We partition �K(�0) into O(m) pat
hes so that the same lo
ally free 
onta
t(e; v;�0) is made for all pla
ements of P within ea
h pat
h. The boundary of ea
h pat
h
orresponds to pla
ements at whi
h P makes simultaneously two (lo
ally free) 
onta
ts with�0; here we regard a vertex of P tou
hing a vertex of �0 or an edge of P overlapping anedge of �0 as \double" 
onta
ts. If a pat
h is not xy-monotone, we further partition itinto a 
onstant number of xy-monotone pat
hes. This allows us to use the (x; y)-
oordinateMotion Planning De
ember 9, 2002



Constru
ting the Free Configuration Spa
e 6system when manipulating obje
ts 
ontained in a pat
h. Su
h a partition is easy to obtainin O(m) time. We refer to the resulting pat
hes as 
onta
t surfa
es. It is easily 
he
kedthat a 
onta
t surfa
e has 
onstant des
ription 
omplexity, in the sense that ea
h pat
his a portion of an algebrai
 surfa
e of bounded degree and its boundary 
onsists of O(1)algebrai
 ar
s of bounded degree.Repeating the pro
ess for every 
hoi
e of �0, we obtain a 
olle
tion of O(mn) 2-dimensional 
onta
t surfa
es. For ea
h su
h surfa
e � � �K(�0), we 
ompute the in-terse
tions �� = � \K(�), for all obsta
les � 6= �0, and 
onstru
t A� = � n (S� 6=�0 ��),the 
omplement of their union within �.2 If � represents 
onta
ts of an edge e and a vertexv then A� 
orresponds to pla
ements at whi
h v is in 
onta
t with e and P does not inter-se
t the interior of any obsta
le. (As noted earlier, this holds independently of the triangle�0 
ontaining e or v. Hen
e, for 
onvenien
e, we will denote the above 
onta
t surfa
esimply as �e;v, with the 
orresponding triangle �0 being impli
it in this notation.) Gluingthese 
omplements together will give us �K, as above. We refer to the sets �� as virtual�-obsta
les.
���
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���
���

���
���
���
���

��������

�
P v eFigure 3. �� may 
onsist of 
(m) 
onne
ted 
omponents. P is a se
tor of a regular polygon 
enteredat v; � is pla
ed at a distan
e from e whi
h is between the radii of the ins
ribed and 
ir
ums
ribed
ir
les of the polygon, and e is relatively short, so that P 
annot be slid along e and then rotatedso that a di�erent edge is fa
ing up, without overlapping �.2If two obsta
les �1;�2 share a vertex v, then for an edge e 2 P , we have two 
onta
ts (e; v;�1) and(e; v;�2). Let �1 � �K(�1) and �2 � �K(�2) denote the 
orresponding 
onta
t surfa
es, and let � denotethe set of all pla
ements at whi
h the edge e of P tou
hes the vertex v. Then �1; �2 � �. Although the two
onta
t surfa
es may not be identi
al, it is easily seen that A�1 = A�2 , so it suÆ
es to 
ompute only one ofthem. If two obsta
les �1, �2 share an edge e and v is a vertex of P , �1 and �2 lie on opposite sides of e,so there are no lo
ally free pla
ements that realize 
onta
ts (e; v;�1) and (e; v;�2), so there is no need topro
ess the 
orresponding 
onta
t surfa
e.Motion Planning De
ember 9, 2002



Constru
ting the Free Configuration Spa
e 7Let � = �e;v be a �xed 
onta
t surfa
e. We 
an parameterize � by (�; tan �2), where �measures the displa
ement along e of its 
onta
t with v and � is the orientation of P . Foran obsta
le �, 
onstru
ting �� is easy: Note that, for any �xed �, the lo
us of pla
ements
ontained in �� with orientation � is a line segment. (Indeed, the only motion available forP in this set is translation parallel to e; the set of su
h translations at whi
h the two 
onvexpolygons P and � interse
t is a line segment.) The 
ombinatorial nature of an endpointof this segment (i.e., the pair of features whose 
onta
t de�nes the endpoint) 
hanges atonly those orientations at whi
h either (a) the line parallel to e through some vertex of Ppasses through some vertex of �, or (b) an edge of P be
omes parallel to an edge of �.There are O(m) su
h orientations and there are only O(1) 
hanges in the stru
ture at ea
hsu
h orientation, so ��� 
onsists of O(m) ar
s. As shown in [34℄, ea
h su
h ar
 is a se
tionof an algebrai
 
urve of degree at most 4. �� 
an easily be 
omputed in O(m logm) timeby sorting and pro
essing these orientations in in
reasing order. The total time needed toprodu
e the sets ��, over all �, is thus O(n) � O(m logm) = O(mn logm). The abovearguments imply that ea
h �� is �-monotone (in the 
oordinate frame representing �).However, �� need not be 
onne
ted. Indeed, it 
an have as many as 
(m) 
omponents inthe worst 
ase; see Figure 3.2.2 Computing A�We �x a triangular obsta
le �0 and 
ompute A� = � n (S� 6=�0 ��) using a random-ized divide-and-
onquer approa
h. We randomly divide the set of virtual �-obsta
les intotwo equal subsets (so that every su
h partition o

urs with equal probability), re
ursively
ompute the 
omplements of their two unions in �, denoted by A1; A2, and 
omputeA� = A1 \ A2 using a standard sweep-line pro
edure. Sin
e the boundaries of obsta
lesare not disjoint, the edges of A1 and A2 may overlap, so extra (albeit standard) 
are needsto be taken to handle degenera
ies while 
omputing A1 \ A2 by a sweep-line algorithm.We assume, as is standard, an appropriate model of 
omputation, in whi
h various basi
operations on the ar
s forming the boundaries of the virtual obsta
les (su
h as interse
tinga pair of su
h ar
s) 
an be performed in O(1) time. If an edge of A1 
rosses an edge of A2,then their 
rossing point is a vertex of A1 \ A2; and if an edge of A1 overlaps an edge ofA2, then the endpoints of their overlap are verti
es of A1 or A2, so the total time spent inthe divide and merge steps is O((jA�j+ jA1j+ jA2j) logmn), where jA�j, jA1j, and jA2j arethe numbers of verti
es of these respe
tive sets. Let �� denote the total number of verti
esin all the intermediate unions of all re
ursive subproblems produ
ed by the algorithm. (Ifa vertex appears in k intermediate unions, then we 
ount it k times.) The total time to
ompute A�, for a �xed �, in
luding the time spent in 
omputing the virtual �-obsta
les,is O((mn+ ��) logmn).Applying this pro
edure to ea
h of the O(mn) 
onta
t surfa
es independently and glu-ing the results together, we 
onstru
t �K in time O((m2n2 +P� ��) logmn), where thesummation is taken over all 
onta
t surfa
es. We will prove in Se
tion 2.3 that the expe
tedMotion Planning De
ember 9, 2002
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ting the Free Configuration Spa
e 8value ofP� �� is O(mn�6(mn) log n), whi
h implies that the expe
ted running time of theoverall algorithm is O(mn�6(mn) logmn logn). Hen
e, we 
an 
on
lude:Theorem 2.1 Given a 
onvex polygon P with m edges and a polygonal environment Qwith a total of n edges, we 
an 
ompute the boundary of the entire free 
on�guration spa
eC by a randomized algorithm in expe
ted time O(mn�6(mn) logmn logn).2.3 Bounding the expe
ted value of P� ��In this se
tion, we prove that the expe
ted value of P� �� if O(mn�6(mn) logn). Forsimpli
ity, assume that n, the total number of triangular obsta
les, is of the form 2h+1 forsome integer h. Any vertex � that 
an appear on an intermediate union U produ
ed by thealgorithm, while 
omputing A� for some 
onta
t surfa
e � = �e;v, is either an endpoint ofan edge of a virtual �-obsta
le or an interse
tion of the boundaries of some pair of virtual�-obsta
les. There are a total of O(m2n2) verti
es of individual virtual �-obsta
les, andea
h of them may be 
ounted O(log n) times in P� �� (on
e at ea
h level of re
ursion).Therefore it suÆ
es to bound the number of interse
tion points between the boundaries ofvirtual obsta
les. Let � be su
h an interse
tion point. Suppose � is a portion of �K(�0) forsome obsta
le �0. Then � represents a pla
ement of P at whi
h the following 
onditionshold:(a) P makes three simultaneous 
onta
ts with the obsta
le boundaries, one of whi
h isthe 
onta
t (e; v;�0) de�ning � and no two 
onta
ts involve the same edge-vertexpair;(b) P is disjoint from the union of all the obsta
les � whose 
orresponding virtual �-obsta
les parti
ipate in U and there is no other pla
ement in a suÆ
iently smallneighborhood of � that satis�es the same three 
onta
ts; and(
) P is disjoint from �0.Conditions (b) and (
) imply that P is openly disjoint from the three obsta
les involved inthe three 
onta
ts that P makes.A triple-
onta
t vertex � is a quadruple (Z;C1; C2; C3), where Z is a (not ne
essarilyfree) pla
ement of P at whi
h �P makes three simultaneous (vertex-edge or edge-vertex)
onta
ts C1; C2, and C3, ea
h involving a distin
t edge-vertex pair, and P is lo
ally free inthe sense that it does not interse
t the obsta
les 
orresponding to the three 
onta
ts andthat no Z 0 in a suÆ
iently small neighborhood of Z satis�es the same property. Sin
e thedegree of ea
h vertex of Q is bounded by a 
onstant, ea
h pla
ement Z gives rise to O(1)triple-
onta
t verti
es. If the a
tual 
onta
ts are not important, we will not distinguishbetween � and the 
orresponding pla
ement Z of P . We say that a triple-
onta
t vertex� has level k (with respe
t to the full 
olle
tion of obsta
les) if removal of some k otherMotion Planning De
ember 9, 2002
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Figure 4. A triple-
onta
t vertex.obsta
les (not 
ontaining the at most three that parti
ipate in the triple 
onta
t) 
auses �to be
ome a free pla
ement, relative to the remaining obsta
les, and no set of fewer than kobsta
les has this property. Note that level-0 verti
es are exa
tly the triple-
onta
t verti
esof C.If two 
onta
ts in a triple-
onta
t vertex are formed by the same obsta
le �i, thenan edge of P must overlap an edge of �i at the 
orresponding pla
ement, or a vertex ofP must 
oin
ide with a vertex of �i. It is easily 
he
ked that the total number of su
hpla
ements, regardless of their level, is O(m2n2) and that ea
h of them is 
ounted O(log n)times inP� ��. In what follows we will therefore 
onsider only those triple-
onta
t verti
esat whi
h ea
h of the three 
onta
ts is made by a di�erent obsta
le.Let Fk denote the number of level-k (triple-
onta
t) verti
es for the given P and Q. Fora level-k vertex �, let pk denote the expe
ted number of re
ursive subproblems of any sizethat 
ontain � in their output (we will momentarily prove an upper bound on pk that doesindeed depend only on k and not on the 
hoi
e of �). Then the expe
ted value of P� �� iseasily seen to be E "X� ��# = n�3Xk=0Fkpk:We �rst obtain a bound on pk. Fix a triple-
onta
t vertex � that appears on theboundary of free 
on�guration spa
e with respe
t to the three obsta
les de�ning the triple
onta
t. Suppose � is a vertex at level k, with respe
t to the full set of obsta
les. Note that,throughout its exe
ution, the algorithm en
ounters sets of virtual obsta
les of 
ardinality 2i,for i = 0; : : : ; h. Fix one su
h i. We bound the probability that � o

urs during the exe
utionof the algorithm, for any 
onta
t surfa
e, while pro
essing subproblems involving r = 2iobsta
les. The previous dis
ussion implies that � lies at the interse
tion of three 
onta
tsurfa
es. Fix one of these 
onta
t surfa
es �. Then � appears in some �xed subprobleminvolving r obsta
les in the 
onstru
tion 
arried out within � if and only if these r obsta
lesin
lude the other two obsta
les de�ning � and do not in
lude any of the k obsta
les that\
over" �. Sin
e every set of r obsta
les not 
ontaining the obsta
le indu
ing � has theMotion Planning De
ember 9, 2002
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e 10same probability of being the set of input obsta
les to our �xed subproblem, the probabilityof � appearing in the output of the subproblem is (n�3�kr�2 )(n�1r ) . (Re
all that we ignore verti
esthat are determined by fewer than three obsta
les; these verti
es appear as verti
es of somevirtual �-obsta
le, so we already have a bound on their number, as above.) Thus theexpe
ted 
ontribution of a level-k vertex � to the output size of all subproblems during arun of the algorithm is pk � hXi=0 3 � 2h�i �n�3�k2i�2 ��n�12i � :Here we used the fa
t that � may appear in the 
onstru
tion in ea
h of the three di�erent
onta
t surfa
es that de�ne �, and that, in any �xed re
ursive 
onstru
tion within �, thereare 2h�i subproblems involving 2i obsta
les ea
h. Hen
e,E "X� ��# � n�3Xk=0 Fk hXi=0 3 � 2h�i �n�3�k2i�2 ��n�12i � != hXi=0 3 � 2h�i n�3Xk=0 �n�3�k2i�2 ��n�12i � Fk : (1)To bound this sum, we let G(r) denote the expe
ted number of level-0 verti
es for Pin an environment obtained by pi
king a random sample of r of the n triangular obsta
les,where any subset of r obsta
les is 
hosen with equal probability. We express G(r) in terms ofF1; F2; : : : ; Fn�3. What is the probability that a level-k vertex � de�ned by three 
onta
ts,as above, is 
ounted in G(r)? In other words, what is the probability that it 
orresponds toa vertex of the free 
on�guration spa
e, in the environment de�ned by r randomly sele
tedobsta
les? It is de�ned by three obsta
les and \
overed" by k other obsta
les, so, arguing asbefore, the probability is (n�3�kr�3 )(nr) . Thus, the expe
ted number of free triple-
onta
t verti
esarising in the r-sample is G(r) = n�3Xk=0 �n�3�kr�3 ��nr� Fk:Putting r = 2i + 1, we obtainG(2i + 1) = n�3Xk=0 �n�3�k2i�2 �� n2i+1� Fk = 2i + 1n n�3Xk=0 �n�3�k2i�2 ��n�12i � Fk : (2)Substituting (2) into (1), we obtainE "X� ��# � hXi=0 3 � 2h�i n2i + 1G(2i + 1)= O(n2) � hXi=0 G(2i + 1)2i(2i + 1) :Motion Planning De
ember 9, 2002



Motion-Planning Queries for P in Q 11Re
all that ea
h pla
ement of P gives rise to O(1) triple-
onta
t verti
es, so G(2i + 1)is proportional to the 
ombinatorial 
omplexity of the free 
on�guration spa
e C for Pmoving amidst 2i+1 obsta
les, whi
h, as noted above, is known to be O(2im�6(2im)) [27℄.Therefore E "X� ��# = O(n2) � hXi=0 2im�6(2im)2i(2i + 1) = O(mn�6(mn) log n);as 
laimed.Remark: As mentioned in the introdu
tion, our approa
h is quite general and 
an beextended to 
ompute the union of a family of three-dimensional regions in many other 
ases.For example, let P = fP1; : : : ; Pkg be a 
olle
tion of k 
onvex polyhedra in R3 with a total ofn fa
es. We 
an use the same algorithm to 
ompute the boundary ofSP as follows. For ea
hfa
e � of a polyhedron Pi 2 P, we �rst 
ompute the set Q� = f� \Pj j 1 � j 6= i � kg, andthen 
ompute �nSQ� using the randomized divide-and-
onquer algorithm des
ribed above.Using essentially the same reasoning, the total expe
ted running time of the algorithm isO(k3 log n+ nk log k log2 n) time. This is a 
onsequen
e of the fa
t, proven in [8℄, that the
omplexity of the union is O(k3+nk log k). If the polyhedra are obtained as Minkowski sumsof some k disjoint 
onvex polyhedra with a 
ommon 
onvex polyhedron, the boundary of theunion 
an be 
omputed in randomized expe
ted O(nk log k log2 n) time, as the 
omplexityof the union is now only O(nk log k) [8, 9℄.3 Motion-Planning Queries for P in QIn this se
tion we des
ribe data stru
tures that answer eÆ
iently the following two typesof queries involving P and the polygonal environment Q:Free-pla
ement query: Is a given pla
ement Z of P free with respe
t to Q (i.e., doesZ 2 C)? If Z is free, then, optionally, return also a pla
ement Z 0 that lies on �Cdire
tly above Z in the (+y)-dire
tion (i.e., return the �rst pla
ement at whi
h Ptou
hes an obsta
le as we translate P from Z in the (+y)-dire
tion).Motion-planning query: Given two pla
ements I and F of P , determine whether thereis a 
ollision-free path for P insideQ from I to F (i.e., whether I and F lie in the same
onne
ted 
omponent of C). If the answer is \yes," then also return su
h a path forP from I to F . The �rst part of the query (to determine only whether F is rea
hablefrom I) is 
alled a rea
hability query.Both types of queries 
all for a point-lo
ation data stru
ture in the three-dimensionalspa
e C. Sin
e the topology of C 
an be rather 
ompli
ated, the known te
hniques, su
has the point-lo
ation data stru
ture by Preparata and Tamassia [33℄, do not seem to beMotion Planning De
ember 9, 2002



Motion-Planning Queries for P in Q 12dire
tly appli
able. We propose a di�erent point-lo
ation data stru
ture, tailored to ourappli
ation. We �rst des
ribe the data stru
ture for free-pla
ement queries and then extendit to answer rea
hability and motion-planning queries.3.1 Free-pla
ement queriesLet E be the set of obsta
le edges (here we 
onsider only the original edges of �Q andignore the \inner passages" 
reated by the triangulation of Q
). Re
all that P (Z) denotesP at a pla
ement Z. For a pla
ement Z and for a subset E0 � E, we de�ne Z 0 = �(Z;E0)to be the �rst pla
ement at whi
h P interse
ts a segment of E0 as we translate P from Zin the (+y)-dire
tion (Figure 5); if P (Z) itself interse
ts an edge in E0, then �(Z;E0) = Z.For a given pla
ement Z, we aim to determine whether Z is free, and if the answer is yes,we also want to return �(Z;E). To simplify the analysis, we assume that Q is bounded,so that �(Z;E) always exists. If Q is unbounded, we arti�
ially 
lip it within a suÆ
ientlylarge square, so that all pla
ements of P at whi
h P tou
hes an obsta
le vertex lie insidethe square, and add the top edge of the square to E.
����
����
����
����
����
����
����

����
����
����
����
����
����
����

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

������
������
������
������
������

������
������
������
������
������

������
������
������

������
������
������P (�(Z;E))P (Z)Figure 5. A pla
ement Z of P and �(Z;E).Data stru
ture. We 
onstru
t a segment tree T on the x-proje
tions of the segments inE. Ea
h node v 2 T is asso
iated with an interval Æv ; let Wv = Æv � R be the verti
al stripere
ted on Æv. Let p(v) denote the parent of a node v. An interval I is stored at a node vif Æv � I and Æp(v) 6� I. Let Ev � E be the set of segments 
orresponding to the intervalsstored at node v, and let Sv � E denote the set of segments having at least one endpointin the interior of Wv; we 
lip the segments of Sv and Ev within Wv. We sort the segmentsof Ev in the in
reasing order of their inter
epts with any verti
al line within Wv, whi
h is awell-de�ned order, sin
e the endpoints of the (
lipped) segments in Ev lie on the boundaryof Wv and their relative interiors are pairwise disjoint. Note that a segment 
an appearin sets Sv of at most O(logn) nodes v of T (the nodes lying on the two paths of T to theleaves whose strips 
ontain the endpoints of the segment).Motion Planning De
ember 9, 2002



Motion-Planning Queries for P in Q 13We 
onstru
t two data stru
tures on Sv. The �rst stru
ture answers line-interse
tionqueries, i.e., queries that determine whether a query line interse
ts any of the segments inSv. We dualize ea
h segment e 2 Sv to a double wedge3 e�, 
onstru
t the arrangement of theresulting double wedges, prepro
ess the arrangement for planar point-lo
ation queries, andmark ea
h fa
e of the arrangement that is 
ontained in at least one of the double wedges.The size of this data stru
ture is O(jSvj2) and it 
an be 
onstru
ted in time O(jSvj2 log jSvj);see, e.g., [1℄. A line L interse
ts a segment of Sv if and only if the point L� dual to L liesin a marked fa
e. This 
an be determined in O(log jSvj) time.Next, we 
onstru
t a two-level data stru
ture on Sv. For ea
h segment e 2 Sv, we markone of its endpoints; let Av be the set of these points. We prepro
ess Av into a halfplanerange-sear
hing data stru
ture, using the algorithm by Chazelle et al. [16℄. Their algorithm
hooses a parameter r (greater than a 
onstant spe
i�ed by their algorithm) and 
onstru
tsa family of 
anoni
al subsets of Av so that there are O((jSvj=rj)2+Æ) 
anoni
al subsets ofsize between rj and rj+1, for any integer 1 � j � logr n; here Æ > 0 is an arbitrarily small
onstant. For a query line L, Av 
an be partitioned into O(logr n) 
anoni
al subsets sothat all points within ea
h 
anoni
al set lie on the same side of L. This partition 
an be
omputed in O(log n) time. For ea
h 
anoni
al set, we 
onstru
t the following se
ond-levelstru
ture. Let Av;i be the ith 
anoni
al subset, Sv;i � Sv the set of segments whose markedendpoints are in Av;i, and Vv;i the set of all endpoints of the segments in Sv;i. We willuse z = tan �=2 to denote the parametri
 representation of the orientation of P . For ea
hsegment e 2 Sv;i and for every vertex p 2 P , we de�ne two partially de�ned bivariatefun
tions y = fe;p(x; z) and y = ge;p(x; z) as follows: For a given pair (x0; z0) let y0 be they-value so that, at the pla
ement Z0 = (x0; y0; z0), the vertex p of P (Z0) lies in the relativeinterior of e and P (Z0) lies below (resp. above) the line 
ontaining e. If y0 exists then it isunique, and we put y0 = fe;p(x0; z0) (resp. y0 = ge;p(x0; z0)); otherwise, fe;p(x0; z0) (resp.ge;p(x0; z0)) is unde�ned; see Figure 6(i) for an illustration to the de�nition of fe;p(�; �).Next, for ea
h endpoint � of a segment e in Sv;i and for every edge 
 of P , we de�ne twofun
tions f�;
(x; z) and g�;
(x; z) as follows. For a given pair (x0; z0), let y0 be the y-valueso that at the pla
ement Z0 = (x0; y0; z0), the vertex � lies on 
 and both obsta
le edgesin
ident to � lie above (resp. below) the line supporting 
. If y0 exists then it is uniqueand we set y0 = f�;
(x0; z0) (resp. y0 = g�;
(x0; z0)); otherwise the respe
tive fun
tions areunde�ned. see Figure 6(ii) for an illustration to the de�nition of f�;
(�; �). We 
ompute thelower envelope Fv;i offfe;p j e 2 Sv;i and p a vertex of Pg [ ff�;
 j � 2 Vv;i and 
 an edge of Pgand the upper envelope Gv;i offge;p j e 2 Sv;i and p a vertex of Pg [ fg�;
 j � 2 Vv;i and 
 an edge of Pg:3In the duality that we use, the dual of a point p(a; b) is the line p� : y = �ax+ b and the dual of a lineL : y = �x+ � is the point L�(�; �). The dual of a segment e = pq is the double wedge formed by the linesp� and q� that does not 
ontain the verti
al line passing through the interse
tion point of p� and q� (whi
his the point dual to the line supporting e).Motion Planning De
ember 9, 2002
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r 

Figure 6. (i) y0 = fe;p(x0; z0); fe;q(x0; z0), fe;r(x0; z0) are not de�ned. (ii) y1 = f�;
(x1; z1);f�;
(x1; z1) is not de�ned.These envelopes 
an be 
omputed and prepro
essed in O((mjSv;ij)2+Æ) time, for anyÆ > 0, for point lo
ation, so that for any given pair (x0; z0), Fv;i(x0; z0) and Gv;i(x0; z0) 
anbe 
omputed in O(logmn) time [4℄. We store these envelopes as the se
ondary stru
tures ofthe ith 
anoni
al subset. Choosing r = nÆ and summing the 
omplexity of these envelopesover all 
anoni
al subsets, the total size of the two-level data stru
ture 
onstru
ted on Svis O((mjSvj)2+Æ). Summing over all nodes of the segment tree, the overall size of the datastru
ture is O((mn)2+Æ), for slightly larger but still arbitrarily small Æ > 0. The total timespent in 
onstru
ting these stru
tures is O((mn)2+Æ).Answering a query. The query pro
edure determines whether Z0 is a free pla
ement.If the answer is \yes," then it also returns �(Z0; E), the pla
ement that lies on �C dire
tlyabove Z0 in the (+y)-dire
tion.Let Z0 = (x0; y0; z0) be a query pla
ement. We 
an determine in O(logm) time theleftmost and rightmost verti
es, ` and r, of P (Z0). We 
an test in O(logn) time whether `lies inside an obsta
le. If so, we 
an 
on
lude that Z0 is not a free pla
ement. We 
an thusassume that ` lies in Q. We use the following simple lemma to answer the query.Lemma 3.1 Let Z0 be a pla
ement so that P (Z0) does not lie 
ompletely inside Q
. IfP (Z0) interse
ts (resp. tou
hes) an obsta
le, then there exists a node v in the segment treeT so that at least one of ` and r lies in Wp(v) and (at least) one of the following two
onditions is satis�ed.(i) P (Z0) interse
ts (resp. tou
hes) a segment of Ev, or(ii) ` and r do not lie in Wv and P (Z0) interse
ts (resp. tou
hes) a segment of Sv.Motion Planning De
ember 9, 2002



Motion-Planning Queries for P in Q 15Proof: Suppose P (Z0) interse
ts an obsta
le. Sin
e P (Z0) 6� Q
, there must exist anobsta
le edge e that interse
ts �P (Z0). Let � be an interse
tion point of e and �P (Z0), andlet u be the leaf of T whose strip Wu 
ontains �. Let w be the unique an
estor of u so thate 2 Ew. If ` or r lies in Wp(w), then 
ondition (i) holds with v = w. Otherwise, let z be thelowest an
estor of w su
h that Wp(z) 
ontains one of ` or r. Sin
e z is a proper an
estor ofw, we have e 2 Sz. Hen
e 
ondition (ii) holds in this 
ase with v = z. 2
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er e` r = r� e`̀ = `� � r� P (Zv) Sv;i
L

Wv(ii)Wv(i)
r

(iii)Figure 7. (i) e` 6= er at a node v 2 V1. (ii) P (Z0) does not interse
t any segment of Ev at a nodev 2 V1. (iii) P (Z0) does not interse
t any segment of Sv;i at a node v 2 V2.Let V1 = fv 2 T j ` 2 Wp(v) or r 2 Wp(v)g and V2 = fv 2 V1 j `; r 62 Wvg. The abovelemma suggests that, to test whether P (Z0) is free, it suÆ
es to sear
h Ev for all v 2 V1and Sv for all v 2 V2. Note that jV2j � jV1j = O(logn). For ea
h node v 2 V1, we testwhether P (Z0) interse
ts a segment of Ev. We �rst 
ompute the left and right endpoints, `�and r�, respe
tively, of the portion of the segment `r inside Wv. We determine in O(log n)time the segments e`; er of Ev lying immediately above ` and r, respe
tively. If e` 6= er,then `�r�, and therefore P (Z0), interse
ts an obsta
le edge and we stop (see Figure 7 (i)).Otherwise, `�r� does not interse
t any segment of Ev. We put e = e` = er and determinein O(logm) time a vertex � 2 P (Z0)\Wv on the top boundary of P (Z0)\Wv that tou
hesthe supporting line of P (Z0) \Wv parallel to e. If � lies above e, then P (Z0) interse
tse and therefore Z0 is not a free pla
ement. Similarly we 
an determine in O(logm) timewhether P (Z0) interse
ts the segment of Ev lying immediately below `�r�. If P (Z0) doesnot interse
t these segments of Ev, it avoids all segments of Ev (
lipped within Wv). We
an then determine in O(1) time the pla
ement Zv = (x0; y1; z0) so that the vertex � ofP (Zv) tou
hes e (see Figure 7(ii)); if there is no su
h pla
ement, y1 is set to +1. It iseasily seen that Zv = �(Z0; Ev), provided P (Z0) does not interse
t any (
lipped) segmentof Ev. Repeating this step for all nodes of V1, we 
an determine in O(logmn logn) timeMotion Planning De
ember 9, 2002



Motion-Planning Queries for P in Q 16whether P (Z0) interse
ts any segment of Sv2V1 Ev; if it does not, then we also obtainZ1 = �(Z0;Sv2V1 Ev).Next, for ea
h node v 2 V2, we test whether P (Z0) interse
ts any segment of Sv. We�rst determine in O(log n) time whether the line L supporting the segment `r interse
tsany segment of Sv, using the line-interse
tion data stru
ture. Sin
e L \Wv = `r \Wv �P (Z0)\Wv, we 
on
lude that if L interse
ts Sv, then Z0 is not free, so we stop immediately.Otherwise, we query the halfplane range-sear
hing data stru
ture with L. Let Sv;i be oneof the O(1) 
anoni
al subsets of the query output (see Figure 7(iii)).Lemma 3.2 Let Z0 be a pla
ement as above. If a 
anoni
al subset Sv;i lies above (resp.below) L, then P (Z0) interse
ts some (
lipped) segment of Sv;i if and only Fv;i(x0; z0) < y0(resp. Gv;i(x0; z0) > y0).Proof: Suppose Sv;i lies above L. First assume that P (Z0) does not interse
t any segmentof Sv;i. Let e be a segment of Sv;i and p a vertex of P so that their x-proje
tions interse
tat pla
ement Z0 of P . If P (Z0) does not interse
t Sv;i, then e lies above p at pla
ement Z0,i.e., fe;p(x0; z0) � y0. Similarly, if � is an endpoint of Sv;i and 
 an edge of P so that theirx-proje
tions interse
t at pla
ement Z0, then f�;
(x0; z0) � y0. Hen
e, Fv;i(x0; z0) � y0.Next, assume that P (Z0) interse
ts a segment e of Sv;i. Then either one of the endpoints� of e lies inside P or a vertex p of P lies above e. In the former 
ase, f�;
(x0; z0) < y0,where 
 is the edge of P lying verti
ally above �; while in the latter 
ase, fe;p(x0; z0) < y0.This 
ompletes the proof of the lemma. 2In view of the above lemma, we 
an determine in O(logmn) time whether P (Z0)interse
ts any segment of Sv;i. If P (Z0) does not interse
t any segment of Sv;i, then(x0; Fv;i(x0; z0); z0) = �(Z0; Sv;i). Repeating this pro
edure for all 
anoni
al sets of thequery output and for all nodes v 2 V2, we 
an determine in O(logmn logn) time whetherP (Z0) interse
ts any segment ofSv2V2 Sv. If it does not, we also obtain Z2 = �(Z0;Sv2V2 Sv).Now �(Z0; E) is the lowest of Z1 and Z2.The query time 
an be improved to O(logmn) by 
onstru
ting the segment tree witha larger fan-out, e.g., as des
ribed in [16℄, without in
reasing the asymptoti
 size and pre-pro
essing time. Omitting the te
hni
al details of this improvement, we summarize theanalysis in the following theorem:Theorem 3.3 Given a parameter " > 0, a 
onvex polygon P with m edges, and a polygonalenvironment Q with a total of n edges, we 
an prepro
ess P and Q in time O((mn)2+") intoa data stru
ture of size O((mn)2+"), so that we 
an determine in O(logmn) time whethera given pla
ement Z0 is free. If Z0 is free, we 
an also 
ompute �(Z0; E) within the sametime bound, where E is the set of edges in Q.Motion Planning De
ember 9, 2002



Motion-Planning Queries for P in Q 173.2 Rea
hability and motion-planning queriesReturning to the original motion-planning query problem, we show that the data stru
turegiven above and the algorithm des
ribed in Se
tion 2 
an be used to answer rea
habilityqueries eÆ
iently. The idea is to \retra
t" C onto a one-dimensional network 
onne
ting theverti
es of C and redu
e the motion-planning problem to path planning in this network. Thisretra
tion approa
h has been used extensively in the past for motion planning [11, 12, 13, 31℄.We prepro
ess P and Q for free-pla
ement queries, using Theorem 3.3. Next, we 
om-pute all the 
onne
ted 
omponents of �C, using the algorithm des
ribed in Se
tion 2. Thealgorithm 
omputes A� for ea
h 
onta
t surfa
e � = �e;v, and then glues them together.A
tually, it 
omputes a re�nement �C� of �C so that ea
h two-dimensional fa
e of �C� isx-monotone, whi
h implies that there is a path along the edges of �C� between any pairof verti
es of the same 
onne
ted 
omponent of �C�. We prepro
ess (the xy-proje
tion of)ea
h A� for eÆ
ient planar point-lo
ation queries.A natural 
hoi
e for 
onstru
ting the one-dimensional network is the 1-skeleton of �C�,but it is not suÆ
iently 
onne
ted to 
apture the 
onne
tivity of C, be
ause the boundaryof a 
onne
ted 
omponent Ci of C need not be 
onne
ted. Let Ai be a 
onne
ted 
omponentof �Ci, and let �i = (xi; yi; zi) be a point on Ai with the maximum y-
oordinate. We 
allAi an inner 
omponent of �Ci if �+i = (xi; yi + "; zi), for suÆ
iently small " > 0, lies in Ci.We will refer to �i as the apex of Ai. If Ai is an inner 
omponent, then we may assumethat a vertex p of P tou
hes a vertex of Q at �i, so �i is either a vertex of Ai or a point oflo
ally maximum y-
oordinate on an edge of Ai. Furthermore, at P (�i) the referen
e pointo lies verti
ally above the 
onta
t vertex p, i.e., the dire
ted line segment po is parallel tothe y-axis and oriented upwards. Hen
e, there are only O(mn) apex pla
ements.
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Figure 8. An apex pla
ement.De�ne � 0i = �(�i; E), where E is the set of all obsta
le edges, and let Aj be the 
onne
ted
omponent of �C 
ontaining � 0i. Obviously Aj also belongs to �Ci. We 
an 
ompute � 0i inO(mn) time using a naive pro
edure. If �i is not a vertex of Ai, we add �i as a vertex ofAi and split at �i the edge of Ai 
ontaining �i. Similarly, we add � 0i as a vertex of Aj andMotion Planning De
ember 9, 2002



Motion-Planning Queries for P in Q 18split at � 0i the edge, or the fa
e, 
ontaining � 0i. To split a fa
e f , we pass through � 0i an ar

 that lies on f and is parallel to the xz-plane, extend 
 in both dire
tions until it hits �f ,and split the edges of f hit by 
 at the hitting points. We also add the edge (�i; � 0i) to theresulting network. We repeat this pro
edure for all inner 
omponents of �C. The total timespent in this step is O(m2n2). This step 
onne
ts together all the boundary 
omponents ofea
h 
onne
ted 
omponent of C. Let �C�� denote the resulting stru
ture, and let G denotethe 1-skeleton of �C��. The following property of G is obvious.Lemma 3.4 If Z;Z 0 are two verti
es of the same 
onne
ted 
omponent of C, then Z andZ 0 belong to the same 
onne
ted 
omponent of G.We perform a depth-�rst sear
h on G and identify and label all verti
es that lie in thesame 
onne
ted 
omponent of G, so that we 
an determine in O(1) time whether two givenverti
es of G belong to the same 
onne
ted 
omponent. Finally, we 
onstru
t a spanningforest T of G, so that for any two verti
es �; � 0 lying in the same 
onne
ted 
omponent ofG, we 
an return the path from � to � 0 in T in time proportional to its length.We now answer a rea
hability or a motion-planning query as follows. Let I = (xI ; yI ; zI)and F = (xF ; yF ; zF ) be two given pla
ements. Using the free-pla
ement data stru
ture,we �rst determine whether both I and F are free. If so, we also 
ompute I 0 = �(I; E) andF 0 = �(F;E), and the 
onta
t surfa
es �I and �F 
ontaining I 0 and F 0, respe
tively. Bylo
ating I 0 in A�I , we 
an determine in O(logmn) time the edge eI that lies immediatelyabove I 0 in the (+x)-dire
tion. Let I 00 be the point on the edge eI whose y-
oordinate isyI0 , let 
I be the ar
 from I 0 to I 00 lying in A�I and parallel to the xz-plane, and let vIbe an endpoint of eI . Similarly, we 
ompute eF ; F 00; 
F , and vF for the �nal pla
ement F .Using Lemma 3.4, we 
an determine in O(1) time whether vI and vF belong to the same
onne
ted 
omponent of �C.If vI and vF belong to the same 
omponent, we 
an also 
ompute a path from I to F .Let �I be the path 
omposed of the y-verti
al segment II 0, the ar
 
I , and the portion ofeI from I 00 to vI . De�ne �F in an analogous manner. Finally, let � be the path in G fromvI to vF . Then the path obtained by 
on
atenating �I , �, and �F is a path in C from I toF . Hen
e, we obtain the following theorem.Theorem 3.5 Given a parameter " > 0, a 
onvex polygon P with m edges, and a polygonalenvironment Q with a total of n edges, we 
an prepro
ess, in additional O((mn)2+") time,the (already 
omputed) spa
e C of all free 
ongruent pla
ements of P inside Q into a datastru
ture of size O((mn)2+") so that, for any two query free pla
ements I and F of P , we
an determine, in O(logmn) time, whether there exists a 
ollision-free motion of P from Ito F . If there exists one, we 
an return su
h a path in time proportional to its 
omplexity,whi
h is at most O(mn�6(mn)).Motion Planning De
ember 9, 2002



Finding the Largest Pla
ement of P inside Q 194 Finding the Largest Pla
ement of P inside QAs mentioned in the introdu
tion, we use the parametri
-sear
hing te
hnique of Megiddo([29℄; see also [5, 7℄) to 
ompute a largest free similar pla
ement of P inside Q. Theparametri
-sear
hing paradigm requires an \ora
le" pro
edure to determine, for a givens
aling fa
tor s > 0 of P , whether Cs, the free 
on�guration spa
e 
orresponding to sPmoving within Q, is nonempty. Using Theorem 2.1, we 
an obtain an ora
le that per-forms this task in expe
ted time O(mn�6(mn) logmn logn). An eÆ
ient implementationof the parametri
 sear
h, however, also requires a parallel implementation of the ora
le, inValiant's 
omparison model [39℄. Fortunately, the algorithm provided by Theorem 2.1 iseasy to parallelize, be
ause all re
ursive subproblems at the same depth 
an be performedin parallel. In fa
t, the only part of this algorithm that does not parallelize in a straight-forward manner is the sweep-line pro
edure used in the merge step, be
ause the standardimplementation of line-sweeping is inherently sequential. We therefore perform the mergestep in the parallel version using a di�erent approa
h, based on segment trees, su
h as theone used in [7, Se
tion 5℄. As argued in [7℄, the merge step requires O(logmn) time usingO(mn�6(mn) logmn) pro
essors, under Valiant's model of 
omputation.Omitting all further details, we 
on
lude that one 
an 
ompute C in O(logmn logn)parallel steps, using O(mn�6(mn) logmn) expe
ted number of pro
essors, in Valiant's 
om-parison model. Megiddo [29℄ showed that if the sequential algorithm for the ora
le runs intime Ts and the parallel algorithm runs in time Tp using � pro
essors, then the parametri
sear
hing takes O(Tp�+TsTp log�) time, provided that all the 
ontrol-
ow de
isions madeby the parallel version 
an be expressed as sign tests of 
onstant-degree polynomials inthe parameter whose 
riti
al value is being sought (the s
aling fa
tor s, in our 
ase), orare independent of this parameter. Sin
e this is the 
ase for our algorithm, we obtain thefollowing result.Theorem 4.1 Given a 
onvex polygon P with m edges and a polygonal environment Q witha total of n edges, we 
an 
ompute a largest free pla
ement of P inside Q in randomizedexpe
ted time O(mn�6(mn) log3mn log2 n).5 Con
luding RemarksIn this paper we studied the motion-planning problem for a 
onvexm-gon P inside a polygo-nal environmentQ with a total of n verti
es. We presented an eÆ
ient algorithm for 
omput-ing the entire free 
on�guration spa
e, whose time 
omplexity is O(mn�6(mn) logmn logn),whi
h is near optimal in the worst 
ase. We applied the algorithm to solve the followingtwo problems:(a) answering free-pla
ement and motion-planning queries for P inside Q,Motion Planning De
ember 9, 2002
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