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Introdution 21 IntrodutionLet S be a set of n points in Rd . The roundness of S an be measured by approxi-mating S with a sphere � so that the maximum distane between a point of S and �is minimized, i.e., by omputingmin2Rd;r2Rmaxp2S jd(p; )� rj:For  2 Rd and for r; R 2 R with 0 � r � R, we de�ne the spherial shell (shell,for short, and, in the plane, annulus) A(; r; R) to be the losed region lying betweenthe two onentri spheres of radii r and R entered at . The width of A(; r; R) isR � r. The problem of measuring the roundness of S is equivalent to omputing ashell, A�(S), of the smallest width that ontains S. See Figure 1.
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Figure 1: The annulus A�(S).The main motivation for omputing a minimum-width shell or annulus omes frommetrology. For example, the irularity of a two-dimensional objet O in the planeis measured by sampling a set S of points on the surfae of O (e.g., using oordinatemeasurement mahines) and omputing the width of the thinnest shell ontainingS [21℄. Motivated by this and other appliations, the problem of omputing A�(S)in the plane has been studied extensively [2, 6{8, 18, 19, 22, 26, 28, 30{33, 35, 36, 38℄.Ebara et al. [18℄ notied that in the planar ase the enter of A�(S) is a vertex of theoverlay of the nearest- and farthest-neighbor Voronoi diagrams of S. This propertywas later re�ned and extended in [32, 36℄. These observations immediately lead toan O(n2)-time algorithm for omputing A�(S) in the plane. Subquadrati algorithmswere later developed in [2, 6, 7℄. The asymptotially fastest known randomized algo-rithm, by Agarwal and Sharir [6℄, omputes A�(S) in expeted time O(n3=2+"), for any" > 0. Sine the subquadrati algorithms are rather ompliated, simpler and fasteralgorithms have been developed for various speial ases [13, 16, 26, 37℄. Mehlhorn etal. [28℄ and Kumar and Sivakumar [25℄ have studied this problem under the probing2



Introdution 3model in whih the set S of sample points is hosen adaptively; see the original papersfor details.Very little was known about omputing A�(S) eÆiently in higher dimensions.Extending the observation by Ebara et al. [18℄ to R3 , it an be shown that the enterof A�(S) is the intersetion point of an edge of the nearest-neighbor Voronoi diagramof S with a fae of the farthest-neighbor Voronoi diagram of S, or vie versa. Usingthis fat, A�(S) an be omputed in O(n3 log n) time [16℄. This idea an also beextended to higher dimensions. Very reently Chan [11℄ pointed out that the three-dimensional problem an be solved exatly in a very simple manner in time O(n2);in fat his observation gives a proedure in all dimensions. See the disussion at theend of the paper. borAny objetions?is  �This paper ontains two main results. borMade an itemize out of this ... If you do  �not like it, remove itemize and replae (i) and (ii) by words (�rst, seond...)is(i) For d � 2, given a parameter " > 0, we present simple algorithms that runeither in time O� n"d log( �!�")� or in O� n"d�2 �logn + 1"� log � �!�"�� for omputinga shell that ontains S and whose width is at most (1 + ")!�, where !� isthe width of A�(S) and � = diam(S) is the diameter of S (Setion 3). Ifthe middle radius (i.e., average of the inner and outer radii) of A�(S) is atmost U � diam(S), then the running time of the algorithms are O((n="d) logU)and O� n"d�2 �log n+ 1"� logU�, respetively. In most pratial situations, U isa onstant. For example, if the input points span an angle of at least � withrespet to the enter of A�(S), U = O(1=�).  �borTehnially when we write logU , do we mean maxflogU; 1g? Tehnially, Uould be less than 1!isA main idea used in the algorithms is the observation that, in the plane, theminimum-area annulus ontaining S an be used to approximate A�(S), andwhile this approximation might not always be good, it an at least be omputedin linear time using linear programming. We re�ne this idea and extend it tohigher dimensions to ahieve the bounds stated above.(ii) We desribe simpler, faster algorithms for d = 2. We �rst desribe in Setion 4.1a very simple O(n logn)-time algorithm for omputing an annulus that ontainsS and whose width is at most twie that of A�(S). Dunan et al. [16℄ haddesribed an approximation algorithm under some assumptions on the distribu-tion of input points. No general near-linear time algorithm with onstant-fatorapproximation was previously known.We then ombine this algorithm with the previous one to obtain a (1 + ")-approximation algorithm. Given a parameter " > 0, we ompute in O(n logn+3



Geometri Preliminaries 4n="2) time an annulus that ontains S whose width is at most (1+ ")!�, where!� is the width of A�(S) (Setion 4.2).  �borShould we add here: More reently, T.M. Chan obtained a number of new approx-imation results using fairly simple tehniques; refer to [11℄ and the disussion at the endof this paper. SuÆient? By the way, I am against enumerating the results he obtainedin his paper.is2 Geometri PreliminariesLet S be a set of n points in Rd . For a point p 2 Rd , let r(p) (resp. R(p)) denote thedistane between p and its nearest (resp. farthest) neighbor in S. A(p; r(p);R(p)) isthe shell of smallest width that is entered at p and ontains S, whih we denote byA(p). In what follows, unless we onsider the problem spei�ally in the plane, wewill use the term \shell" to refer to a spherial shell in dimension higher than twoand to an annulus in two dimensions. Set!(p) = R(p)� r(p) and rmid(p) = R(p) + r(p)2 :We put !� = !�(S) = infp2Rd !(p) and denote by A� = A�(S) a shell of width !�ontaining S. Note that the optimum value !� may not be attained by any �nitepoint, in whih ase A�(S) is a slab enlosed between two parallel hyperplanes, and!�(S) is then the standard width of S. See Figure 2 for an illustration of this ase.The following lemma states two simple but useful properties of rmid(p).
Figure 2: The minimum-width annulus is realized by a enter at in�nityLemma 2.1 Let S be a �nite set of points in Rd . For any p; q 2 Rd , we have thefollowing:(i) rmid(p) � R(p)=2 � diam(S)=4.(ii) jrmid(p)� rmid(q)j � d(p; q) � rmid(p) + rmid(q).4



An Approximation Algorithm in Any Dimension 5Proof: (i) is trivial to prove. To show (ii), use the inequalitiesr(p) � d(p; q) + r(q); R(p) � d(p; q) + R(q); d(p; q) � r(p) + R(q);whose proofs are straightforward. 2Let VorN (S) (resp. VorF (S)) denote the nearest-neighbor (resp. farthest-neighbor)Voronoi diagram of S. For d = 2, let VorN(S; `) denote the nearest-neighbor Voronoidiagram of S restrited to a line `. That is, VorN(S; `) is the partition of ` intomaximal intervals so that the same point of S is losest to all points within eahinterval. The verties of VorN(S; `) are the intersetion points of ` with the edges ofVorN(S). We an obviously ompute VorN(S; `) in O(n logn) time by �rst omputingthe entire VorN (S) and then interseting ` with it. However, VorN (S; `) an beomputed diretly, in O(n logn) time, using a onsiderably simpler algorithm; seee.g. [29℄. borNext sentene: Why don't we drop it, if there are no objetions?is As  �an alternative, after having omputed VorN (S), we an ompute VorN(S; `) in O(n)time by traing ` through VorN(S). We de�ne VorF (S; `) analogously; it an also beomputed either diretly in O(n logn) time or in O(n) time after having omputedVorF (S).3 An Approximation Algorithm in Any DimensionLet S be a set of n points in Rd ; we assume that d is a small onstant. Set� = diam(S). We will �rst desribe an approximation algorithm for omputingthe thinnest shell A(p) ontaining S with the onstraint thatrmid(p) = (r(p) + R(p))=2 � U ��for some given parameter U 2 R. Let A�(S; U) denote this onstrained minimum-width shell, and let !�(S; U) denote the width of A�(S; U). Computing A�(S; U)an be formulated as the following optimization problem in the d + 2 variablesx1; x2; : : : ; xd; r; R: borI dropped the parentheses in the previous sentene and refor-  �matted the optimization problems. Feel free to hate me now.isminimize R � rsubjet to r � �Pdi=1(xi � pi)2�1=2 � R 8p = (p1; : : : ; pd) 2 Sr +R � 2U�:Let C be a d-dimensional hyper-retangle of the form Qdi=1[�i; �i℄. We de�neanother onstrained shell E(S;C) (whih beomes, when d = 2, the minimum-area5



An Approximation Algorithm in Any Dimension 6annulus ontaining S with enter onstrained to lie in C), in the same variables, asfollows: minimize R2 � r2subjet to r � �Pdi=1(xi � pi)2�1=2 � R 8p = (p1; : : : ; pd) 2 S�i � xi � �i 1 � i � d:If we substitute � for R2�Pdi=1 x2i and � for r2�Pdi=1 x2i , then ��� = R2� r2,and we an restate the optimization problem de�ning E(S;C) as:minimizae �� �subjet to � � �Pdi=1 2pixi +Pdi=1 p2i � � 8p = (p1; : : : ; pd) 2 S�i � xi � �i 1 � i � d:This is, however, an instane of linear programming with d+ 2 variables, and an besolved in O(n) time [17, 27℄, provided d is a onstant. Let !̂(S;C) denote the widthof E(S;C).We now desribe our approximation algorithm. Let C(p; s) be the d-dimensionalaxis-parallel ube of side length s and entered at p.Algorithm Approx Shell (S, U , ")1. Compute E(S;Rd). If !̂(S;Rd) = 0, then return E(S;Rd).2. Pik a point o 2 S and set C = C(o; (2U + 2)�).3. Partition C into a olletion C = fC1; : : : ; Ckg of axis-parallel ubes so that, forall points p; q inside the same ube Ci, rmid(p) � (1 + ")rmid(q).4. For eah Ci 2 C, ompute Ai = E(S;Ci). borShould we use a sript A instead of  �itali here?is5. Return the thinnest shell among A1; : : : ; Ak.Lemma 3.1 Approx Shell(S, U , ") returns a shell whose width is at most (1 +")!�(S; U).Proof: If !̂(S;Rd) = 0, then the statement is obvious. Otherwise, let p be the enterof A�(S; U). Sine rmid(o) � R(o) � � and rmid(p) � U�, we have, by Lemma 2.1(ii),that p 2 C. Let Ci be the ube ontaining p. Let q 2 Ci be the enter of E(S;Ci).Then R2(q)� r2(q) � R2(p)� r2(p); or rmid(q)!(q) � rmid(p)!(p):6



An Approximation Algorithm in Any Dimension 7Equivalently, !(q) � rmid(p)rmid(q)!(p) � (1 + ")!�(S; U): 2We now desribe how to onstrut a partition C of C. A similar onstrution isgiven in [23℄.Lemma 3.2 Let U; " be two positive numbers. Then C = C(o; (2U + 2)�) an bepartitioned into a set C of O((1=")d logU) ubes so that rmid(p) � (1 + ")rmid(q)for all p; q in the same ube of the partition. This tiling an be omputed in O(n +(1=")d logU) time.

Figure 3: Tiling of C.Proof: Compute a real number � suh that �=2 � � � �. (See [20℄ for a simple O(n)algorithm for approximating the diameter to within a fator of p3 in any dimension.Alternatively, �x any p 2 S and take � = R(p) � �=2, by Lemma 2.1(i).)Set m = dlog2(U + 1)e. For i = 1; : : : ; m, we de�neB0 = C(o; 4�); Bi = C(o; 2i+2�) n C(o; 2i+1�):We an tile B0 by O(1="d) axis-parallel ubes having side length r0 = �"=(4pd).Let C be a ube in this tiling. For p; q 2 C, we have, by Lemma 2.1,rmid(p) � rmid(q) + d(p; q) � rmid(q) + �"=4� (1 + ")rmid(q);sine rmid(q) � �=4 � �=4.Let ri = 2i�"=pd, for i = 1; : : : ; m. Bi an be tiled byO �2i+2�ri �d! = O � 2i+2�2i�"=pd�d! = O� 1"d�7



An Approximation Algorithm in Any Dimension 8axis-parallel ubes with side length ri, for i = 1; : : : ; m.Let C be a ube in this tiling of Bi, and let p; q be two points in C. UsingLemma 2.1(ii) and the fat that rmid(o) � � � 2�, we have borshould 2i+1� be  �2i+1�pd below?is rmid(q) � d(q; o)� rmid(o) � 2i+1�� 2� � 2i�:We also have rmid(p) � rmid(q) + d(q; p) � rmid(q) +pdri= rmid(q) + 2i�" � rmid(q)(1 + "):See Figure 3 for an illustration of the resulting tiling. This ompletes the proof ofthe lemma, sine Bm borIsn't Bm twie as big as it needs to be?is ontains C and the  �total number of ubes is O((1="d) logU). The bound on the running time of thisonstrution is obvious. 2Theorem 3.3 Let S be a set of n points in Rd , " > 0, and U > 0. One an omputea shell A � S whose width is at most (1 + ")!�(S; U) either in time O((n="d) logU)or in time O� n"d�2�log n+ 1"� logU�:Proof: The �rst bound on the running time is a onsequene of the preedingdisussion: We spend O(n) time on eah ube of C, and C has O((1="d) logU)ubes. The seond bound follows by observing that the exeution of the algorithmApprox Shell an be interpreted as follows: We ompute a sequene of ubesC1; : : : ; Cm, where m = O(logU). Eah suh ube is deomposed into O(1="d) sub-ubes using an appropriate uniform grid. For eah subube C we obtain E(S;C) asa solution of an appropriate linear programming problem.Let Ci be suh a ube, and let V = fC1; : : : ; C�g be the resulting deomposition ofCi into sububes. The linear programming instanes on eah Cj are almost identialexept for the 2d inequalities restriting the solution to lie inside Cj. This impliesthat, with the possible exeption of one subube, the solutions to all those linearprogramming instanes must lie on the boundaries of the respetive ubes C1; : : : ; C�.Moreover, the solution of the at most one instane of the linear programming thatdoes lie in the interior of its ube, an be omputed diretly, by solving a singlelinear-programming instane, without restriting the loation of the solution to anysubube (i.e. by dropping the inequalities �i � xi � �i).In partiular, we onlude that we an redue the d-dimensional problem to a(d� 1)-dimensional problem, as follows: 8



An Approximation Algorithm in Any Dimension 9� Solve the unrestrited version of the linear programming (i.e., ompute theglobal \minimum area" shell).� For eah axis-parallel (d � 1)-dimensional hyperplane H of the grid de�ningthe deomposition V , �nd reursively a (1 + ")-approximate shell ontaining Swhose enter is onstrained to lie on H\Ci. There are O(d=") suh hyperplanes.� Return the shell of minimum width among all those generated by the algorithm.The reursion bottoms out at d = 2, where we proeed as follows. Let H be ourtwo-dimensional plane. We an ompute in O(n logn) time the maps indued on Hby the d-dimensional nearest- and furthest-neighbor Voronoi diagrams of S (thosemaps are alled power diagrams [9℄, they have linear omplexity, and they an beomputed in O(n logn) time). Our target is to approximate the minimum di�erenebetween the farthest and nearest neighbors of points on H (this is the width of theminimum-width shell whose enter is restrited to lie on H). borI am onfused. Don't  �we minimize di�erenes of squares here and not width? Hmmm...is We note that we anompute this minimum along a line ` in O(n) time, by performing a walk through theoverlay of those two diagrams along `. We do this along eah line of the grid, and alsosolve the global linear-programming instane where the enter of the shell is restritedto lie on H. Thus, we an solve a two-dimensional instane in O(n logn+ n=") time.Overall, the reursive algorithm for the sububes of Ci requires O((n="d�2) logn+n="d�1) time. Thus, solving all the linear programming instanes for C1; : : : ; Cmrequires O� n"d�2�log n+ 1"� logU�time. 2Even though Theorem 3.3 is not fully satisfatory, for all pratial purposes theassumptions in the theorem are reasonable. For example, in the plane, if the pointsin S span an angle of at least � 2 [0; �=2℄ with respet to the enter  of A�(S),then rmid() = O(�=sin �) = O(�=�). In this ase we an ompute an annulus thatontains S and has width at most (1 + ")!�(S), in time O( n"2 log 1� ).For d = 2 the algorithm of Theorem 3.3 an be further simpli�ed and improved,by noting that in this ase the power diagrams are (regular) nearest- and furthest-neighbor Voronoi diagrams, and that they need to be omputed only one. We thusobtain the following.Theorem 3.4 Let S be a set of n points in the plane, " > 0, and U > 0. One anompute an annulus A � S of width at most (1 + ")!�(S; U) in time O(n logn +(n=") logU). sarverify new running time!iel  �9



An Approximation Algorithm in Any Dimension 10We next modify the algorithm Approx Shell so that it produes in all ases ashell ontaining S of width at most (1 + ")!�(S).Lemma 3.5 For U > 6 we have!�(S; U) � !�(S) + 8 � diam(S)U :
u a b  qlr V Wp �

Figure 4: Constrution for the proof of Lemma 3.5.Proof: borCan someone �x the Ipe Figure 4 as follows: move a and b down a bit. Move  �W outside of the big irle. In fat, maybe even extend the two rays out of u past thebig irle.is Let A� be a minimum-width shell ontaining S, with enter p and width!� = !�(S). Put � = diam(S). It suÆes to onsider the ase !�(S; U) 6= !�(S), sowe have rmid(p) > U�.Let V be a irular one entered at p, ontaining S, and having the smallestopening angle. Let V = V \ A�. Sine rmid(p) > 6�, V spans less than a halfspae.Let � be the ray emanating from p along the axis of symmetry of V; see Figure 4. Letb and  be the points where � meets the inner and outer spheres of A�, respetively.Let u be a point on the segment pb at distane r = U�=2 from b. Let W be thesmallest irular one entered at u, with axis of symmetry along � and ontainingV . Let � be the (d� 2)-sphere formed by interseting �W with the sphere of radiusr entered at u, and let a and l denote the enter and radius of �, respetively (seeFigure 4). Consider the portion of W lying on the same side as p and u of thehyperplane through  and orthogonal to �, and let R denote the maximum distanefrom u to a point in this portion. The shell A0 entered at u with radii r and R,enloses V and thus also overs S. We now estimate !(u) by obtaining an upperbound on the width of A0. 10



An Approximation Algorithm in Any Dimension 11Let q be the point on V at distane R from u, as shown in Figure 4. We have!(u) � !� + d(; q). However, d(u; a) = pr2 � l2 andd(a; b) = r �pr2 � l2 = l2r +pr2 � l2 � l2r :By similarity, we have d(; q) = d(a; b)r + !�d(u; a) :Note that !� < � < r=3 and that l � � = 2r=U � r=3. To see the latterinequality, projet S entrally, towards u, to the sphere Æ of radius r about u. Theimage Ŝ of S falls inside the ap Æ\W, whih, by onstrution, is a smallest ap on Æenlosing Ŝ start (indeed, if Æ \W is not minimal, then V an be also shrunk  �Chgdown, whih ontradits its minimality). end  �borI do not believe it as written. I do not see a lean way of �xing it. Talk to me ifinterested to know what I am talking about. The ref is right!is Sine the projetion doesnot inrease the distanes between points, the diameter of Ŝ is at most �, whih iseasily seen to imply that l � �. This implies that d(u; a) = pr2 � l2 � rq1� 19 �r=2. Hene, we have borWould hanging r=2 to 2r=3 and then 2r to 4r=3 get a 4 instead  �of 8 in the lemma? Or did I make a mistake anywhere? Should we bother?isd(; q) � l2r � 2rr=2 = 4l2r :Putting things together,d(b; q) = !� + d(; q) � !� + 4l2r � !� + 4�2r� !� + 4�2U�=2 = !� + 8�U :Note that rmid(u) � r + d(b; q)� !�2 � r + !�2 + 8�U < 3r2 + 8�U= ��3U4 + 8U� < U ��:Hene !�(S; U) � w(u) � !� + 8�U , as asserted. 2Corollary 3.6 Let " > 0, U > 6 be two positive onstants. One an ompute in timeO��(n="d�2) logn+ n="d�1� logU� or O(n="d logU), a shell of width at most(1 + ") �!�(S) + 8�U �that ontains S, where � = diam(S). 11



An Approximation Algorithm in Any Dimension 12Finally, we desribe the general approximation algorithm. Let Approx Diam(S)be the proedure that omputes in linear time a p3-approximation �0 of �(S) =diam(S) (see [20℄ or the disussion at the beginning of the proof of Lemma 3.2).Algorithm Approx Shell 2 (S, ")! = �0 = Approx Diam (S); !old =1;while ! < !old=2 doU = 50p3�0" � 1! ;A(p) = Approx Shell(S, U , "=8);!old = !; ! = !(p);end whilereturn A(p);Theorem 3.7 Given a set S of n points in Rd and a parameter 0 < " < 1, Ap-prox Shell 2 omputes a shell of width at most (1 + ")!�(S). With an appropriateoptimization of the alls to Approx Shell, the running time is eitherO� n"d log� �!�(S)"�� or O� n"d�2 �logn + 1"� log� �!�(S)"��:Proof: If !�(S) = 0, the algorithm terminates after the �rst iteration. Otherwise,it eventually terminates, as the positive width returned in eah all dereases by atleast a fator of two, but is no smaller than the optimum width !�(S).Suppose the while loop is exeuted m times. Let !i; Ui be the values of ! and Uomputed in the i-th iteration of the loop. Then, putting !� = !�(S),!m � (1 + "=8)!� + (1 + "=8)8�Um� (1 + "=8)!� + (1 + "=8) 8�50p3�0=(!m�1")� (1 + "=8)!� + (1 + "=8)4"!m�125� (1 + "=8)!� + 9"!m25 ;by Lemma 3.5, and sine wm � wm�1=2. Thus,!m � 1 + "=81� 9"=25!� � (1 + ")!�:Note that for all i < m we have !i < �0p32i . Hene, !� � !m�1 � �0p32m�1 , implying thatm = O(log �!� ) and Um = O(�=(!�")). 12



Approximation Algorithms in the Plane 13Note that the i-th all to Approx Shell (exeuted, say, by the �rst algorithm ofTheorem 3.3) onstruts a tiling of Ci = C(o; (2Ui + 2)�), and omputes E(S;C) foreah ube C in this tiling. By modifying the algorithm so that it omputes E(S;C)only for the new ubes C in the tiling (that is, ignoring ubes that are overed byubes produed in earlier iterations), it follows that the running time of the i-thiteration an be improved to O� n"d�1 + log UiUi�1��; for i = 2; : : : ; m. Overall, therunning time of the algorithm is thusO n"d logU1 + mXi=2 n"d�1 + log UiUi�1�!= O� n"d (m+ logUm)� = O� n"d log �!�"�:The other time bound follows if we exeute Approx Shell using the seondalgorithm of Theorem 3.3. 24 Approximation Algorithms in the PlaneLet S be a set of n points in the plane. We �rst present an O(n logn)-time algorithmthat omputes an annulus ontaining S whose width is at most 2!�. We then desribean algorithm that, given a parameter " > 0, omputes in O(n logn + n="2) time anannulus ontaining S whose width is at most (1 + ")!�.4.1 A 2-approximation algorithmWe �rst ompute the width width(S) of S (i.e., the minimum distane between apair of parallel lines that ontain S between them). Next, we ompute a diametralpair of S, i.e., a pair p; q 2 S suh that d(p; q) = diam(S) � maxp0;q02Sd(p0; q0).borIs this the only plae where we use � to denote de�nition?is Both of these steps  �take O(n logn) time. borShould we ite anient width or diameter algorithms?is Let `  �be the perpendiular bisetor of pq. We ompute VorN(S; `) and VorF (S; `), mergethe verties of the two diagrams into a single sorted list V , and ompute the pointv� that minimizes !(v) over all v 2 `. The latter stages an be done in O(jV j) timebeause, between any pair of suessive points of V , !(v) oinides with the di�ereneof distanes to two �xed points of S borrephrasedis . If width(S) � !(v�), we return  �A(v�); otherwise, we return a strip of width width(S) that ontains S. The algorithmobviously returns an annulus that ontains S, and it runs in O(n logn) time.13



Approximation Algorithms in the Plane 14Theorem 4.1 The width of the annulus omputed by the above algorithm is at most2!�. That is, minf!(v�);width(S)g � 2!�:Remark 4.2 An easy alulation, whih is based on area onsiderations and usesthe fat that pq is a diameter, shows that S an be overed by a strip of width atmost 2width(S) and bounding lines parallel to pq. Therefore, !(v�) � 2width(S),whih, in view of Theorem 4.1, implies that !(v�) � 4!�, so that skipping the widthomputation in the algorithm gives a 4-approximation of !�.Let � = diam(S). Let CO and CI be the outer and inner irles of an annulus A�of width !� that ontains S, and let  be the enter ofA� (we an learly assume that is not at in�nity). Let p; q be the diametral pair omputed by the algorithm. Withoutloss of generality, we an assume that  is the origin, p = (0; 1), 1 = d(; p) � d(; q),and x(q) � 0 (see Figure 5). Let D be the irle of radius d(p; q) = � entered at p.Lemma 4.3 If � � 1, then S in ontained in a horizontal strip of width at most!� +�2=2.
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Figure 5: The minimum-width annulus and the strip de�ned by h�; h+.Proof: Let a be the topmost point of CO. Sine � � 1,  62 int(D), whih implies thateither D lies fully above CI (i.e., the horizontal line passing through the topmost pointof CI stritly separates D and CI) or �D and CI interset at two points with positivey-oordinates; the ase in whih �D and CI touh an be handled by essentially thesame argument. The �rst situation is impossible: sine S � D, we an grow CI andstill have S lie in the shrunken annulus, ontrary to the minimality of A�. Let b be14



Approximation Algorithms in the Plane 15the intersetion point of �D and CI lying to the right of the y-axis. Let h�; h+ be thehorizontal lines passing through b and a, respetively. Sine S � A� \ D, the stripbounded by h�; h+ ontains S; see Figure 5. Let a0 be the intersetion point of h�and the y-axis. Thend(a0; ) = d(; b) os(℄bp)= d(; b)d(p; )2 + d(; b)2 � d(p; b)22d(p; )d(; b)= 1 + r2I ��22 ;by the law of osines, where rI is the radius of CI . Therefore the width of the strip isd(a; )� d(a0; ) = rI + !� � 1 + r2I ��22= !� + �22 � (1� rI)22 � !� + �22 : 2
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Figure 6: The minimum-width annulus and the irle Cpq.Hene, if � � 1 and !� � �2=2, the algorithm omputes an annulus (that is, astrip) of width at most 2!�. We now assume that either � > 1 or !� < �2=2.Let Cpq be the irle that passes through p and q and whose enter � lies on they-axis; see Figure 6. We will show that all points of S lie within distane !� from Cpq,whih implies that the annulus entered at � with the inner radius d(�; p)� !� andthe outer radius d(�; p) + !� ontains S. Sine � lies on the perpendiular bisetor15



Approximation Algorithms in the Plane 16of pq, the thinnest annulus that the algorithm omputes is ertainly no wider thanA(�), i.e., its width is at most 2!�.Sine d(; p) � d(; q), Cpq lies inside the irle passing through p and enteredat , and therefore it also lies inside CO. But Cpq may interset CI (as in Figure 6).Let � � Cpq be the irular ar from p to q in the lokwise diretion. A simplealulation shows that the distane from  to the points of � dereases monotoniallyalong �. Sine p; q 2 A�, the entire ar � lies inside A�.Lemma 4.4 If � > 1 or !� < �2=2, then ℄pq < �=2.Proof: If � > 1, then  2 int(D). We then have ℄pq < ℄pqm < ℄tqm = �=2,where bor\m" is not on the piture so asking the reader to onsult it is kind of oddis m  �is the bottommost point of D; onsult Figure 6. Next, assume that !� < �2=2. Sined(; p) = 1, d(p; q) = �, and 1 � d(; q) � 1� !�, we obtainos(℄pq) = d(p; q)2 + d(; q)2 � d(; p)22d(p; q)d(; q)= �2 + d(; q)2 � 12�d(; q)� �2 + (1� !�)2 � 12�= �2 � 2!� + !�22�> 0:The last inequality follows from the assumption that !� < �2=2: This ompletes theproof of the lemma. 2We now prove that for any point z 2 S, the distane d(z; Cpq) between Cpq and z isat most !�. We will prove the laim for points with positive x-oordinates; the sameargument applies to points with negative x-oordinates. Let � be the intersetionpoint of Cpq with the ray emanating from � in diretion ~�z; see Figure 6. Thend(z; Cpq) = d(z; �).If z 2 int(Cpq), then let � be the intersetion point of Cpq with the ray emanatingfrom z in diretion ~z (see Figure 7); otherwise, let � be the intersetion point of Cpqwith the ray emanating from z in diretion ~z. The point � exists sine  lies insideCpq, as ℄pq < �=2. Sine � lies on the line passing through z and the enter of Cpq,i.e., � is the nearest point on Cpq from z, d(z; �) � d(z; �).Lemma 4.5 d(z; �) < !�. 16



Approximation Algorithms in the Plane 17
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Figure 7: Illustration of the proof of Lemma 4.5. (i) z0 2 D[a; q℄, (ii) z0 62 D[a; q℄.Proof: We will prove that � lies in the annulus A�. Let z0 be the intersetion pointof D with the ray ~z. borI am onfused. Why is there only one suh intersetion? Aren't  �there always two and you always take the seond one? Help!is For two points x; y 2 D,let D[x; y℄ � D denote the irular ar from x to y in the lokwise diretion. Let tbe the topmost point of D. There are two ases to onsider:Case (i) z0 2 D[t; q℄. By Lemma 4.4, ℄pq < �=2, therefore D[t; q℄ lies in the wedgeformed by the positive y-axis and the ray ~q. This in turn implies that � 2 �irrespetive of whether z lies inside or outside Cpq; see Figure 7(i). As notedearlier, � � A�, so � 2 A�, as laimed.Case (ii) z0 62 D[t; q℄. Note that q is an intersetion point of irles D and Cpq andtheir seond point of intersetion is the mirror image of q on the other side of y-axis. Therefore the portion ofD from q to its bottommost point in the lokwisediretion lies inside Cpq. Sine z0 has positive x-oordinate and z0 62 D[t; q℄, z0lies on the portion borOnly if z0 is the SECOND intersetion point!is of �D inside  �Cpq. Therefore � lies after z0 on the ray ~z (see Figure 7(ii)) andrI � d(; z) � d(; z0) < d(; �) < rO;where the last inequality follows from the fat that Cpq � int(CO). This impliesthat � 2 A�, as desired.We thus have d(z; �) < !�. 2Lemmas 4.3 and 4.5 imply the theorem.
17



Approximation Algorithms in the Plane 184.2 A (1 + ")-approximation algorithmIn this subsetion, we present a (1 + ")-approximation algorithm for the minimum-width annulus. The algorithm is a ombination of the approximation tehniquesdeveloped in the previous subsetions.Algorithm Planar Approx Shell (S, ")1. Run the 2-approximation algorithm of Theorem 4.1. Let A0 be the resultingannulus. If the width !0 of A0 is 0 then return A0.2. Compute the nearest- and farthest-neighbor Voronoi diagrams VorF (S);VorN(S),in O(n logn) time.3. Compute, in O(n logn + (n=") logU) time, an annulus A00 of width � (1 +"=2)!�(S; U), using the algorithm of Theorem 3.4, with U = 10000=". (EitherA00 is the required "-approximation, or rmid(A�(S)) > U�(S).)4. Compute, in O(n logn) time, a pair of points p; q 2 S that realize the diameterof S. We assume without loss of generality that p = (�1; 0); q = (1; 0). LetÆ = "!0=20, Let Pp = P (p; Æ; "), Pq = P (q; Æ; "), whereP (z; Æ; ") = nz + (0; Æ)i ��� i = �d40="e; : : : ; d40="eo :See Figure 8.5. For eah pair u 2 Pp; v 2 Pq ompute the minimum-width annulus whose enterlies on the perpendiular bisetor of uv. Using the preomputed VorF (S) andVorN(S), this takes O(n) time per pair, as in the algorithm of Theorem 3.3.6. Output the minimum-width annulus among those omputed.Theorem 4.6 The width of the annulus output by Planar Approx Shell (S, ")is at most (1 + ")!�(S), and the running time of the algorithm is O(n logn+ n="2).Proof: If rmid(A�(S)) � U�(S), the orretness and the bound on the running timeare onsequenes of the previous algorithms, so assume that rmid(A�(S)) > U�(S).Let C� be the middle irle of A�(S), and let �; r� denote the enter and the radiusof C�, respetively. Without loss of generality, assume that � lies (far away) belowthe x-axis. Let Ip and Iq denote the segments spanned by the points of Pp and of Pq,respetively.We have that !�(S) < �(S)=300 (otherwise, by Lemma 3.5, A00 is the requiredapproximation), whih implies that both Ip, and Iq are \short" ompared to the18



Approximation Algorithms in the Plane 19
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Figure 8: Proof of orretness of Planar Approx Shelldiameter of S. Moreover, the radius of the optimal solution is huge (i.e., at least(10000=")�(S)); namely, the setor of the optimal annulus that ontains S spans avery small angle.  �borWhy exatly an't it miss?is It is lear that C� rosses both Ip and Iq, at tworespetive points u; v. Let u1 (resp. v1) denote the point of Pp (resp. of Pq) that liesimmediately below u (resp. v). We �rst translate C� downwards, till it �rst hits eitheru1 or v1. Suppose, without loss of generality, that it �rst hits v1. Let C denote thetranslated irle. Clearly, the enter  of C lies vertially below � at distane lessthan Æ. In partiular, for any s 2 S we have jd(; s) � d(�; s)j � d(; �) < Æ. PutD(C; S) = maxs2S d(C; s), and ! = 2D(C; S) and observe that! < 2(D(C�; S) + Æ) = !� + 2Æ � (1 + "=5)!�:Next, shrink C by moving its enter from  towards v1 while keeping v1 on the irle,until it also passes through u1. Let C 0 denote the new irle and let 0 denote itsenter. See Figure 8.The distane from  to points on C 0 dereases monotonially as we traverse C 0from v1 ounterlokwise until we reah the point on C 0 antipodal to v1. Let s beany point of S. The ray � from  towards s rosses C at a point w and C 0 at a pointw0. We have d(w0; s) � d(w; s)+ d(w;w0) � !=2+ d(w;w0). It easily follows from thepreeding disussion that d(w;w0) attains its maximum when w0 is near u1, borShould  �we add that the logi also works CLOCKWISE of v1, but we do not have far to go?Literally taken, we have no argument for the other side of v1 now!is and this maximumis smaller than 2Æ (the later statement is easy to verify, using the fat that the linethrough w and w0 is almost vertial). This implies that!(0) � 2D(C 0; S) � ! + 2Æ � (1 + 2"=5)!� � (1 + ")!�:Sine 0 lies on the perpendiular bisetor of u1v1, it follows that the width of theannulus output by the algorithm is at most !(0) < (1 + ")!�, as asserted. The19



Conlusions 20bound on the running time is obvious: We have O(1="2) bisetors to proess, and theproessing of eah of them takes O(n) time, as noted in the algorithm. 25 ConlusionsWe presented simple and eÆient approximation algorithms for omputing the minimum-width shell ontaining a set of points in Rd . Although several approximation algo-rithms were proposed earlier for the planar ase, all of them made some assumptionseither on the input points or on the minimum-width annulus. In an earlier versionof this paper [1℄, we also presented the �rst sububi algorithm for omputing aminimum-width shell ontaining a set of points in R3 . The algorithms was fairlyinvolved and mostly interesting as a on�rmation that the problem an be solved insububi time. Sine then we have learned that a signi�antly simpler quadrati algo-rithm exists for solving the problem [11℄. It was notied by T. Chan, who also proposesseveral improvements over the approximation algorithms we desribed above [11℄.borIs this enough?is  �� Can the running time of our planar approximation algorithm be improved toO(n logn+ 1="2)?� Can the minimum-width shell ontaining a set of points in R3 be omputed innear-quadrati time? borI guess that's settled!is  �� Develop an eÆient as algorithm for omputing the minimum-width ylindrialshell ontaining a set of points in R3 . borSame here? Doesn't a simple exat  �quadrati algorithm follow from Timothy's stu�?isReferenes[1℄ P. K. Agarwal, B. Aronov, S. Har-Peled, and M. Sharir, Approximation and exatalgorithms for minimum-width annuli and shells, Pro. 15th Annu. ACM Sympos.Comput. Geom., 1999, pp. 380{389.[2℄ P. K. Agarwal, B. Aronov, and M. Sharir, Computing envelopes in four dimensionswith appliations, SIAM J. Comput., 26 (1997), 1714{1732.[3℄ P. K. Agarwal, H. Edelsbrunner, O. Shwarzkopf, and E. Welzl, Eulidean minimumspanning trees and bihromati losest pairs, Disrete Comput. Geom., 6 (1991), 407{422. 20
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