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Conjecture 1.1. (a) Let C be a �nite family of unit circles in the plane, at leasttwo of which intersect. Then there exists an intersection point that is incidentto at most three circles of C.(b) Same as (a), under the additional assumption that every pair of circles of Cintersect.(c) Let C be a �nite family of arbitrary circles in the plane, such that at least two ofthem intersect and the number P of intersecting pairs satis�es P � �jCjq, where� is a su�ciently large constant and where q is the maximum size of a pencilof C, namely, a subset all of whose elements are incident to the same pair ofpoints. Then there exists an intersection point that is incident to at most threecircles of C.(d) Same as (c), under the additional assumption that every pair of circles of Cintersect (and assuming that C is not a single pencil).Conjecture 1.1(b) has been proven in a preceding paper of Pinchasi [11]. In fact, ithas been shown there that if C consists of at least 5 pairwise-intersecting unit circlesthen there exists an intersection point incident to just two circles. That paper alsogives an example of 4 pairwise-intersecting unit circles where every intersection pointis incident to 3 circles. This example can be extended to yield a family of any numberof unit circles (not every pair of which intersect) where every intersection point isincident to 3 circles, and where the intersection graph of the circles is connected.In this paper we prove various special cases of the other three parts of Conjec-ture 1.1.We �rst study Conjecture 1.1(d), and prove it in the case that n, the size of C, issu�ciently large (see Theorem 4.1). We then tackle Conjecture 1.1(a), and prove itin the case that n is su�ciently large and the number of pairs of intersecting circlesin C is at least �n, for an appropriate absolute positive constant � (see Theorem 4.5).Finally, we give a proof of Conjecture 1.1(c), under the stronger assumption thatP � �jCj(q + jCj1=3) for an appropriate absolute constant � (see Theorem 4.8). Wealso note that part (c) of the conjecture may fail if P � jCjq=2.Although these results do not solve the conjecture in full generality, they comeclose to it. Speci�cally, part (a) is still open when the number P of intersecting pairsof circles is smaller than �jCj, for some constant �. In fact, it su�ces to prove theconjecture for the case where every unit disk (not necessarily bounded by a circle ofC) crosses at most � circles of C. Part (b) is fully solved in [11]. The open problem inpart (c) is �rst to get rid of the term �jCj4=3 (which is signi�cant only when the sizeof the largest pencil is o(jCj1=3)), and then to lower the constant � provided by thecurrent proof (as noted above, lowering it too much may cause this part to be false).Finally, part (d) remains open for small values of jCj.Some of the technical tools that we develop for our solutions are, in our opinion,of independent interest. The main set of tools deals with faces of degree 2 in the2



arrangement A(C) of C. With the possible exception of the unbounded face, thesefaces are either `lenses' (contained in the interiors of the two incident circles) or `lunes'(contained in the interior of one incident circle and in the exterior of the other). Wederive various upper bounds for the number of these faces: In case (b), it was shownin [11] that the number of lunes is at most three1 and the number of lenses is atmost n. In case (d), we show that the number of lunes is at most 2n � 2 and thenumber of lenses is at most 18n. In case (a), we show that the number of lenses isat most O(n4=3 log n) (and the number of lunes is at most n). In case (c), we showthat the number of lenses and lunes is O(n3=2+"), for any " > 0 (where the constantof proportionality depends on ").The study of lenses and lunes is reminiscent of the study of lenses in arrangementsof `pseudo-parabolas' by Tamaki and Tokuyama [16]. In fact, their more general upperbound of O(n5=3) applies to all the cases that we consider here, but, using the specialgeometry of circles, we are able to obtain the above-mentioned improved bounds.Another collection of results that may be of independent interest relates the num-ber V of vertices in an arrangement of circles and the number P of intersecting pairsof circles. Speci�cally, we �rst show that in an arrangement of unit circles one al-ways has V = 
(P ). The same result also holds for arrangements of general circles,provided that P � �jCj(q+ jCj1=3), for some su�ciently large constant �.The paper is organized as follows. After introducing some notations in Section 2,we prove in Section 3 the above-mentioned upper bounds on the number of lunes andlenses in the various kinds of arrangements of circles under consideration.We then show, in Section 4, the existence of an intersection point incident toat most 3 circles, in the various arrangements of circles under consideration, underappropriate additional conditions, as mentioned above.Finally, in Section 5 we exploit the machinery developed in the paper and prove,for an arrangement of n unit or arbitrary circles, that V = 
(P ) (for arbitrary circles,under the additional assumptions made above).2 PreliminariesThroughout this paper C denotes a �nite family of circles in the Euclidean plane.We usually denote a circle by the letter C, possibly with some modi�er (subscriptor superscript). The closed disk bounded by that circle is denoted by D, and itscenter by o, with the same modi�er.De�nition 2.1. Let C be a family of circles in the plane. Let C1; C2 be two circles inC that intersect at two distinct points, A and B. We call D1 \D2 a lens if no circle1Actually, this was shown under the additional assumption that A(C) does not contain any vertexincident to just two circles. Nevertheless, recent unpublished work by Last and Pinchasi show thatthis is true for any arrangement of pairwise-intersecting unit circles.3



a lensa lune Figure 1: A lens and a lunein C n fC1; C2g meets (D1 \D2) n fA;Bg. We then say that both C1 and C2 supportthat lens (see �gure 1).We call D1 n intD2 a lune if no circle in C n fC1; C2g meets (D1 n intD2) n fA;Bg.We then call C1 n intD2 the longer arc of the lune and say that C1 supports the longerarc of that lune.Whenever we refer to two intersecting circles we mean two circles that eitherintersect at two distinct points or are tangent.For a circle C and points a; b on C which are not antipodal, we denote by _C(ab)the closed smaller arc of C delimited by a and b.For two distinct points a and b in the plane, we denote by ab the line through aand b. We denote by �!ab the closed ray that emanates from a and contains b. Theclosed line segment between a and b is denoted by [ab].Let p; q; r be three noncollinear distinct points in the plane. We denote by \pqrthe convex region bounded by the rays �!qp and �!qr . The angular measure of \pqr isdenoted by ]pqr. Therefore 0 < ]pqr < �.In a previous paper [11] and in more recent unpublished work by Last and Pinchasi,the following result is proved.Theorem 2.2 (Pinchasi [11]). A family of n pairwise intersecting unit circles inthe plane determines at most 3 lunes and at most n lenses.In the following section, we will extend this result for more general arrangementsof circles. 4



3 Bounding the Number of Lunes and Lenses inArrangements of CirclesIn this section we obtain upper bounds on the number of lunes and lenses in var-ious types of arrangements of circles: arrangements of pairwise-intersecting circles,arrangements of unit circles, and arrangements of arbitrary circles (in the two lattercases, not every pair of circles is intersecting). These results, besides being of inde-pendent interest, are needed for showing that such arrangements, under additionalassumptions, must contain vertices incident to at most three circles.3.1 The number of lunes in a family of pairwise-intersectingcirclesIn this subsection we prove the following theorem.Theorem 3.1. A family of n pairwise intersecting circles in the plane determines atmost 2n � 2 lunes.De�nition 3.2. Let C be a family of circles. We say that C is a pencil if either thereare two distinct points that belong to every circle in C, or the circles in C are pairwisetangent at a common point P . We sometimes refer to the latter case as a degeneratepencil.Observe that if C is a non-degenerate pencil then it determines exactly 2n � 2lunes. This shows that Theorem 3.1 is tight in the worst case.Let C be a family of n pairwise interseting circles in the plane. De�ne a graph Gwhose vertices are the centers of the circles in C, and whose edges connect pairs ofcenters whose associated circles support the same lune. By drawing the edges of Gas straight segments, we obtain a plane embedding of this graph.Observe that unless C is a pencil, there are no multiple edges in G. Indeed,suppose to the contrary that there exist C1; C2 2 C such that both L1 = D1 n intD2and L2 = D2 n intD1 are lunes. Denote the intersection points of C1 and C2 by a; b.These points partition C1 into two arcs, one of which is the outer arc of L1 and theother is the inner arc of L2. Hence neither of the relative interiors of these arcs meetsanother circle, so all circles in C pass through a and b.Lemma 3.3. G is planar.Proof: We will show that the plane embedding of G de�ned above has no pair ofcrossing edges. This will be a special case of the following more general lemma, whichwill be needed when we shall later consider families that are not pairwise intersecting.Lemma 3.4. Let C1; C2; C3; C4 be four distinct circles, such that both L1 = D2nintD1and L2 = D4 n intD3 are lunes, and such that all pairs of these circles, with the5



o1C1 ba o2 C2qo3C3 r pFigure 2: Case 1 in the proof of Lemma 3.4possible exception of the pair (C2; C4), are intersecting. Then the line segments [o1o2]and [o3o4] do not intersect.Remark 3.5. The proof of Lemma 3.4 applies also to the case where some of theintersecting circles may be tangent to each other. When reading the proof below, thereader should keep in mind that the two points of intersection of a pair of circles maycoincide.Proof of Lemma 3.4: We need the following simple observation:Observation 3.6. Let C1 and C2 be two intersecting circles, and denote by p thecenter of the arc C1 \D2. Then o2 lies on the ray �!o1p.Since L1 is a lune, either D3 contains L1 or D3 is disjoint from the interior of L1;the same two possibilities hold for D4. We consider the following subcases:Case 1: D3 is disjoint from the interior of L1. We have to show that o4 does not lieinside the convex unbounded region K that is bounded by the rays ��!o3o1, ��!o3o2 and bythe line segment [o1o2]. Denote by a; b the intersection points of C1 and C2. Denoteby p the intersection point of ��!o3o1 with C1 that lies outside D3. The point p is thefarthest point from o3 on C1 (see Figure 2). It su�ces to show that o4 is not inside\o2o1p.Let  be the arc C1\D3. Clearly, p =2 . Let q be the midpoint of the arc C1\D2;it is the intersection point of ��!o1o2 with C1. Since D3 is disjoint from the interior ofL1, we have q =2 . Denote by � the arc C1 \D4. Observe that � � , for otherwiseC1 would intersect the interior of D4 n intD3, contradicting the assumption that L2 isa lune. Hence, by Observation 3.6, o4 is on a ray that emanates from o1 and crosses. We claim that , and thus � too, is disjoint from _C1(pq). To show this, denote byr the midpoint of ; clearly, r is the point on C1 antipodal to p. recall that both pand q do not lie in . Therefore, if  \ _C1(pq) 6= ;, then  � _C1(pq). This however6



o1C1 ba o2C2qy x o3 C3p uvFigure 3: Case 2 in the proof of Lemma 3.4is impossible, since p and r are antipodal points on C1 and thus cannot both lie in_C1(pq).Hence, o4 does not lie on any of the rays that emanate from o1 and cross _C1(pq),i.e, o4 =2 \o2o1p.Case 2: D3 � L1 and D4 is disjoint from the interior of L1. Rotate the plane sothat the line o1o2 becomes horizontal, and o2 is to the right of o1. Without loss ofgenerality, assume that o3 is in the closed halfplane above o1o2. We have to show thato4 does not lie inside the convex unbounded region K that is bounded by the rays��!o3o1, ��!o3o2 and by the line segment [o1o2]. Denote by a; b the intersection points of C1and C2, so that a is below o1o2. Denote by p the intersection point of ��!o3o2 with C2that lies outside D3; this point is farthest from o3 along C2.Denote by u and v the intersection points of C3 and C2, so that a; u; v; b are inclockwise order along C2 (see Figure 3).Denote by � the arc C1 \D4. Denote by x; y the intersection points of C3 and C1,so that x; u; v; y are in clockwise order along C3 (by assumption, both u; v lie insideC1, so no interleaving of x; y with u; v is possible). Denote by  the arc C1\D3. Thepoints x and y are the endpoints of . Clearly, � � , for otherwise, arguing as above,C1 would intersect the interior of D4 nD3, contradicting the assumption that L2 is alune. Denote by q 2 C1 the intersection point of ��!o1o2 with C1; this is the midpoint ofthe arc C1 \D2.Assume to the contrary that o4 lies inside the region K. Let r be the midpoint of�. Since o4 is below or on o1o2, we conclude, by Observation 3.6, that r is also belowor on o1o2. Therefore, r 2 _C1(xq).Since we assume that D4 is disjoint from the interior of L1, we have r 2 _C1(xa)and also � � _C1(xa).We next claim that D4 cannot contain any of the points a; u; x as an interior point.7



Indeed, a cannot be interior to D4, for otherwise D4 would intersect the interior ofL1, which is impossible. If x were interior to D4 then D4 would intersect the interiorof the arc C1nD3. Therefore, C1 would intersect the interior of D4 nD3, contradictingthe assumption that L2 is a lune. Finally, if u were interior to D4 then D4 wouldintersect the interior of the arc C2 n D3. In this case C2 would intersect the interiorof D4 nD3, contradicting the assumption that L2 is a lune.We may also assume that C3 \ D4, which is the inner arc of L2, is contained inD1. Otherwise, D1 would be disjoint from L2, so we could apply Case 1, switchingthe roles of L1 and L2.Let e 2 D1 be one of the endpoints of the arc C3 \D4. Denote by � the regionbounded by _C1(xa); _C2(au); _C3(ux).From the convexity of D4, the line segment [er] is contained in D4. It intersectsthe boundary of � at r and at another point f which lies either on _C3(ux) or on_C2(au) (because e 2 intD4).Assume �rst that f 2 _C3(ux). By the preceding claim, we have C3\D4 � _C3(ux).By Observation 3.6, o4 lies on a ray that emanates from o3 and crosses _C3(ux). Inother words, o4 2 \uo3x. Therefore, o4 =2 \po3o1, a contradiction.Assume next that f 2 _C2(au). The preceding claim implies that C2\D4 � _C2(au).By Observation 3.6, o4 lies on a ray that emanates from o2 and crosses _C2(au).Therefore, o4 =2 \Po2o1, again a contradiction.Case 3: D3 � L1 and D4 � L1. Again, rotate the plane so that the line o1o2 ishorizontal and o2 is to the right of o1, and assume that o3 is in the closed halfplaneabove o1o2. We have to show that o4 is not inside the convex unbounded region Kthat is bounded by the rays ��!o3o1, ��!o3o2 and the line segment [o1o2].Note that in this case C4 and C2 must intersect. Indeed, we have assumed thatD4 � D2 n intD1. Thus, if C4 does not interset C2 then D4 � C2. But then, sinceC2 nD3 6= ;, C2 has to intersect the interior of L2 = D4 n intD3, which is impossible.Denote by  the arc C2 \D4. Denote by p the intersection point of ��!o3o2 with C2that lies outside D3; this is the point on C2 farthest from o3.Clearly, p =2 D3. Since L2 = D4 n intD3 is a lune, it follows that p =2 D4 (forotherwise C2 would have to intersect the interior of L2). We conclude that p =2 .Denote by q; s the intersection points of o1o2 with C2, so that s is outside D1; thepoint s is the midpoint of the arc C2 n D1. Since D4 � L1, we have s 2 . Denoteby r the midpoint of . Since o3 is above or on o1o2, p is below or on o1o2. Thepoint r cannot lie on _C2(qp), for otherwise, since p =2 , the subarc of  between rand s contains the intersection of C2 with the closed halfplane above o1o2, which isimpossible since r is the midpoint of . Hence, o4, which lies on �!o2r (by Observation3.6), is outside \po2o1. This completes the proof. 28



o1C1 o2C2q so3 C3pFigure 4: Case 3 in the proof of Lemma 3.4C1 ab C C2
Figure 5: The con�guration in Claim 3.7The planarity of G already implies that C determines at most 3n�6 lunes (unlessC is a non-degenerate pencil, in which case G contains multiple edges; however, inthis case C is easily seen to have exactly 2n�2 lunes). We can, however, improve thisbound and make it tight (2n � 2), by observing that G is almost a bipartite graph.This is the goal of the remainder of this section.Claim 3.7. Let C;C1; C2 be three distinct pairwise-intersecting circles. Suppose thatL1 = D1 n intD and L2 = D n intD2 are lunes. Then C2 passes through the twointersection points of C and C1. Moreover, the inner arc of L1 is the outer arc of L2.Proof: See Figure 5. Denote by a and b the intersection points of C and C1 (notethat a 6= b). The arc C2 \D is the inner arc of L2, hence C1 and C2 cannot intersectinside the interior of D. The arc C1nD is the outer arc of L1, hence C1 and C2 cannotintersect outside D. Therefore C1 \ C2 � C, which implies that C2 passes through aand b.For the second part, observe that since C2 passes through a and b, the outer arc ofL2 is either C \D1 (i.e., the inner arc of L1) or C nD1. Assume to the contrary thatthe outer arc of L2 is C nD1. Then D2 contains C \D1 which is the inner arc of L1.9



Since L1 is a lune, D2 must contain also the outer arc of L1 which is C1 n D. SinceD nD2 is a lune, D2 must contain C1 \D (for otherwise C1 intersects the interior ofD n D2). The last two containments imply that D2 � D1 which is impossible sinceC1 and C2 intersect at a and b. 2Lemma 3.8. Suppose that C 2 C supports an inner arc of a lune L1, as well as anouter arc of a lune L2. Then either C is a pencil or C supports exactly one inner arcof a lune and one outer arc of a lune. Moreover, if C is not a pencil then the innerarc of L1 is the outer arc of L2.Proof: Write L1 = D1 n intD, L2 = D n intD2, for a (not necessarily distinct) pair ofcircles C1; C2 2 C. Denote by a and b the intersection points of C and C1. If C1 = C2then a; b are the only intersection points on C1 (as well as on C), because C1 n D isthe outer arc of L1 and C1 \ D is the innner arc of L2. Hence C is a pencil in thiscase. We may thus assume that C1 6= C2.By Claim 3.7, C2 passes through a; b and the inner arc of L1 is the outer arc ofL2. Denote that arc by d. If C contains another inner or outer arc of some lune then,by the preceding argument, this arc equals d. However, d can be an inner arc of atmost one lune and an outer arc of at most one lune. 2Proof of Theorem 3.1: We prove the Theorem by induction on n. The theoremclearly holds for n = 2. Assume that it holds for all n0 < n and consider the case ofn circles. Denote by C+ the set of all circles in C that support the outer arc of somelune. Denote by C� the set of all circles in C that support the inner arc of some lune.Case 1: C+ \ C� = ;. In this case G is bipartite. As is well known, bipartite planargraphs on n vertices have at most 2n� 4 edges, so the theorem holds in this case.Case 2: C+\C� 6= ;. Let C be a circle in C+\C�. By Lemma 3.8, either C is a pencilor C supports exactly one inner arc of a lune L1 = D1 n intD and one outer arc of alune L2 = D nD2, and we have C \D1 = C n intD2. If C is a (non-degenerate) pencilthen clearly it admits exactly 2n� 2 lunes. If C is not a pencil then C0 = C n fCg hasexactly one lune less than C; indeed, the lunes L1, L2 no longer exist, but instead wegained the lune D1n intD2. By the induction hypothesis, there are at most 2(n�1)�2lunes in C0 and therefore at most 2n � 3 � 2n � 2 lunes in C. This establishes theinduction step and thus completes the proof. 23.2 The number of lenses in a family of pairwise-intersectingcirclesIn this subsection we prove the following theorem.Theorem 3.9. A family of n pairwise intersecting circles in the plane determines atmost 18n lenses.Proof: Let C be a family of n pairwise intersecting circles in the plane. We provethe theorem by induction on n. The theorem clearly holds for n � 36, because the10



number of lenses is at most �n2� < 18n, for n � 36. Suppose that the theorem holdsfor all n0 < n and consider the case of n > 36 circles.Lemma 3.10. There exists a point interior to at least n=9 of the disks bounded bycircles in C.Proof: Let C0 2 C be a circle that has the smallest radius r. Let D�0 be the disk ofradius 3r that is concentric with C0. For any circle C 2 C n fC0g, the area of D \D�0is minimized when the radius of C is r and C is fully contained in D�0. This minimumarea is �r2. Since the area of D�0 is 9�r2, there is a point inside it that is interior toat least n=9 of the circles in C. 2Without loss of generality, assume that the origin, O, is interior to at least n=9 ofthe circles in C.We perform an inversion I of the plane with respect to O, e�ected by the mappingI(z) = 1=z, using the complex number representation of the plane. This is a one-to-one continuous mapping from the plane (minus the origin) to itself. I maps circles,not passing through the origin, to circles. If C is a circle such that O =2 D then Imaps intD onto intI(C). If C is a circle such that O 2 D then I maps intD onto thecomplement of I(C).Observation 3.11. Assume that C1; C2 2 C, and O 2 intD1 n D2. Let C 01 = I(C1)and C 02 = I(C2). If D1 \D2 is a lens then D02 n intD01 is a lune.Denote by C0 the set of all circles C 2 C such that O 2 D. We have jC 0j � n=9.Since the intersection of all the disks bounded by the circles in C 0 has a nonemptyinterior, there is at most one lens that is supported by two circles in C0. Denote by `the number of lenses supported by a circle in C 0 and a circle in CnC0. After performingthe inversion I, we have, by Observation 3.11, at least ` lunes in the family I(C). ByTheorem 3.1, ` � 2n � 2.By the induction hypothesis, the family C n C 0 determines at most 18(1� 1=9)n =16n lenses. Hence, C determines at most 16n + (2n � 2) + 1 < 18n lenses. Thisestablishes the induction step and thus completes the proof of the theorem. 2In Section 3.4 we shall need the following extension of Theorem 3.9:Lemma 3.12. Let A and B be two families of circles in the plane, such that everycircle in A intersects every circle in B, and there is a point p that is interior to all thedisks bounding the circles of A. Then the number of lenses within the family A [ Bthat are supported by a circle of A and by a circle of B is O(jAj+ jBj).Proof: First note that we may assume, without loss of generality, that every pair ofcircles in A intersect. Indeed, if C1; C2 2 A and C1\C2 = ;, then, since p 2 D1 \D2,it must be the case that one of D1;D2 contains the other disk. Suppose that D1 � D2.We claim that there is no lens that is supported by C2 and by a circle in B. Indeed,assume that there exists C 2 B such that D \D2 is a lens. Since C1 � D2, we have11



C1 \ D � D2 \ D, which means that the arc C1 \ D is contained within the lensD2 \ D, which contradicts the de�nition of a lens. Therefore, we may exclude C2from A without decreasing the number of lenses under consideration. Hence we mayassume that every pair of circles in A intersect.Perform an inversion map I with respect to p. By Observation 3.11, every lensthat is supported by a circle in A and a circle in B becomes a lune, unless it containsthe point p. Moreover, the outer (resp. inner) arc of each such lune is supported bythe image of a circle in B (resp. in A). Clearly, at most one lens can contain p.Denote by I(A) and I(B) the two families that contain the images of the circlesof A and of B, respectively, under the inversion I.Every pair of circles in I(A) intersect, and each circle of I(A) intersects every circleof I(B). De�ne a bipartite graph G whose vertices are the circles in I(A)[ I(B), andwhose edges are the pairs (C;C 0), where C 2 I(A), C 0 2 I(B), and D0 n intD is alune within the family I(A)[ I(B). By Lemma 3.4, G is a planar graph. Hence, thenumber of edges of G, which is equal to the number of lunes, the outer arc of whichis supported by a circle from I(B) and the inner arc of which is supported by a circlein I(A), is at most 2(jAj+ jBj)� 4. Adding the one possible lens that contains p, weobtain the asserted bound. 23.3 The number of lenses in arrangements of unit circlesWe now consider the case of unit circles, and tackle Conjecture 1.1(a).Our �rst result shows that the number of lenses in A(C) is subquadratic. We notethat the weaker subquadratic bound O(n3=2) is easy to establish using a forbiddensubgraph argument. (An even weaker bound of O(n5=3) follows from the more generalresults of Tamaki and Tokuyama [16] mentioned in the introduction.)Theorem 3.13. The number of lenses in A(C) is O(n4=3 log n).Proof: Let P denote the set of centers of the circles in C and let D be the set of disksof radius 2 centered at the points of P (each disk in D is concentric with a circle ofC and its radius is twice as large).Let G be the bipartite containment subgraph of D � P ; that is, the edges ofG are all pairs (D; p) 2 D � P such that p 2 D. We apply the batched range-searching technique of Katz and Sharir [8] to D and P . This technique computes Gand represents it as the disjoint union of complete bipartite graphs fDi�Pig, so thatPi(jDij+ jPij) = O(n4=3 log n).Note that for each lens incident to circles C;C 0, the center p0 of C 0 lies in the diskD of radius 2 concentric with C. Hence (D; p0) appears in one of the graphs Di �Pi.Hence it su�ces to show that the number of lenses `within' each of the graphsDi � Pi is linear in jDij + jPij. (Note that a lens ' in A(C) is also a lens in thearrangement of any subset of C that contains the two circles incident to '.) More12



precisely, let Ci denote the set of circles in C that are concentric with the disks in Di,and let �Ci denote the set of circles of C centered at the points of Pi. Our goal is toestimate the number of lenses in Ci [ �Ci.Since every `bichromatic' pair of circles in Ci � �Ci intersect, the centers of thecircles in Ci � �Ci all lie in some square R of side at most 8. We partition R into64 small subsquares, each of side 1, and observe that any pair of circles centered atthe same subsquare intersect each other. Now, instead of considering the set Ci [ �Ci,consider the O(1) sets C(p)i [ �C(q)i , where C(p)i is the set of circles of Ci whose centers liein the p-th small subsquare, and �C(q)i is the set of circles of �Ci whose centers lie in theq-th small subsquare. Since each pair of circles in C(p)i [ �C(q)i intersect, it follows fromTheorem 2.2 that the number of lenses in that set is O(jC(p)i j+ j �C(q)i j). Summing thesebounds over all p; q, we conclude that the number of lenses in Ci [ �Ci is O(jCij+ j �Cij).This completes the proof of the theorem. 2Remark: We conjecture that the real bound on the number of lenses is near-linear inn. However, proving such a bound is likely to be very hard. This is suggested by thefollowing consideration. Let S be a set of n points in the plane, and let C be the familyof unit circles centered at the points of S. For a pair of points p; q 2 S, the distancejpqj is 2 if and only if the two circles centered at p and q are externally tangent to eachother. If no two of these points of tangency coincide then, by perturbing the pointsof S slightly and randomly, we can ensure that at least a constant fraction of thenumber of these tangencies become lenses in the perturbed arrangement. The bestknown upper bound for the number of repeated distances in a set of n points in theplane is O(n4=3) [13] (see also [9, 10]), whereas the best known construction gives onlya slightly-superlinear number of repeated distances [9]. This upper bound has resistedany attempt of improvement for the past 15 years. Hence, improving our bound onthe number of lenses below O(n4=3) is likely to be hard. We feel con�dent, though,that it should not be too di�cult to improve the bound to O(n4=3). (We note, though,that, because of the issue of possibly coinciding tangencies, the repeated distancesproblem is not fully reducible to the lenses problem.)3.4 The number of lenses and lunes in arrangements of arbi-trary circlesIn this subsection we study general arrangements of circles of arbitrary radii in theplane, and tackle Conjecture 1.1(d). We �rst have the following upper bound on thenumber of lenses and lunes in such an arrangement.Theorem 3.14. The number of lenses and lunes determined by a family of n circlesof arbitrary radii in the plane is O(n3=2+"), for any " > 0, where the constant ofproportionality depends on ".Proof: Let C be a family of n circles of arbitrary radii. Let G be the intersectiongraph of C. That is, the vertices of G are the circles of C and the edges of G connectall intersecting pairs of circles. 13



We run a batched range-searching procedure for constructing G and for represent-ing it as the disjoint union of a family of complete bipartite graphs fAi � Big. Astandard way of doing this is as follows. Represent a circle C whose center is at (a; b)and whose radius is r by the pointpC(a; b; r;�(r2� a2 � b2)) 2 IR4;and by the pair of hyperplanesh+C : x4 = 2ax1 + 2bx2 + 2rx3 + (r2 � a2 � b2)h�C : x4 = 2ax1 + 2bx2 � 2rx3 + (r2 � a2 � b2):Note that a circle C of radius r centered at (a; b) and a circle C 0 of radius R centeredat (�; �) intersect if and only if(R � r)2 � (a� �)2 + (b� �)2 � (R+ r)2;or 2a� + 2b� + 2rR + (r2 � a2 � b2) � �(R2 � �2 � �2)and 2a� + 2b� � 2rR + (r2 � a2 � b2) � �(R2 � �2 � �2):In other words, they intersect if and only if the point pC lies above h�C0 and belowh+C0 .Hence, the range searching problem that we face is: We have a set P of n points inIR4, all lying on the paraboloid � : x4 = x21+x22�x23, and a setW of n wedges, we wishto �nd a compact representation of the set of all pairs of point-wedge containment.Applying standard range-searching machinery (see, e.g., [1, 2]), we can representthe set of these pairs as the disjoint union of a family of complete bipartite graphsfPi�Wig, such that the overall size of the vertex sets of these graphs is O(n3=2+"), forany " > 0, with the constant of proportionality depending on ". We then transformeach of the graphs Pi � Wi to the corresponding graph Ai � Bi, where Ai is theset of circles whose representing points are in Pi and Bi is the set of circles whoserepresenting wedges are in Wi.Clearly, if two of the given circles C;C 0 form a lens or a lune then they intersect,so the pair (C;C 0) appears in one of the bipartite graphs Ai � Bi, and forms a lensor a lune in Ai [ Bi.Fix a graph Ai�Bi, and let us denote it as A�B for short. Note that each circlein A intersects every circle in B, but there may be disjoint pairs of circles in A �Aand in B � B.Suppose that the smallest circle in A [ B is C 2 A, and let r be the radius of C.We argue as in the proof of Lemma 3.10. That is, let D0 be the disk of radius 3rconcentric with C. Each circle C 0 2 B intersects C and has radius r0 � r, so, arguingas above, the intersection of D0 with the disk D0 that C 0 bounds has area at least�r2. Hence, we can place O(1) points in D0 so that any such D0 contains at least one14



of them. This implies that we can decompose B into O(1) families B(1); : : : ;B(p) sothat all the circles in the same family have a common point in their interiors.Lemma 3.12 implies that the number of `bichromatic' lenses in A[B(j) is O(jAj+jB(j)j). The analysis of lunes is a bit more involved. First, as implied by Lemma 3.4,the number of bichromatic lunes whose inner arc is supported by a circle of B(j) andwhose outer arc is supported by a circle of A is O(jAj+ jB(j)j). (Note that, as in theproof of Lemma 3.12, we �rst argue that we may assume that every pair of circlesin B(j) intersect; indeed, if this family contains two circles C;C 0 such that C is fullycontained in the interior of C 0, then, as is easily veri�ed, C cannot support the innerarc of any lune under consideration, so it can be ignored.)It remains to consider lunes whose inner arc is supported by a circle C 2 A andwhose outer arc is supported by a circle C 0 2 B(j). Suppose �rst that the radius of Cis smaller than or equal to the radius of C 0. Then the outer arc of the lune is largerthan half of C 0, and consequently the number of these lunes is at most O(jB(j)j). Anyother lune under consideration has its inner arc supported by a circle in A whoseradius is at least r. Let A0 denote the subset of these circles. Arguing as above,we can partition A0 into O(1) subfamilies, so that all circles in the same subfamilyhave a common point in their interiors. For each such subfamily A00, Lemma 3.4 andthe analysis given in the preceding paragraph, imply that the number of bichromaticlunes under consideration in A00 [ B(j) is O(jA00j + jB(j)j). Summing this over allthe subfamilies A00, we �nally obtain that the overall number of lenses and lunes inA [ B(j) is O(jAj+ jB(j)j).Summing this bound over the O(1) indices j, we conclude that the number ofbichromatic lenses and lunes in A [ B = Ai [ Bi is O(jAij + jBij). Summing thisbound over all bipartite graphs Ai � Bi in our decomposition, we conclude that theoverall number of lenses and lunes in C is O(n3=2+"), as asserted. 2We next derive the following strengthening of Theorem 3.14:Theorem 3.15. The number of lenses and lunes determined by a family of n circlesof arbitrary radii in the plane with P intersecting pairs is O(n1=2�"P 1=2+" + n), forany " > 0, where the constant of proportionality depends on ".Proof: Clearly, we only need to prove the theorem in the case that P = o(n2), andwe may also assume that P > n, for otherwise the complexity of the arrangementis O(n), so the theorem trivially holds in this case. Put r = n2=P , and choose arandom sample R of r circles of C. The expected number of intersecting pairs in Ris O(Pr2=n2) = O(r), which implies that the expected complexity of A(R) is O(r).Decompose A(R) into pseudo-trapezoids (as in [12]). The "-net theory implies that,with high probability, each pseudo-trapezoid is crossed by at most O(nr log r) circlesof C. We can thus assume that our sample R is such that the number of pseudo-trapezoids is O(r) and each is crossed by at most O(nr log r) circles of C. For any lensor lune L in A(C) there exists a pseudo-trapezoid � such that L is also a lens or lunein A(C� ), where C� is the collection of circles of C that cross � . By Theorem 3.14, thenumber of lenses and lunes in A(C�) is O((n=r)3=2+"), for any " > 0. Hence, the total15



number of lenses and lunes in A(C) isO(r) �O((n=r)3=2+") = O(n3=2+"=r1=2+") = O(n1=2�"P 1=2+");as asserted. 2Remark: We do not know whether the bound in Theorem 3.14 is tight. The bestlower bound that we can construct is 
(n4=3). Indeed, construct a set L of n lines anda set P of n points that have �(n4=3) incidences between them (see, e.g., [7] for such aconstruction). Choose a su�ciently small parameter � > 0, replace each point p 2 Pby a circle of radius � centered at p, and replace each line ` 2 L by a parallel linethat lies above ` at distance � from it. We now have �(n4=3) tangencies between thenew circles and lines. Finally, take each of the new lines, move it slightly down andbend it slightly upwards into a huge circle. It is easily seen that these deformationscan be made so that all the huge circles have the same radius and so that each ofthe former tangencies is turned into a lens in the new arrangement. We thus obtainan arrangement of 2n circles, of only two di�erent radii, that has 
(n4=3) lenses.(Similarly, by bending the lines slightly downwards, we can obtain an arrangementwith 
(n4=3) lunes.)4 The Existence of Vertices Incident to at MostThree CirclesIn this section we tackle parts (a), (c) and (d) of Conjecture 1.1, and derive partialsolutions to them.4.1 Vertices of low degree for pairwise-intersecting circlesIn this subsection we establish the following result:Theorem 4.1. Let C be a family of n pairwise intersecting circles in the plane. Ifn is su�ciently large and C is not a pencil then there exists an intersection pointincident to at most 3 circles.We need the following easy consequence of Euler's formula for planar maps, whichhas already been used in the previous paper [11]; we include the simple proof for thesake of completeness.Lemma 4.2. Let C be a �nite family of circles in the plane. For every k � 2 denoteby tk the number of vertices of A(C) that are incident to exactly k circles of C. Denoteby fk (k � 1) the number of faces of A(C) that have k edges. Thent2 + f2 + 2f1 � 6 +Xk�3(k � 3)tk +Xk�3(k � 3)fk:16



Proof: Denote by V;E; F the numbers of vertices, edges and faces of A(C), respec-tively. We have V =Xk�2 tk; F =Xk�1 fk; E =Xk�2 ktk = 12Xk�1 kfk:By Euler's formula, V +F = E+1+c, where c is the number of connected componentsof SC. Therefore, 3Xk�2 tk + 3Xk�1 fk =Xk�2 ktk +Xk�1 kfk + 3 + 3c;which is easily seen to imply the lemma. 2Proof of Theorem 4.1: Let tk, fk, for k � 2, be as de�ned in Lemma 4.2. Note thatwe may assume in this case that f1 = 0. Indeed, if there is a circle which contains justone intersection point, then it follows from the fact that the circles in C are pairwiseintersecting that C is a degenerate pencil, contrary to assumption.We assume to the contrary that t2 = t3 = 0 and derive a contradiction. Underthis assumption, Lemma 4.2 implies:V =Xk�4 tk �Xk�4(k � 3)tk � f2 � 6:By Theorems 3.1 and 3.9, the number of bounded faces of A(C) of degree 2 (i.e., thelunes and lenses of C) is less than 20n. Taking into account the unbounded face aswell, we still have V � f2 � 6 < 20n.Claim 4.3. C does not contain a pencil of size � 9n1=2.Proof: Suppose to the contrary that there exists a pencil C 0 � C of size jC0j = k �9n1=2. Each circle in C n C0 intersects the circles in C 0 in at least k distinct points.Hence, if we add a circle C1 of C nC0 to C0 we obtain at least k new intersection points.Adding another circle C2 2 C n C0 yields at least k � 2 additional new intersectionpoints with the circles in C 0 (note that C1 and C2 can share at most two of theseintersection points). Continuing in this manner, adding the j-th circle of C n C 0 willyield at least k � 2j + 2 new intersection points.Suppose �rst that k < 2n=3. Then we can add k=2 circles of C n C0 to C 0, andobtain at least k2=4 distinct vertices of A(C). Since the number of vertices is at most20n, we obtain k < 9n1=2, a contradiction.Suppose then that k � 2n=3. Adding one circle C 2 C n C0 to C0 yields at least2n=3 new intersection points, all having degree 2 in A(C0 [ fCg). Since each of thesepoints must have degree at least 4 in A(C), it follows that C nC0 must contain at least2n=3 additional circles, a contradiction that completes the proof of the claim. 2Since f2 � 20n it follows that by removing at most 20n edges fromA(C) we obtaina planar graph without multiple edges. Since the number of edges in such a planargraph is at most three times the number of its vertices, we obtain E � 20n < 3V , orE < 80n. 17



Figure 6: An arrangement of six or seven circles where each vertex is incident to atleast three circlesClaim 4.4. If n is su�ciently large, then each vertex of A(C) is incident to at most27n3=4 circles.Proof: Suppose to the contrary that there exists an intersection point p incident tomore than 27n3=4 circles. Let C 0 denote the subfamily of circles incident to p.By Claim 4.3, C does not contain a pencil of size 9n1=2. Therefore, within thefamily C 0, every intersection point other than p has degree at most 9n1=2. Henceeach circle C 2 C 0 is incident to at least (27n3=4)=(9n1=2) = 3n1=4 distinct intersectionpoints, so C contributes at least these many edges to A(C). Hence, the number ofedges of A(C) is at least 27n3=4 � 3n1=4 = 81n, a contradiction. 2By Claim 4.4, each circle in C is incident to at least n=(27n3=4) > 127n1=4 distinctintersection points, and thus contributes at least these many edges to A(C). Hencethe number of edges of A(C) is at least 127n5=4, which is greater than 80n when n issu�ciently large. This contradiction completes the proof of the theorem. 2Theorem 4.1 is a partial solution to Conjecture 1.1(d). In some sense Conjecture1.1(d) is tight. We have already seen in [11] that there are con�gurations of fourpairwise intersecting unit circles such that every intersection point is incident toexactly three circles. If we do not restrict ourselves to unit circles, we also havethe example in Figure 6 of six circles where each intersection point is incident to atleast three circles. This example has also the property that at most two circles passthrough any two distinct points (i.e., no pencils of size > 2 exist). We can add aseventh circle (the dotted one in Figure 6) that violates this condition but preservesthe property that each intersection point is incident to at least three circles.4.2 Vertices of low degree in arrangements of unit circlesIn this subsection we establish the following result, which provides a partial solutionto Conjecture 1.1(a) posed in the introduction.18



Figure 7: Covering a disk of radius 2 by seven disks of radius 1Theorem 4.5. Let C be a collection of n unit circles in the plane. If the number ofpairs of intersecting circles in C is at least �n, for some su�ciently large constant �,then A(C) contains a vertex incident to at most 3 circles.Proof: We assume to the contrary that A(C) does not contain any such vertex, andderive a linear upper bound on P , the number of intersecting pairs of circles. Thereexists a circle C 2 C that intersects at least 2P=n other circles of C. Let �0 denote aunit disk that intersects the maximum number, �, of circles of C; clearly, � � 2P=n,or P � �n=2. Denote the set of these circles by C�0. The centers of all circles of C�0lie in the disk ��0 that is concentric with �0 and has radius 2 (note that any circlecentered in ��0 belongs to C�0). Cover ��0 by 7 unit disks (this is easy to do, using aconstruction based on the hexagonal grid; see Figure 7.) One of these disks, call it�1, contains at least �=7 centers. The set C1 of circles centered in �1 has the propertythat every pair of its elements intersect each other, and the intersection points of anysuch pair lie in the disk ��1 of radius 2 concentric with �1; the number P1 of thesepairs is thus at least ��=72 �. The size n1 of C1 satis�es n1 � �, as follows from themaximality of �.As the subsequent analysis will show, a technical problem may arise when thesepairs of circles intersect in too few points, or, more precisely, when there are intersec-tion points of very high degree (linear in �). The following lemma takes care of thisproblem.Lemma 4.6. If ��1 contains a vertex incident to more than a� circles of C1, for anyconstant parameter a, then the number of distinct vertices of A(C) within ��1 is atleast a�(a� � 2)=2.Proof: Let v be a point in ��1 incident to w � a� circles of C1. There may be at mostw=2 tangent pairs of these circles, and the other pairs of them intersect at pairwise19



distinct points that all lie in ��1. The number of these points is thus at least�w2�� w2 = w(w � 2)2 � a�(a� � 2)2 :2 We now cover ��1, as above, by 7 unit disks. One of them, call it �, has thefollowing property:(i) If the condition of Lemma 4.6 holds then � contains at least a�(a��2)=14 distinctvertices of A(C).(ii) Otherwise, at least �(� � 7)=686 pairs of circles of C1 intersect inside �.Let C� denote the set of circles that intersect �. By the maximality property of�0, we have n� = jC�j � �.We modify the analysis based on Euler's formula, given in Lemma 4.2, and applyit to the arrangement ~A(C�), which is obtained by clipping A(C�) to within �. Specif-ically, let V;E and F be the sets of vertices, edges and faces of ~A(C�). (Note thatthe intersection points of the circles of C� with @� constitute additional vertices of~A(C�). By shifting � slightly, if necessary, we may assume that the number of thesenew vertices is exactly 2n� and each is incident to exactly one edge of the clippedarrangement.) We have jV j+ jF j = jEj+ 1 + c, where c is the number of connectedcomponents of � \S C�. We also havejV j = 2n� +Xk�2 t(�)k ; jF j =Xk�1 f (�)k ; jEj = n� +Xk�2 kt(�)k = 12Xk�1 kf (�)k ;where t(�)k is the number of vertices of ~A(C�) that lie in the interior of � and areincident to exactly k circles of C�, and f (�)k is the number of faces of ~A(C�) thatare incident to exactly k edges of ~A(C�), where each edge that terminates on @� iscounted twice (all these edges bound the unbounded face of the clipped arrangement).Hence we have6n� + 3Xk�2 t(�)k + 3Xk�1 f (�)k = n� +Xk�2 kt(�)k +Xk�1 kf (�)k + 3 + 3c:Equivalently,t(�)2 + f (�)2 + 5n� =Xk�4(k � 3)t(�)k +Xk�4(k � 3)f (�)k + 3 + 3c: (1)Since we have assumed that A(C) does not contain any vertex of degree 2 or 3, itfollows that t(�)2 = t(�)3 = 0. We next apply Theorem 3.13 to C� and observe that the20



clipping of the arrangement does not a�ect the asymptotic bound on f (�)2 providedby the theorem. Using also the trivial bound f (�)1 � n�, we thus obtainXk�4 kt(�)k = O(n4=3� log n�) = O(�4=3 log �): (2)Suppose �rst that, in the construction of �, the condition of Lemma 4.6 did hold,with a value of a that will be determined later on. In this case, as follows from thelemma and from the construction, there are at least a�(a� � 2)=14 distinct verticesof A(C) inside �. In this case (2) implies thata�(a� � 2)=14 <Xk�4 kt(�)k = O(�4=3 log �):In other words, � is bounded by a constant c1 (that depends on a), so we haveP � c1n=2.Suppose then that the condition of Lemma 4.6 did not hold for a. That is, nopoint is incident to more than a� circles of C1. We then haveP� � a�Xk=2 �k2�s(�)k ; (3)where P� is the number of pairs of circles in C1 that intersect inside �, and s(�)k is thenumber of points that lie inside � and are incident to exactly k circles of C1.Let s(�)�k denote the number of vertices of A(C1) that lie inside � and whose degreeis at least k, for k � 2. By the result of Spencer et al. [13] (see also [5, 14]), one has(recall that n1 = jC1j)s(�)�k � b�n1k + n21k3� ; (4)for an appropriate absolute constant b. (See Lemma 4.10 below for a strengtheningof this bound, which is not needed for the present analysis.)Put P � = a�Xk=A�k2�s(�)k ;for a constant parameter A that will be determined shortly. We haveP � = a�Xk=A�k2�hs(�)�k � s(�)�k+1i ��A2�s(�)�A + a�Xk=A+1 ��k2���k � 12 �� s(�)�k �21



�A2�s(�)�A + bpn1cXk=A+1 ks(�)�k + a�Xk=bpn1c+1 ks(�)�k :Using (4), we readily obtain thatP � � 3bn21A + 2ab�n1 � �3bA + 2ab� �2:Since P� � �(� � 7)=686, it follows that if we choose A su�ciently large and asu�ciently small, we can ensure that P � < P�=2. Using (2), this implies that�(� � 7)686 � P� � 2 A�1Xk=2 �k2�s(�)k � AXk�2 ks(�)k � AXk�4 kt(�)k � B�4=3 log �;for an appropriate constant B. (The fourth inequality follows from the observationthat any vertex that contributes to the sum Pk�2 ks(�)k also contributes to the sumPk�4 kt(�)k , with a larger or equal coe�cient k.) Hence, as above, � is at most someconstant c2, so P � c2n=2 in this case. Hence, choosing � > maxfc1; c2g=2 we obtaina contradiction, which therefore completes the proof of the theorem. 2Inspecting the proof of the theorem, we actually have the following stronger result.Corollary 4.7. Let C be a �nite family of unit circles with the property that thereexists a unit disk that intersects at least � circles of C. Then there exists a vertex ofA(C) that is incident to at most 3 circles.4.3 Vertices of low degree in arrangements of arbitrary cir-clesIn this section we establish the following theorem, whose proof exploits the bound onthe number of lunes and lenses given in of Theorem 3.15.Theorem 4.8. There exists an absolute constant � with the following property. LetC be a family of n circles of arbitrary radii in the plane, and let q � 2 denote themaximal size of a pencil in C. If the number of pairs of intersecting circles in C is atleast �n(q + n1=3) then A(C) contains a vertex incident to at most 3 circles.Proof: Applying Lemma 4.2 to A(C), and continuing to use the same notation, weobtain t2 + f2 + 2f1 � 6 +Xk�3(k � 3)tk +Xk�3(k � 3)fk:Note that, as above, f1 � n. Assume to the contrary that t2 = t3 = 0. Then we have(replacing " by 3" in Theorem 3.14) V � E � 4(f2+2f1) = O(n3=2+3"), where V andE denote, respectively, the number of vertices and edges of A(C).22



Let P denote the number of pairs of intersecting circles in C. We haveP �Xk�4 �k2�tk:Denote by t�k the number of vertices of A(C) incident to at least k circles. We needthe following result, which improves a bound due to Clarkson et al. [5] on the numberof vertices of large degree in arrangements of circles of arbitrary radii.Lemma 4.9. Let C be a family of n circles of arbitrary radii in the plane with P pairsof intersecting circles. Then the number t�k of points incident to at least k circlessatis�est�k � b� Pk2:5 + nk� ; (5)for an appropriate absolute constant b.Proof: The approach is to derive a re�ned bound on the number I of incidencesbetween the circles of C and the points in an m-element set M . This is done usingthe following variant of the technique of [5].Draw a random sample R of r = dn2=P e circles from C. The expected numberof intersecting pairs in R is at most P (r=n)2 = r. Decompose A(R) into pseudo-trapezoids (see [12] for details), and for each pseudo-trapezoid � consider the set M�of points of M that lie in �0, which is � with its four vertices removed, and the set C�of circles that intersect �0. Put m� = jM� j and n� = jC� j. By the results of [5], thenumber of incidences between C� and M� is O(m3=5� n4=5� +m� +n� ). We sum this overall � 's, and note that the incidences that we miss are between the circles of C andthe vertices of the trapezoids. Any such incidence can be charged to an intersectionbetween a circle of R and a circle of C. The expected number of these intersectionsis O(Pr=n) = O(n). Denoting by I 0 the number of these incidences, we obtainI = I 0 +O X� m3=5� n4=5� +m� + n�! :Using H�older's inequality, and observing that P� m� = O(m), we obtainI = I 0 +O (X� m� )3=5 � (X� n2�)2=5 +m+X� n�! =I 0 +O m3=5(X� n2� )2=5 +m+X� n�! :Taking expectation with respect to the random sample R, and using the analysis ofClarkson and Shor [6] and the concavity of the function x2=5, we obtainI = O(n) +O m3=5 � ��nr �2 � r�2=5 +m+ n! =23



O�m3=5n4=5r2=5 +m+ n� = O(m3=5P 2=5 +m+ n):We now apply this bound to C and to the set M of all t�k vertices incident to at leastk circles. Since the number of incidences is at least kt�k, we obtainkt�k = O(t3=5�k P 2=5 + t�k + n);from which the asserted bound on t�k follows readily. 2Remark: An analogous bound to that derived in Lemma 4.9, which strengthens thebound in (4) that we have used earlier, can be established for arrangements of unitcircles. Even though we do not need this variant, we include it here for the sake ofcompleteness:Lemma 4.10. Let C be a family of n unit circles in the plane with P pairs ofintersecting circles. Then the number of points incident to at least k circles isO(P=k3 + n=k).Proof: Using Sz�ekely's technique [14], it is easy to show that the number I of inci-dences between the circles of C and a set M of m points satis�esI = O(m2=3P 1=3 +m+ n): (6)Let M be the set of all vertices of A(C) that are incident to at least k circles of C.Then I � mk, so we have mk � c(m2=3P 1=3+m+ n), for an appropriate constant c,from which the claim follows readily. 2Claim 4.11. Let L be a collection of m > 54b lines in the plane. If A(L) does notcontain a vertex (which may be at in�nity) incident to more than m=a lines, for anyconstant a satisfying a > 12b, then the number of distinct vertices of A(L) is at leastcm2, for an appropriate constant c.Proof: By applying a suitable projective transformation to the plane, we may assumethat no two lines in L are parallel. Similar to (4) and the proof of Lemma 4.10, ithas been shown in [15] (see also [10]) that, in an arrangement of m lines, the numberof vertices incident to at least k lines is at most b(m=k +m2=k3), for an appropriateabsolute constant b. The number Q of pairs of crossing lines is, by assumption, �m2 �.Hence, denoting by wk (resp. w�k) the number of vertices of A(L) incident to exactly(resp. at least) k lines, and using an approach similar to the one in the proof ofTheorem 4.5 we have, for a parameter B that will be determined shortly,Q = m=aXk=2 �k2�wk = B�1Xk=2 �k2�wk + m=aXk=B�k2�wk �B2 B�1Xk=2 kwk +�B2�w�B + pmXk=B+1 kw�k + m=aXk=pm+1 kw�k �24



B2 Xk�2 kwk + bm2B + pmXk=B+1 2bm2k2 + m=aXk=pm+1 2bm �B(E 0 �m)2 + 3bm2B + 2bm2a � B(3V 0 +m)2 + 3bm2B + 2bm2a ;where V 0 and E0 are the numbers of vertices and edges of the line arrangement,respectively. Hence, if we choose a > 12b and B = 18b, we will havem26 � 9b(3V 0 +m)and this implies the claim. 2Claim 4.12. A(C) satis�es the following inequality:�n(q + n1=3) � P �Xk�4 �k2�tk � 4 �Xk=4 �k2�tk;where � = maxfaq; c0(P 2=9 + n1=3)g;for an appropriate constant c0.Proof: Let v be a vertex of A(C) incident to k > � circles. Let C0 denote thesubfamily of circles incident to v. Apply to the plane an inversion centered at v. Allthe circles in C 0 are mapped into lines. No vertex (which may be at in�nity) of thisline arrangement is incident to more than q lines, for otherwise C would contain apencil of size larger than q. Since k > aq, Lemma 4.11 implies that the line images ofthe circles of C 0, and thus the circles of C 0 themselves, intersect in at least ck2 distinctpoints. Since k � c0(P 2=9 + n1=3), simple calculation shows that t�� < 12c�2 < 12ck2,so at least half of these intersection points are each incident to at most � circles.This implies that the number of pairs of circles meeting at high-degree vertices canbe charged to twice the number of pairs of circles meeting at low-degree vertices. Inother words, we have shown thatXk>��k2�tk � 3Xk���k2�tk:This readily implies the claim. 2We next estimate the sum in Claim 4.12 using (5). That is, we have, for aparameter B that will be determined shortly and for � = (P=n)2=3,�n(q + n1=3) � P � 4 �Xk=4 �k2�tk = 4B�1Xk=4 �k2�tk + 4 �Xk=B�k2�tk �25



2B B�1Xk=4 ktk + 4�B2�t�B + 4 �Xk=B+1 kt�k + 4 �Xk=�+1 kt�k �2BXk�4 ktk + 4bPB1=2 + �Xk=B+1 8bPk1:5 + �Xk=�+1 8bn �2BE + 20bPB1=2 + 8�bn:If � = aq, i.e., q = 
(P 2=9 + n1=3) then, choosing the constants B, a and � appropri-ately, we will have, using Theorem 3.15,P < 4BE � 16B(f2 + 2f1) = O(n1=2�"P 1=2+" + n);for any " > 0. This implies that P = O(n) and this will lead to a contradiction if werequire � to be su�ciently large.Otherwise, for q = O(P 2=9 + n1=3), we again can obtainP < 4BE +O(�n) � 16B(f2 + 2f1) +O(�n) = O(n1=2�"P 1=2+" + n+ nP 2=9 + n4=3);for any " > 0. This implies that P = O(n4=3), which again is a contradiction if � isrequired to be su�ciently large. 2Remark: Theorem 4.8 may fail if P is not su�ciently large, as the following construc-tion shows. Given parameters n and q, draw m = n=q concentric circles �1; : : : ;�mand another circle C that intersects each of them at two points; denote the intersec-tion points of � and �i by ai and bi. Now replace each �i by a pencil of q circlesCi1; : : : ; Ciq that pass through ai and bi and are su�ciently close to each other so thatno pair of circles from di�erent pencils intersect. Put C = fCgSfCij j i � m; j � qg.This is a collection of n+ 1 circles whose union is connected, so that every vertex oftheir arrangement is incident to q+1 circles. In this case the size of the largest pencilis q+1 and the number of intersecting pairs of circles is n+m�q2� = n(q+1)=2. Thisshows that Theorem 4.8 may fail if we do not require that the number of intersectingpairs of circles is substantially larger than n times the size of the largest pencil.5 Intersecting Pairs and Vertices in Arrangementsof CirclesIn this section we use the machinery developed in the preceding sections to obtainthe following results, which relate the number of vertices of the arrangement to thenumber of intersecting pairs of circles, and which we believe to be of independentinterest.Theorem 5.1. Let C be a collection of n unit circles, with P intersecting pairs ofcircles. Then these circles intersect in at least �P distinct points, for some constant� > 0. 26



Proof: The proof proceeds by induction on n and P . The claim clearly holds for anyn � 2 and P = 1 (for any � < 1). We assume that it holds for all n0 < n and all P ,and for n0 = n and P 0 < P , and will show that it also holds for n and P .Arguing as in the proof of Theorem 4.5, we claim that there exists a unit disk �which contains at least a�2 distinct vertices of A(C), where � is the maximum numberof circles of C that intersect any unit disk, and where a is an appropriate absoluteconstant. Indeed, if the condition in Lemma 4.6 is satis�ed then the claim is obvious.Otherwise, we choose a disk � for which P� = 
(�2), and repeat the analysis in thepreceding section (without assuming anything about t2 and t3). The inequality (2)becomesXk�2 kt(�)k = O(t(�)2 + t(�)3 + f (�)1 + f (�)2 ) = O(t(�)2 + t(�)3 + �4=3 log �): (7)The bound for P � is derived exactly as above, and allows us to assume that P � < P�=2.This, combined with (7), yields, as above,
(�2) = P� = O(t(�)2 + t(�)3 + �4=3 log �):Hence, if � is at least some appropriate and su�ciently large constant � then we havet(�)2 + t(�)3 = 
(�2);which implies the claim. If � < � then, since A(C) contains at least one vertex, wecan choose � to be a unit disk containing that vertex, and choose a so that 1 � a�2.Then in this case we also have a unit disk that contains at least a�2 distinct verticesof A(C).Remove from C all the n� circles of C� (i.e., the circles that intersect �), and letC 0 be the resulting subset. Let P 0 denote the number of intersecting pairs of circlesin C 0. We have P 0 = P � P1 � P2, where P1 � �2=2 is the number of intersectingpairs of circles in C�, and P2 is the number of intersecting pairs (C;C 0) of circles, withC 2 C� and C 0 2 C 0. Note that any such circle intersects the disk �� of radius 3 andconcentric with �. We can cover �� by 19 unit disks, using a construction based onthe hexagonal grid and similar to that shown in Figure 7, and use the maximality of� to conclude that the number of such circles C 0 is at most 19�. Hence P2 � 19�2.In other words, we have found N � a�2 � 2�(P1 + P2) distinct vertices of A(C),for an appropriate choice of �. After removing C�, we are left with a set C 0 of n0 < ncircles, such that no vertex of A(C0) coincides with any of the vertices constructed sofar. If P 0 � P=2 then P1+P2 = P �P 0 � P=2, so we have shown that A(C) containsat least 2�P=2 = �P distinct vertices. Otherwise, apply the induction hypothesis ton0 and P 0, to obtain at least �P 0 new vertices of A(C). Hence the number of distinctvertices of A(C) is at least�P 0 + 2�(P1 + P2) � �(P 0 + P1 + P2) = �P:This establishes the induction step and thus completes the proof of the theorem. 227



Corollary 5.2. The number of distinct intersection points of n unit circles whosecenters lie inside a square of side length d > 1 is at least 
(n2=d2).Proof: Assume d to be an integer, and partition the given square into d2 squares ofside length 1. Let Ci denote the subcollection of the given circles whose centers lie inthe i-th smaller square, for i = 1; : : : ; d2. Every pair of circles in Ci intersect, so, byTheorem 5.1, these circles have 
(n2i ) distinct points of intersection, where ni = jCij.We sum these lower bounds over all families Ci, and note that each intersection pointcan contribute to only O(1) terms. Hence, the total number of intersection points ofthe given circles is 
(Pi n2i ) = 
((Pi ni)2=d2) = 
(n2=d2). 2Remark: The corollary does not use the full `strength' of the theorem. It onlyrequires the weaker result that if every pair of circles intersect then they determine
(n2) distinct intersection points.Corollary 5.3. (a) For a collection C of n unit circles whose centers lie in a squareof size � cn1=2, for a su�ciently small constant c, there exists a point that isincident to only two or three circles.(b) If the area of the union of the disks bounded by the circles of C is at most c0n,for a su�ciently small constant c0, then there exists a point that is incident toonly two or three circles.Proof: In both cases, it is easy to show that the number of pairs of intersectingcircles in C is larger than �n, provided c and c0 are su�ciently small. 2Theorem 5.4. Let C be a collection of n circles of arbitrary radii in the plane withP intersecting pairs. Let q denote the largest size of a pencil in C, and suppose thatP � �n(q + n1=3), for a su�ciently large constant �. Then A(C) has 
(P ) distinctvertices.Proof: Similar to the assertion of Claim 4.12, we have�n(q + n1=3) � P �Xk�2 �k2�tk � 3 �Xk=2 �k2�tk;where � is as de�ned above. We estimate this sum using Lemma 4.9. That is, wehave, for a parameter B that will be determined shortly,�n(q + n1=3) � P � 4 �Xk=2 �k2�tk = 4B�1Xk=2 �k2�tk + 4 �Xk=B�k2�tk �2B2 B�1Xk=2 tk + 4�B2�t�B + 4 (P=n)2=3Xk=B+1 kt�k + 4 �Xk=(P=n)2=3+1 kt�k �28
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