
Assignment 5

Advanced Topics in Computational Geometry

Due: June 30, 2016, in my mailbox or in Orit’s mailbox

Problem 1: Incidences

(a) Prove the Kővári–Sós–Turán theorem: Let G = (V,E) be a bipartite graph with
vertex sets P , Q (so E ⊆ P × Q), such that G does not contain Kr,s as a subgraph,
where r and s are constants. Show that |E| = O(mn1−1/r + n) (and, symmetrically,
|E| = O(nm1−1/s +m)), where m = |P | and n = |Q|.

(Hints: (i) Double count the number of tuples (p1, p2, . . . , pr, q), such that p1, p2, . . . , pr
are distinct vertices in P , q ∈ Q, and all the edges (p1, q), (p2, q), . . . , (pr, q) are in
E. (ii) As a further hint, one of the counts should be

∑

q∈Q

(

deg(q)
r

)

. (iii) Note that
|E| =

∑

q∈Q deg(q), and use Hölder’s inequality to estimate |E|.)

(b) For a set P of m points in the plane, and a set C of n curves in the plane, denote
by G(P,C) the incidence graph of P and C; its edges are all the pairs (p, c) ∈ P ×C
such that p is incident to c. Apply (a) to the incidence graphs for the cases where C
is (i) a set of lines; (ii) a set of unit circles; (iii) a set of circles with arbitrary radii.
Get three respective weak incidence bounds for I(P,C) in these three cases.

(c) Consider case (iii) from (b) (where C is a set of arbitrary circles). Combine the
bound from (b) with the cutting method, to show that I(P,C) = O(m3/5n4/5+m+n).
(No need to give full details, but try to discuss issues where the analysis here is
somewhat different from the one shown in class for lines.)

Problem 2

Extend the proof technique of the Crossing Lemma to show the following: Let P be
a set of n points in the plane in general position, and let D be a set of M disks, each
having a pair of points of P as a diameter. If M ≥ 4n then there exists a point of P
that lies in the interior of Ω(M2/n2) disks of D.

(Hints: (a) Show that if M ≥ 3n then there exists a disk d ∈ D and a point p ∈ P
such that p lies in the interior of d. (To show this, use the graph G drawn on the set
P as vertices, where for each disk d ∈ D we draw in G the straight edge which is the
diameter of d that connects its two defining points.) (b) Apply the random sampling
technique used in the proof of the Lemma to get a good lower bound on the number
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of such pairs (p, d). (c) Conclude from (b) the existence of a point p ∈ P that has
the desired property.)

Problem 3

For each of the following range spaces (X,R), obtain an upper bound on the number
of possible ranges for any subset of m points of X. Whenever possible, compute the
VC-dimension too.

(a) X is a set of points in R
3 and each range of R is the set of points of X inside

some axis-parallel box.

(b) X is a set of points in R
3 and each range of R is the set of points of X inside

some ball.

(c) X is a set of lines in R
3 and each range of R is the set of lines of X that intersect

some unit ball. (Hint: Move to a dual space where each ball is represented by its
center, and each line of X is represented by . . .)

Problem 4

Using Problem 3(c), give a simple-minded solution for the following problem. Given
a set X of n lines in R

3, and a parameter ε > 0, preprocess them into a data structure
that supports efficiently queries of the form: For a query point q ∈ R

3, estimate the
number of lines at distance at most 1 from q, up to an error of ε. (The problem is
somewhat vaguely defined, but you should know what to do...)
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