
Assignment 4

Advanced Topics in Computational Geometry

Due: May 30, 2016

Problem 1

Minkowski sums: Let A1, . . . , Am be a collection of m pairwise-disjoint convex
polygons in the plane, so that Ai has ni edges, for a total of n =

∑m
i=1 ni edges. Let B

be a convex polygon with k edges. Assume general position of the Ai’s and B. The
Minkowski sum of Ai and B, for i = 1, . . . ,m, is defined as

Ki = Ai ⊕ B = {x+ y | x ∈ Ai, y ∈ B}.

(a) Show that, for any (generic) direction θ, the extreme point of Ki in direction θ

(this is the point where a line whose outward normal has direction θ supports Ki) is
xθ + yθ, where xθ (resp., yθ) is the extreme point of Ai (resp., Bi) in direction θ.

(b) Show that each Ki is a polygon with ni + k edges.

(c) Show that the boundaries of any pair of the polygons Ki, Kj intersect in at most
2 points. (Hint: Use (a) to show that Ki and Kj have at most two common outer
tangents.)

(d) Give an efficient algorithm for computing the union K =
⋃m

i=1 Ki (use a divide-
and-conquer approach).

Problem 2

(a) Let L be a set of n lines in the plane (in general position). Show that
∑

c |c|
2 =

Θ(n2), where the sum is over all cells c of A(L), and where |c| is the complexity of c
(e.g., number of vertices). (Hint: Use the zone theorem.)

(b) Let H be a set of n planes in three dimensions. Show that
∑

c |c|
2 = Θ(n3), where

the sum is over all cells c of A(H), and where |c| is the total complexity of c (i.e.,
number of vertices, edges, and faces of c). (Hint: Use the zone theorem.)

(c) The analysis does not work in four or higher dimensions. Explain why, and show
that for any dimension d we have instead

∑
c |c| · |c|d−1 = Θ(nd), where |c|d−1 is the

number of (d− 1)-dimensional faces (facets) bounding c.

(d) Using (a), show that the total complexity ofm arbitrary faces ofA(L) is O(m1/2n).
(Hint: Cauchy-Schwarz!)
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Problem 3

Let L be a set of n lines in the plane (in general position). Call a face f of A(L)
balanced if the highest vertex of f (in the y-direction) is not the leftmost or rightmost
vertex of f ; otherwise f is tilted.

Using the Clarkson-Shor technique, show that the number of balanced faces at
level at most k is O(k2). Show also that the bound is tight in the worst case.

Problem 4

Let F be a collection of n bivariate functions of constant description complexity.
Using the Clarkson-Shor technique, show that if the functions are inserted one by
one in a random order, and the envelope is updated after each function is inserted,
then (a) the expected number of vertices (points where three functions intersect on
the current envelope) that are generated by the algorithm is O(n2+ε), for any ε > 0,
and (b) that the expected sum of the weights of these vertices is also O(n2+ε), for
any ε > 0, where the weight of a vertex is the number of function graphs that pass
below it. Give an example of a bad (non-random) insertion order for which Θ(n3)
vertices are generated. (Note: This is not an algorithmic question; we do not care
how exactly the envelope is maintained, but require that we form the new, correct
version of the envelope after each function is inserted.)

Problem 5

Let F be a collection of n disks in three dimensions, none of which is vertical. Regard
these disks as the graphs of n partially defined bivariate functions, and analyze the
complexity of the lower envelope of these functions, applying a (simpler) variant of
the technique shown in class (or any technique of your choice). Give a construction
showing that the complexity of the envelope can be Ω(n2), even when the disks are
disjoint.

Note: Because the disks are “partially defined”, the envelope has additional kinds of
vertices, such as a point lying on two disks and above the boundary of a third disk,
and also a point that lies on the boundary of one disk and above the boundary of
another disk. The precise way of thinking about these “fake” vertices is that they
are vertices of the xy-projection of the lower envelope (the so-called minimization

diagram of F).
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