Efficient Randomized Algorithms for Some Geometric
Optimization Problems*

Pankaj K. Agarwal' Micha Sharir

October 5, 1995

Abstract

In this paper we first prove the following combinatorial bound, concerning the com-
plexity of the vertical decomposition of the minimization diagram of trivariate functions:
Let F be a collection of n totally- or partially-defined algebraic trivariate functions of
constant maximum degree, with the additional property that, for a given pair of func-
tions f, f' € F, the surface f(z,y,2) = f'(z,y, z) is zy-monotone (actually, we need a
somewhat weaker property). We show that the vertical decomposition of the minimiza-
tion diagram of F consists of O(n3¢) cells (each of constant complexity), for any & > 0.
In the second part of the paper we present a general technique that yields faster ran-
domized algorithms for solving a number of geometric optimization problems, including
(i) computing the width of a point set in 3-space, (ii) computing the minimum-width
annulus enclosing a set of n points in the plane, and (iii) computing the ‘biggest stick’
inside a simple polygon in the plane. Using the above result on vertical decompositions,
we show that the expected running time of all three algorithms is O(n3/2*¢), for any
€ > 0. Our algorithm improves and simplifies previous solutions of all three problems.

* Work on this paper by the first author has been supported by NSF Grant CCR-93-01259, an NYT award,
and matching funds from Xerox Corporation. Work on this paper by the second author has been supported
by NSF Grants CCR-91-22103 and CCR-93-11127, by a Max-Planck Research Award, and by grants from
the U.S.-Israeli Binational Science Foundation, the Israel Science Fund administered by the Israeli Academy
of Sciences, and the G.I.F., the German-Israeli Foundation for Scientific Research and Development.

t Department of Computer Science, Box 90129, Duke University, Durham, NC 27708-0129

Y School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel, and Courant Institute
of Mathematical Sciences, New York University, New York, NY 10012, USA

INTRODUCTION 1

1 Introduction

In this paper we present a general technique that yields faster randomized algorithms for
the following problems:

1. Computing the width of a set of points in R3.

2. Computing an annulus of minimum width that contains a given set of points in the
plane.

3. Computing a longest segment that can be placed inside a simple polygon in the plane.

In order to achieve a fast implementation of our technique, we use the following combi-
natorial result, which is derived in the first part of the paper. Let F be a collection of n
totally- or partially-defined algebraic trivariate functions of constant maximum degree, with
the following additional zy-monotonicity property: For any pair f, f' € F, the zy-plane can
be decomposed into a constant number of faces, each of constant description complexity,
such that, for every face ¢, the surface f(z,y,z) = f'(z,y,2) is the graph of a continuous
bivariate function (of z and y) over the interior of c¢. The lower envelope Ex of F is the
pointwise minimum

E = mi
_7:(37,3/,2) ?g}l f(xayaz)a

and the minimization diagram My is the projection of the graph of Ex onto R*. That is,
My is a decomposition of R? into relatively-open connected cells of dimension 0, 1, 2, and
3, so that, over each cell, Ex is attained by a fixed subset of functions of F (and/or of
function boundaries). It is known [27] that Mz has O(n3*¢) cells (of all dimensions).

We prove that the vertical decomposition of Mz also consists of O(n31¢) cells, each of
constant description complexity. See below and [8, 10, 14, 28] for the definition of vertical
decompositions. Briefly, this is the only known general-purpose technique for decomposing
cells of arrangements of low-degree algebraic surfaces in higher dimensions into a reasonably
small number of subcells of constant complexity. Such a decomposition is a prerequisite
to many randomized incremental or divide-and-conquer algorithms involving arrangements
of this kind. Unfortunately, the known upper bounds on the number of resulting subcells
are much higher than the actual complexity of the cells being decomposed, and this affects
adversely (the upper bounds one can prove on) the complexity of the relevant algorithms.
Hence any result, like the one we prove here, which establishes nearly-tight bounds for the
size of vertical decompositions, is significant, as indeed will be demonstrated below.

Our bound on the vertical decomposition immediately leads to a data structure, of
size O(n31¢), for efficient point location queries in the region below Ez: For a point x =
(a1,az,a3,a4) in R*, we can determine in O(logn) time whether ay < Ex(a1,a2,a3). The
technique for constructing this data structure crucially relies on the existence of a vertical
decomposition of this region with near-cubic complexity.

Geometric Optimization October 5, 1995

COMPLEXITY OF THE VERTICAL DECOMPOSITION 2

We next observe that each of the three optimization problems mentioned above can
be reduced to the problem of computing a closest (or farthest) pair between two sets of
objects in R?, under some appropriate (pseudo-)distance function. That is, we define two
sets of objects A, B and a function § : A x B — R" U {0}, and reduce the original opti-
mization problem to that of computing 0* = min,e4 pep 6(a,b). Actually, we need to solve
several instances of the closest-pair problem, but we show that the overall running time is
still bounded by (a polylogarithmic factor times) the time complexity of the algorithm for
computing §*. We use a randomized divide-and-conquer approach to compute ¢*, which
is inspired by the Clarkson—Shor algorithm [11] for computing the diameter of a set of n
points in 3-space. The merge and the divide steps of our algorithm require a data structure
for point location in the minimization diagram of a set of trivariate functions that satisfy
the aforementioned properties. Surprisingly, the zy-monotonicity property, which might
be regarded as a somewhat restrictive condition, is also satisfied for each of the three op-
timization problems under consideration. Using our bounds on the complexity of vertical
decompositions, we show that the expected running time of our algorithms, for all three
problems, is O(n3/ 2+2) for any £ > 0. The previously best known algorithms for these
problems are due to Agarwal et al. [1], and are based on Megiddo’s parametric search tech-
nique (see also [3, 7]). The expected running time of the algorithms in [1] is O(n!7/11+%),
for any € > 0.

We consider the main contributions of this paper to be the general algorithmic technique
itself and the bound on the size of the vertical decomposition, both of which might be
useful in other problems. Even though Megiddo’s parametric search technique is a very
powerful paradigm, it typically leads to quite complicated algorithms. Recently, there have
been several attempts [5, 12, 19, 20, 23] to present simpler and more direct algorithms for
some of the problems that have traditionally been solved using parametric searching. Our
technique can be viewed as another step in this direction.

The paper is organized as follows. We first establish in Section 2 our bound on the
complexity of the vertical decomposition. We then present in Section 3 the general algo-
rithmic technique for computing a closest pair, and exemplify it by applying it to the width
problem. We then discuss, more briefly, the minimum width annulus and the biggest stick
problems in Sections 4 and 5, respectively.

2 Complexity of the Vertical Decomposition

Let F be a collection of n totally- or partially-defined algebraic trivariate functions of
constant maximum degree b that satisfy the following properties:

(F1) If a function f € F is partially defined, then we require that the set of points where f

is undefined have measure 0, in the following strong sense: There is a constant number
of algebraic arcs of constant maximum degree in the zy-plane (these arcs depend on

Geometric Optimization October 5, 1995

COMPLEXITY OF THE VERTICAL DECOMPOSITION 3

f), so that, for each point (z,y) not lying on any of these arcs, f is defined at all
points (z,y, z), for any z € R.

(F2) For any pair of functions f, f' € F, the surface f(z,y,2) = f'(z,y,2) is zy-monotone,
that is, every z-vertical line (not passing through any curve where f or f’ is undefined)
crosses this surface in exactly one point. Actually, we somewhat relax this assumption,
requiring only that, for each such surface o, the zy-plane can be decomposed into a
constant number of regions, each of constant description complexity (i.e., described
by a constant number of polynomial equalities and inequalities of constant maximum
degree), so that, for each of these regions ¢, the surface o is the graph of a continuous
bivariate function (of z and y) over the interior of c.

These assumptions are rather restrictive, but, as we will show below, and rather surprisingly,
they hold for several of the current main applications of lower envelopes in 4-space, as listed
in the introduction and studied recently in [1, 3, 7]. We also assume that the functions in
F are in general position, as defined, e.g., in [27]; it is easy to show, using a variant of the
argument given in [27], that this assumption does not involve any loss of generality, and
that our results also hold for collections not in general position. Under this assumption, for
j =0,...,3, the envelope Ex is attained by at most (or, if the functions in F are totally
defined, exactly) 4 — j functions of F over any j-dimensional cell of Mx. We will use the
terms vertex, edge, face, and cell to denote, respectively, 0-dimensional, 1-dimensional, 2-
dimensional, and 3-dimensional cells of M. Each vertex, edge, face, or cell ¢ of Mz will
be labeled by the corresponding set of functions of F attaining Er over c¢. In particular,
the term f-cell will refer to a (3-dimensional) cell of Mr over which Er is attained by the
function f.

The vertical decomposition of M is defined in the following standard manner. In the
first decomposition stage, we erect, for each edge e of Mr, a z-vertical wall from e, which
is the union of all maximal z-vertical relatively-open segments passing through points of
e and not meeting any other vertex, edge or face of Mr. The collection of these walls
partitions the cells of Mx into subcells, so that each subcell ¢ is bounded from above and
from below (in the z-direction) by (portions of) a fixed pair of faces of Mx; ¢ may also
extend to infinity in either direction. In the second decomposition step, we take each of
these subcells ¢ and project it onto the zy-plane. We construct the 2-dimensional vertical
decomposition of the projection c*, by erecting a maximal y-vertical segment, contained in
the closure of ¢*, from each vertex of ¢* and each (locally) z-extremal point on dc*. The
collection of these segments partitions ¢* into ‘pseudo-trapezoidal’ subcells. Each of these
subcells 7 induces a subcell of ¢, obtained by intersecting ¢ with the vertical cylinder 7 x R
over 7. The resulting collection of subcells constitutes the vertical decomposition of Mr,
which we denote by M%. Each of these cells has constant description complexity, in the
sense that it is defined by a constant number of polynomial equalities and inequalities of
constant maximum degree (depending on the maximum degree b of the functions of F). See
[8, 10, 28] for more details concerning vertical decompositions.

Geometric Optimization October 5, 1995

COMPLEXITY OF THE VERTICAL DECOMPOSITION 4

Theorem 2.1 If F is a collection of trivariate functions satisfying the assumptions made
above, then the number of subcells of My is O(n3%¢), for any € > 0, where the constant of
proportionality depends on € and on the maximum degree b.

Proof: Let F be a collection of n trivariate functions satisfying the above assumptions. It
is easily seen that, in general, the second vertical decomposition step does not increase the
complexity of the decomposition by more than a constant factor, so it suffices to bound the
increase in the complexity of Mz caused by the first vertical decomposition step. In other
words, we want to count the number of pairs (e,e’) of edges of Mz, both bounding the
same cell ¢, such that there exists a z-vertical segment connecting a point on e to a point
on ¢ and fully contained in ¢. (We actually want to count the number of these vertical
segments, but, by assumption, this number is larger than the number of pairs (e, e’) by only
a constant factor, depending on the maximum degree b.) We say that such a pair (e, €’) of
edges are vertically visible. Suppose ¢ is an fo-cell, for some fy € F (note that assumption
(F1) implies that there is no 3-dimensional cell of Mr over which Er is undefined). Then
e must be either a portion of an intersection curve of the form fy = f; = fo, for some pair
of functions f1, fo € F, or a portion of the boundary of an zy-monotone piece of a surface
fo=f, for some f € F. Similarly, ¢’ must also be a portion of an intersection curve or of
a boundary curve of the above forms.

We estimate the number of vertically-visible pairs of edges for which the vertical segment
connecting the edges crosses an fy-cell, separately for each fixed fo € F. Recall that,
by assumption, each surface fy = f can be decomposed into a constant number of xy-
monotone pieces, so that the xy-projections of these pieces are pairwise disjoint. Consider
the collection X(fy) consisting of all these zy-monotone portions of surfaces of the form
fo = f, for f € F. We regard each such portion as a partially-defined function of x and
y. It follows from assumption (F1) that, for each surface o € X(fy) contained in the graph
of fo = f, for some f € F, either all points lying vertically above o (in the z-direction)
satisfy fo > f or all such points satisfy fy < f (this property may fail at points lying on
the boundary 0o of o, but this limit behavior does not affect our analysis). Let 7(fo)
(resp. X7 (fo)) denote the subset of surfaces o € 3(fy) for which the corresponding function
f satisfies fo > f (resp. fo < f) for all points lying vertically above o (note that a function f
may contribute surfaces to both collections ¥ (fy), £~ (fo), over pairwise-disjoint portions
of the zy-plane). It is then clear that the union of all fy-cells is the same as the region
enclosed between the upper envelope of ¥ (fy) and the lower envelope of X1 (fy). It then
follows from Theorem 3.2 of [2], concerning the complexity of the region enclosed between
two envelopes in 3-space, that the complexity of the vertical decomposition of all fy-cells is
O(n?*¢), for any £ > 0. Repeating this argument over all functions fy € F, we obtain the
bound asserted in the theorem. O

Geometric Optimization October 5, 1995

WIDTH IN 3-SPACE 5

Let Cr be the cell in the arrangement of F lying below Ex. The vertical decomposition
of Cr, denoted as C, can be obtained by lifting each cell 7 € M% to the cell

T={(x,2) |[x €T, —0<z< Ef(x)}.

Since each cell of M contributes exactly one cell to C, the latter also has O(n?"¢) cells.
Similarly, it follows that the vertical decomposition of the cell lying above the graphs of all
functions in F also has O(n**¢) cells.

Remark 2.2 An obvious open problem is to extend this bound to vertical decomposi-
tions of minimization diagrams of more general trivariate functions. Using recent analysis
techniques, as those in [2, 27], we can obtain an O(n**®) bound for the general case of
partially-defined trivariate low- degree algebraic functions, but we conjecture that the cor-
rect bound is near-cubic.

3 Width in 3-Space

The width of a set S of n points in R? is the smallest distance between a pair of parallel
planes such that the closed slab between the planes contains S. Although the width of a
set of n points in the plane can be computed in O(nlogn) time [18], the problem becomes
considerably harder in three dimensions. Houle and Toussaint [18] gave a simple O(n?)-
time algorithm for computing the width in R?, and raised the open problem of obtaining
a subquadratic solution. Chazelle et al. [7] presented an O(n8/°%¢)-time algorithm, for any
e > 0, which was subsequently improved by Agarwal et al. [1] to O(n'"/11+#). As observed
in [7], and further exploited in [1], the problem of computing the width in 3-space can be
reduced to the following bichromatic closest line-pair problem: Given a set L of m ‘red’
lines and another set L’ of n ‘blue’ lines in R?, such that all red lines lie above all blue
lines,! compute the closest pair of lines in L x L', where the distance between a pair of lines
0,0 e R is
, .
d(,t') = ,in, d(p,q).
Let d(L, L") = minger, ¢rers d(£,¢') denote the distance between a closest pair in L x L'.

Before presenting the algorithm, we need to describe some geometric transforms, which
will be crucial for our algorithm. We can map each line £ € L, not parallel to the yz-plane, to
a point 9 (£) = (a1, as,as,aq) in R*, where y = a1z + a3 is the equation of the zy-projection
of £, and z = aox + a4 is the equation of the zz-projection of £. For any fixed real parameter
d > 0, we can also map a line #' € L' to a surface y(¢'), which is the locus of all points v (¥)

!For any pair of nonparallel and nonvertical lines £ € L, ¢ € I, we say that £ lies above ¢ if the vertical
line passing through the intersection point of the zy-projections of ¢ and ¢' intersects £ above £'. Tt is
interesting to note that the requirement that all red lines lie above all blue lines crucially affects the analysis
of the complexity of the resulting algorithm.

Geometric Optimization October 5, 1995

WIDTH IN 3-SPACE 6

such that d(¢,¢') = § and ¢ lies above ¢'. We refer to the coordinates of this parametric
space as &1,&2,&3,&4. Observe that any line parallel to the £4-axis intersects y = y(¢') in at
most one point. If the corresponding lines £ in R? lie in a vertical plane parallel to ¢’ and not
containing ¢', then the intersection point may not exist. It follows that v can be partitioned
into a constant number of surface patches, each of constant description complexity, such
that, for each patch ¥, all points of R* lying vertically above 7 represent lines £ in R? that lie
above £ and d(¢,¢') > §, and all points lying below 7 represent lines £ that either lie below
¢') pass through ¢, or lie above ¢ and d(¢,¢') < 4. In other words, y(¢') is the graph of a
partially-defined function &4 = fp (&1, &2,&3). For a point ¢(¢) = (a1, a2, a3, a4), such that £
lies above ¢/, if fy(a1,as,a3) is defined, then ay > fy (a1, as,a3) if and only if d(¢,¢') > 0,
and ag < fr(ay,as,a3) if and only if d(£,¢') < §. Let F be the collection {fy | ¢’ € L'},
and let Uz denote the upper envelope of F. For a line ¢ € L with ¢(¢) = (a1, as, a3, aq), we
have ay > Ug(a1,a9,a3) if and only if d({¢}, L") > 4. It is easily checked that the functions
fr are all partially-defined, algebraic functions of constant maximum degree.

Lemma 3.1 (a) For any line ' € L' and for any fized &1, &, so that & is not equal to the
&1 -coordinate of V', the function fu(&1,&2,&3) is defined for all &s.

(b) For any pair of non-parallel lines ¢}, ¢ € L' and for any fized &, &2, the equation
fo (61,82, 83) = fu (€1,82,83) (3.1)

has a unique solution &3, except when (£1,&2) lies on a certain critical line A(¢),0%) that
depends on £y and b, or when & is equal to the & -coordinate of £ or of l}.

Proof: Part (a) is trivial: Let &1,&,&3 be a triple such that &; is not equal to the &;-
coordinate of ¢/. Then the spatial orientation of all corresponding lines is fixed and their
zy-projection has different orientation than that of #. Consider the line of the form y =
&z + &3, 2 = & + &4 and intersecting ¢'. If we translate this line in the +z-direction (i.e.,
increase the value of &;), its distance with ¢/ monotonically increases, and therefore there
is a unique & = « such that the line £, with ¢(¢) = (£1,£&9,&3,), lies above £ and is at
distance § from ¢'. Hence, fp(&,&2,&3) is defined. (If the zy-projection of these lines has
the same orientation as that of £/, then fu(&1,&9,&3) is defined only when &5 is equal to the
&o-coordinate of ¢/ and when 3 is such that £ and ¢ lie in the same vertical plane.)

As to part (b), let {3 be a solution of (3.1), and let & = fy (§1,€2,83) = fr, (61,62, 63).
The line £*, parametrized by (&1, &2, €3, £4), thus lies in the vertical plane w(€3) : y = &12+E3,
and, as is easily checked, its slope in that plane, with respect to the coordinate frame (u, z),

where u is the axis orthogonal to the z-axis, is equal to &5/41/1 + £2. Moreover, by definition,
£* is a common upper tangent line to the two cylinders C'y, C5 of radius §, whose symmetry
axes are the lines £, £}, respectively. Let K; = K;(&3) = C; N w(&3), for i = 1,2. The sets
K, and Ky are two ellipses, and the line £* must be a common upper tangent to K; and
K5 in the plane m(&3) (this holds provided that &; is not equal to the &;-coordinate of ¢} or
of £,). As &3 varies, the plane 7(£3) translates parallel to itself, and the two ellipses K;(&3)

Geometric Optimization October 5, 1995

WIDTH IN 3-SPACE 7

also translate within that plane, so that the positions of their centers are given by two linear
functions of £3. Moreover, for i = 1,2, let w; = w;(&3) denote the point on K;(£3) so that

the line tangent to K; at w; has slope &/4/1 + ¢ and lies above K;. It follows that, as &3
varies, w;(&3) moves within the plane 7(£3) as a linear function of &3, for 4 = 1,2. Thus,

&3 solves (3.1) if and only if the line connecting w1 (¢£3) and wy(&3) has slope &3/4/1 + €2 in
7(&3). This equation is linear in 3, as easily follows from the above arguments, and so has
one solution, no solutions, or infinitely many solutions.

To analyze when this equation has no solution, or has infinitely many solutions, we
represent the above geometric reasoning in an algebraic form. It is easily verified that
the existence of a unique solution to (3.1) is not affected if we translate ¢ and ¢, by
any amounts (such a translation only changes the constant term in the resulting linear
equation), so we may assume, with no loss of generality, that both lines pass through the
origin. Let (a1,b1,c1), (a2, b2, c2) be two unit vectors lying, respectively, on the lines ¢, £5.
The intersection s1(£3) of £} with 7(£3) is a point (a1t,bit,c1t) that satisfies the equation
bit = &1a1t + €3, so we have t = £3/(by — a1&1), which implies that s;(€3) is the point

(a1&3 b1&3 183)
bi —a1&’ by —ai&’ by —aiéy)’

and, similarly, the intersection s9(&3) of £ with 7(£3) is the point

(a2é3 ba&s 263)

by — axéy’ by —azéy’ by — axly

(As above, these points are well-defined only when &; is not equal to the &;-coordinate of
¢4 or of ¢,.) For i = 1,2, the point w;(£3) is a translated copy of s;(£3) by a fixed vector,
independent of £3. The coefficient of &3 in the equation (3.1) is thus easily seen to be
(proportional to)

C2 . C1 —f (a9 . ay >
by —agéy by —ar€y o \by—asfy bi—a6)

Hence, the equation (3.1) does not have a unique solution only when this expression is 0.
That is,

c2 —ay ¢ —ar1és

by —axéy b —ai&y’

which is easily seen to be a linear equation in &; and &> (it does not vanish identically, unless
¢ and /4 are parallel). This completes the proof of the lemma. O

Lemma 3.1 implies that the collection F satisfies the assumptions (F1), (F2) of Theo-
rem 2.1. Let C'r denote the cell in the arrangement of F that lies above the upper envelope
of F. In view of Lemma, 3.1, Theorem 2.1, the above discussion, and standard point-location
techniques (such as those in [8, 9]), we obtain

Geometric Optimization October 5, 1995

WIDTH IN 3-SPACE 8

Corollary 3.2 The wvertical decomposition C% of Cr consists of O(n3%e) cells, for any
e > 0. Moreover, Cr can be preprocessed in time O(n3*) into a data structure of size
O(n3*+¢), for any € > 0, so that, for any query point p, we can determine in O(logn) time
whether p € Cr.

We now describe a divide-and-conquer algorithm for computing d(L, L'). The basic idea
is as follows: We randomly choose a line £ € L, and compute the distance Jy between £ and
its nearest neighbor in L. We discard all those lines of L whose nearest neighbors in L are
at distance > dp. Let L; C L be the subset of remaining lines. If L1 = @), we return dy;
otherwise we recursively compute d(Ly, L"). Using a probabilistic argument, one can show
that the expected depth of the recursion is O(logm). The only nontrivial step in the above
algorithm is computing the subset Li. We, however, do not have an efficient procedure
for computing L1, so, after computing dy, we proceed in a round about way. We divide
the problem of computing d(L, L") into a number of subproblems, of which one is solved
recursively and the others are solved using a different algorithm, as described below. We
will first present an outline of the algorithm, and then explain each of the nontrivial steps
in some detail.

ALGORITHM CLOSEST-PAIR

1. Let ng be a sufficiently large constant, whose value will be fixed later. If n < ny,
then we compute d(£,¢') for every pair (£,£') € L x L', in O(m) time, and return the
minimum distance.

2. Assume that n > ng. Randomly choose a line £y € L and compute 6y = d({¢p},L’),
in O(n) time.

3. Set r = [m3/8/nl/8]. We partition L into k + 1 subsets Lo, L1, ... , Ly, with the
following properties:

(i) k= O(r3*e), for any & > 0;
(ii) ifr=1,then k=1, Ly =0, L = L;
(iii) for each 1 <17 <k,
{0 € L' d(Li, {}) < 80 }] < =

(iv) Lo C{¢ e L|d({¢},L") < dp}; Ly may be empty (as is the case when r = 1).
4. For each 1 <i <k, we compute a set L of size at most n/r such that
Ly 2{¢ € L' [d(Li, {£'}) < 0o };

ifr=1and k=1, we put L} = L. Set m; = |L;| and n; = |L}].

Geometric Optimization October 5, 1995

WIDTH IN 3-SPACE 9

5. For each 1 <14 <k, we do the following: If n; = 0, we set d(L;, L}) = +00. Otherwise,
we compute 0 = d(L;, L) directly, using a different algorithm (detailed below). We
then compute 6; = min; 0; .

6. If Ly # 0, we compute 63 = d(Lg, L') recursively.
7. Return min{do, d1, 2} as d(L, L’).

Next, we explain Steps 3-5 in detail, and analyze their expected running time; the other
steps are trivial and need no further explanation. We will then conclude the analysis by
proving the correctness of the algorithm.

Steps 3—4: We compute L;, L}, for 1 < i < k, using a divide-and-conquer approach. We
construct a tree T', each of whose nodes v is associated with two subsets L, C Land L], C L.
The root of the tree is associated with L and L’ themselves. The subsets associated with
the leaves of T' will correspond to the sets L; and L.

If r = 1, then T consists of a single node; we set k =1, L1 = L, L}, = L', and Ly = 0.
Next, assume that r > 1. Let s be some sufficiently large constant. We choose a random
subset X C L’ of size cyslogs, where c; is an appropriate constant independent of s, and
compute C%, the vertical decomposition of the cell Cx lying above the graphs of all the
functions {fy | ¢ € X} (defined in terms of the parameter dy computed in Step 2). By
Corollary 3.2, C% has O((slogs)3*¢) cells. For each cell 7 € C%, we compute the set
LI C L' of lines ¢ such that y(¢') intersects 7. By standard e-net theory [17], we have,
with high probability, |L)| < n/s for every 7 € C%. If |L| > n/s for some 7 € C%, we
choose another random subset and repeat the above steps. Otherwise, for each 7 € C% we
compute the subset L, C L of lines £ such that ¢ (¢) € 7. Set m, = |L;| and n, = |L.|. If
L; # 0, we create a child v, of the root corresponding to 7. We associate L., L. with v;.
If |L| < n/r, then v, is a leaf. Otherwise, v, is an internal node of T', and we expand T'
further at v, by applying the same procedure recursively to L., L..

By construction, the depth of T is at most [log,7]. Since each node has at most
O((slog s)*+¢) children, the total number of leaves in T is k < cor3te, for any & > ¢
and for some constant ¢z independent of s and r (but depending on ¢,¢’'). We set L; and
L! to be the subsets associated with the ith leaf of T, for i = 1,...,k. Finally, we set
Ly=L— Ule L;. Note that a line £ is placed in Ly only when its image 1(¢) lies below the
upper envelope of some collection {fy | ¢ € X}, for some X C L'. Hence, by definition,
all lines ¢ € Ly satisfy d({£},L') < do. In particular, £y ¢ Lo, so |Lg| < m, a property that
we will use below when proving the correctness of the algorithm. This also shows that Lg
satisfies property (iv) of Step 3.

The sets L;, for 1 < i < k, are pairwise disjoint, and |L| < n/r, for all 1 < < k. Tt
thus remains to show that

Lo{l el |d{l}, L)<}

In fact, the following stronger claim is true, and follows easily by construction.

Geometric Optimization October 5, 1995

WIDTH IN 3-SPACE 10

Lemma 3.3 For any node v, in T,

LLDL ={¢ el |d{l},L,) < & }.

Proof: We prove this by induction on the depth of v, in T. The claim obviously holds for
the root of T'. Suppose it holds for the parent v; of a node v,. Since L, C L, obviously
L7 C L. Let C% be the set of cells that we constructed at v¢. Then 7 € C¥ and, for every
¢ € L;, we have ¢(¢) € 7. Let ¢ € L” and let £ be a line in L, satisfying d(¢,¢') < dy.
Then, by definition, the point 1 (¢) lies below the surface y(¢'). Since 7 is unbounded in
the +&4-direction, it follows that v (¢') intersects 7. Moreover, by the induction hypothesis,
¢ € L., which implies that £ € L, and thus the claim is true for 7 as well. O

Hence, the sets L;, L,, for 1 <14 < k, satisfy the desired properties of Steps 3 and 4.

Next, we analyze the expected time spent in computing these subsets. Let f(a,b)
denote the maximum expected time spent by the recursive algorithm for Steps 3—4, where
expectation is with respect to the choices of random samples by the algorithm, and where the
maximum is taken over all sets L, L' of lines, as above, of respective sizes a, b. At each level of
recursion, X is chosen, with high probability, only once, and we spend O((slog s)3>*¢(a +b))
time to compute all the sets L;, L. Since C% consists of O((slogs)3*¢) cells, we obtain
the following recurrence:

c(slogs)3te

flad) < Y flaibi) +(slogs)*™(a+1b),

=1

where Y, a; < a, b <b/s,and ¢, ¢ are constants (depending on £). The recursion stops
when b <n/r, so f(a,b) = O(1) for b < n/r.

The solution of the above recurrence is

3¢’
fla,b) < A (alogb—i— 5 7"2> ,
n

for any & > ¢; here A = A(¢') is a sufficiently large constant depending on the value of .

We prove this by induction on b. The inequality obviously holds for b < n/r. For larger
values of b, we obtain, by the induction hypothesis,

c(slogs)3te

fla,b) < > A(azlogb—l—

=1

3+5’

2) + (slog s)3*¢(a + b)

c(slogs)3te

b
A Z (az log +
i=1

< Aalogb—i—a[c'(slogs)gJrE Alog s| +

3+E

IN

r)3+
m) + ' (slog s)**¢(a + b)

Geometric Optimization October 5, 1995

WIDTH IN 3-SPACE 11

2 02 /2
' ' dn?/r
Ab3+5 |: e~], 3+¢
) cs 0g""" s+ 112

)3+s

(slogs
2
34 ' v
< A(alogb+b ¢ ﬁ)’

because b > n/r, ¢ > e, and A is chosen sufficiently large. Since r = [m3/8/n1/8-|, and
initially a = m and b = n, we obtain

f(m, n) — O(m3/4+a’n3/4+a’ + ml—l—a’ + nl-}-a’))

Step 5: For each 1 < i < k, We compute d(L;, L;) using a somewhat simpler version of
the randomized algorithm described by Agarwal et al. [1]. We give a brief sketch of this
variant.

(i) Let ng be some sufficiently large constant. If n; < ng, we compute d(¢, ¢') for all pairs
e L;, V' e L, in O(m;) time, and return the minimum distance.

ii) Assume n; > ng. Choose a random subset A C L. of size [n;/2]; each subset of size
1
[n;/2] is chosen with equal probability.

. . , .
- (3] .
(ii) Recursively compute ¢’ = d(L;, A)

(iii) Compute the set
B={leL,—A|dL;,{l}) <d}.

(iv) Compute d(¢,¢') for all pairs ¢ € L;, /' € B, and return the minimum distance (or
output ¢’ if B is empty).

The correctness of the algorithm is obvious (see also [1]), so we now analyze its expected
running time. For a line £ € L;, let

BY ={/el—A|d¢ 1)<}

Using a standard probabilistic argument, it can be shown that the expected size of BW® ig
O(1). Since B = Upey, B the expected size of B is O(m;), and the expected running
time of Step 5(iv) is O(m?).

By reversing the direction of the z-axis, setting § = ', and using Corollary 3.2, L; can
be preprocessed into a data structure of size O(m?“), so that, for each ¢' € L, — A, we
can determine in O(logm;) time whether ¢/ € B. The time spent in Step 5(iii) is thus
O(m}*¢ 4 n;logm;), which subsumes the expected cost of Step 5(iv). The running time of
both steps can be improved, by a standard batching technique, to O(min?/ ey n}“); see
[1]. Let ¢(mj,n;) denote the maximum expected running time for computing d(L;, L) by

Geometric Optimization October 5, 1995

WIDTH IN 3-SPACE 12

this algorithm, where the maximum is taken over all sets L;, L} of sizes m;, n;, respectively.
Then we obtain the following recurrence

2/3
@(mi,ni) < p(mi, [n;/2]) + O(m;n; /3t 4 n}“),
whose solution is easily seen to be

o(mi,ni) = O(mn. T8 4 nlte).

By the choice of the parameter r in algorithm CLOSEST-PAIR, the expected time spent in
Step 5 is thus

k
> p(mi,ni) = Zo(mi”?/3+g+”}+g)

i=1 i=1

n 2/34+e k n\1te sie!
- 0((?) St (7)o

’ ! ! !
_ O(m3/4+a n3/4+a + ml—l—a + nl—l—a)

The total expected time spent by algorithm CLOSEST-PAIR, excluding the time spent
in the recursive call, is thus O(m?3/4T€ p3/4+e" L plte’ 4 opltey,

Recall that all lines ¢ € Ly satisfy d({¢},L') < dp. Recall also that £, was chosen
randomly in Step 2. If we sort the lines £ € L in the nondecreasing order of their distances
d({¢}, L"), then the probability that £ is the i’ item in this list is 1/m, and in this case
we must have |Lg| < i. Let T(m,n) denote the maximum expected time for algorithm
CLOSEST-PAIR to compute d(L, L"), where the maximum is taken over all sets L, L’ of sizes
m and n, respectively. The arguments just given imply that

([cim for n < ng,
con'te for n > ng,m < n'/3,

T(m,n) <] m=l

/ / / ’
- T Z n +A 3/4+4¢ n3/4+a +m1+a —I—’I’LH_E)
m -

=0

\ for n > ng, m > n'/3.

The solution of the above recurrence is
T(m,n) < B(m3/4+8’n3/4+8’ + mite log 1 + nlte),

for any £ > ¢ and for some constant B = B(e').

To complete the analysis, we finally show:

Lemma 3.4 Algorithm CLOSEST-PAIR computes the distance §* = d(L, L") correctly.

Geometric Optimization October 5, 1995

WIDTH IN 3-SPACE 13

Proof: We prove the lemma by double induction on m and n. Let L, L' be sets of size m
and n, respectively. If n < ng then the correctness is trivial (see Step 1). If m < n'/3 (i.e.,
r = 1), then the algorithm is also correct, by the analysis of Step 5 given above. Suppose
that m > n'/3 (so r > 1), and that the algorithm computes 6* = d(L, L') correctly for all
sets of lines L and L’ such that |L| < m or |L| = m and |L'| < n. Since the algorithm
returns the distance between a line of L and a line of L', it always returns a number at least
as large as ¢*.

If 0* = §p, there is nothing to prove, because Step 7 returns the minimum of dg, §1, and
d2. Suppose 6* < dp. Let £ € L, ¢’ € L' be a pair of lines with d(¢£,¢') = §*. If ¢ € Ly,
then, d(L, L") = d(Lg, L") = d2. Since |Ly| < m, as argued above, the algorithm computes
d(Lg, L") correctly, by the induction hypothesis, so d(L, L") is also correctly computed.

If ¢ € L; for some 1 <4 < k, then, by construction, ¢ € L., and therefore d(L,L") =
d(L;, L}) = 61. Since |L;| < m and |L}| < n/r < n, the claim follows again by the induction
hypothesis. This completes the proof of the lemma. O

Hence, we obtain the following result.

Theorem 3.5 Given a set L of m red lines and a set L' of n blue lines in R®, such that
all red lines lie above all blue lines, d(L, L") can be computed by a randomized algorithm in
O(m?/4*en3/4te f mlte L nl+2) expected time, for any > 0.

Remark 3.6 Note that algorithm CLOSEST-PAIR and its analysis do not use the fact that
L and L' are sets of lines in R?, and that d(.,.) is the Euclidean distance function. In fact,
Theorem 3.5 holds in a more general setting as long as L, L', and the distance function
satisfy the following properties:

(i) Each object £ in L is specified by 4 real parameters, so that £ can be mapped to a
point () in R

1) For any parameter 0 > 0 and any object £ € L', one can define a trivariate polynomia

ii) F 0 > 0 and bject ¢ € L' defi ivari 1 ial
for(x1,29,23) of constant degree such that, for any ¢ € L with p(¢) = (a1, a2, a3, a4),
ay < fp(ay,az,a3) if and only if d(¢,¢") < 4.

(iii) For any subset R C L’ of size r and d > 0, the vertical decomposition of the mini-
mization diagram of the set {fy | £ € R} has O(r37¢) cells.

Combining this result with the observations in [7], which we omit here, and which show
how the width itself can be computed using Algorithm CLOSEST-PAIR as a subroutine, we
obtain the main result of this section.

Corollary 3.7 The width of a set of n points in R® can be computed by a randomized
algorithm whose expected running time is O(n3/2+’5), for any € > 0.

Geometric Optimization October 5, 1995

MINIMUM WIDTH ANNULUS 14

4 Minimum Width Annulus

Given a set S = {p1, ... ,pn} of n points in the plane, we want to compute an annulus of
the smallest width that contains S. That is, we want to compute two concentric circles,
centered at a point £, of radii 1, 9, respectively, such that ro — rq is minimized, subject to
the constraints r1 < d(&,p;) < ro, for each 1 <i <mn.

For a given point x, let w(x) denote the smallest width of an annulus containing S and
centered at x. Let p.,ps be the nearest and the farthest neighbors of x in S, respectively.
Then

w(x) = d(x,ps) — d(x,pc) -

Figure 1: A minimum width annulus

Let Vor.(S) (resp. Vorg(S)) denote the closest (resp. farthest) point Voronoi diagram
of S. Ebara et al. [15] observed that the center of a minimum width annulus containing S
is a vertex of Vor.(S), a vertex of Vory(S), or an intersection point of an edge of Vor,(S)
and an edge of Vor(S) (see also [29]). Based on this observation, they gave a rather simple
O(n?)-time algorithm for computing a minimum width annulus, which was improved by
Agarwal et al. [3] to O(n3/5¢), and subsequently by Agarwal et al. [1] to O(n'7/!'*¢). Here
we obtain a further improved algorithm that runs in O(n3/ 2+¢) expected time, for any £ > 0,
using the machinery developed in the previous section. If one is interested in minimizing
the area of the annulus, instead of the width, the problem can be formulated as an instance
of linear programming in R*, and therefore can be solved in O(n) time, using Megiddo’s
algorithm [25]. See also [21, 30] for other related results.

We first make the following observation, which was missed in the earlier treatments of
the problem cited above, and which transforms the problem into a width-like problem in
R3. We lift the points of S to the paraboloid z = x? + y? by the standard lifting map
(z,y) = (z,y, 2> +y?).Tthen a circle C of radius r with center (a,b) is mapped to the plane
C*: z=2az +2by + (r?> —a® — b?). A point p € R? lies inside (resp. on, outside) C if and
only if its lifted image p* lies below (resp. on, above) the plane C*. Thus an annulus with

Geometric Optimization October 5, 1995

MINIMUM WIDTH ANNULUS 15

center (a,b) and radii r; < ry and containing S is mapped to a pair of parallel planes
z = 2az+2by + (rf —a® —b?)

and
z = 2ax+2by + (r3 —a® —b?),

such that the image S* of S is fully contained in the slab bounded between these two planes.
In other words, the minimum-width annulus problem reduces to the problem of finding a
pair of parallel planes

ﬂl:z:ﬁ1m+/<;2y+ﬁg and 7o : 2z = K1T + KoY + K3

that supports S*, such that

2 2 2 2
g(7r1,7r2):\/mgjt”l;:’£2 —\/ﬁ3+“11“2 (4.1)

is minimized.

For a pair of (skew) lines /1, /5 in R?, we define the distance between ¢; and /5 to be
d(ly,0s) = g(m,m) where m,my are parallel planes containing /1, /5, respectively. Using
the observation in [7], this width-like problem can also be formulated as the bichromatic
closest line-pair problem defined in the beginning of Section 3 (i.e., given a set L of m lines
in R* and another set L’ of n lines in R? such that all lines in L lie above all blue lines in
L', compute a closest pair between L and L'), except that we use the distance function just
described. An explicit expression for d(4,¢') can be obtained as follows. Let the equations
defining £, ¢ be, as in Section 3,

{: y=aiz+as, Z = aox + ay,
7. y = bix + b3, 2z = box + by.

The direction of the common normal to both lines is
n = (a1by — asby, as — be, — (a1 — by)) ,
and the planes orthogonal to n and containing ¢, ¢, respectively, are
(x —(0,a3,a4)) n=0 and (x—(0,b3,b4)) - n=0,

or

. a1b2 — a2b1 ag — b2 a3(a2 — bg) — a4(a1 — bl)
z = T Yy —
a; — by a; — by a; — by

and

5 = ale—a2b1x+a2—b2y_b3(a2—b2)—b4(a1—bl).
ar—b ar —b ar— b

Geometric Optimization October 5, 1995

BIGGEST STICK IN A POLYGON 16

Plugging this into (4.1), we thus can write

d(6,0") = /pas +ag+v —/ubs +by +v,

where p and v depend only on ay, as, by, bs.

In order to use algorithm CLOSEST-PAIR, we need to prove an appropriate variant of
Lemma 3.1. First, we note that if ¢’ is fixed then d(¢,¢') is defined whenever the &;-
coordinate of / is different than that of #'. In this case d(¢,¢') monotonically increases with
a4, which implies that the appropriate variant of the functions fy is well-defined (whenever
the &1-coordinates of £ and of ¢’ are different). To establish the second part of the lemma,
for a fixed parameter 4§, let £;, £, be two given lines, let &; and &, be fixed (with &; different
from the &;-coordinates of ¢} and of #), and consider the equation

fl’l (£la£2a€3) = fl§(£1352353) . (42)

We seek a line £ that lies above ¢ and ¢, and satisfies d(¢,¢}) = d(¢,¢,) = §. This can be
written as

Vs + &+ \/Mbgl) + bz(ll) + v+ 6,
Vs +& +1ve = \/szgQ) + bf) +urp+0,

where b, b2 are the 4-tuples defining 2y, b, respectively, and 1, v1, pe, o are inde-
pendent of &3, £4. We thus get a linear system of equations in &3, &4, which can be easily
reduced to a linear equation in £3 of the form (u1 — pu2)€3 = a. This shows that (4.2) has a
unique solution, unless 1 = po, or

§o — bé” o — bé”
&1 — bgl) & — b?) ’

which is the equation of a line in the &;&s-plane.

We have thus shown that conditions (F1) and (F2) of Section 2, and therefore the
conditions of Remark 3.6, are satisfied in this case too, so the algorithms and the analysis
of the preceding section apply here as well. We thus obtain the following result.

Theorem 4.1 An annulus of smallest width that contains a given set S of n points in the
plane can be computed by a randomized algorithm in O(n3/2+6) expected time, for any € > 0.

5 Biggest Stick in a Polygon

The biggest stick problem is to find the longest segment that can be placed inside a simple
n-gon P in the plane. Chazelle and Sharir gave an O(n!%?)-time algorithm [11], which was

Geometric Optimization October 5, 1995

BIGGEST STICK IN A POLYGON 17

Figure 2: Biggest stick in a polygon

improved by Agarwal et al. [1] to O(n'"/11%%); see also [3] for an intermediate bound. If
the endpoints of the segment are restricted to be at vertices of P, the problem becomes
considerably easier, and can be solved in O(nlog®n) time [4].

Following the same idea as in [3], we use a divide-and-conquer approach. Partition P
into two simple polygons Py, P, by a chord ¢, so that each of P;, P, has at most 2n/3 vertices.
Let [, be the line passing through c¢. We recursively compute the longest segment that can
be placed within P; or within P». The merge step requires computing the longest segment
having one endpoint in P; and the other in P». An easy perturbation argument shows that
such a longest segment has to touch two vertices of P, say, vi,vs. The difficult case is when
vy € Py and vy € P (the case where both v; and v2 belong to the same subpolygon is easy,
because there can be only O(n) such pairs of vertices — see [3]). Agarwal et al. [3] showed
that finding such a segment can be reduced to the following problem: We have a set L; of
a lines in the plane, where each line ¢; € Ly is dual to some vertex v; of P; and has an edge
e; € P associated with it. Similarly, we have another set Lo of b lines in the plane, where
each line /; € Lo is dual to some vertex v; of P and has an edge e; of P, associated with
it. L; and Lo satisfy the following property: For any pair ¢; € Li,¢; € Lo, the segment
gij = a;a; lies inside P, where a; (resp. a;) is the intersection point of e; (resp. e;) with the
line passing through v; and v;; see Figure 3. The goal is to compute the longest segment
gij, over all pairs ¢; € Li,4; € Ly. If we define the distance function d(¢;,¢;) as the length
of the segment g;;, then the goal is to compute a farthest pair in L; X Ly. The reduction of
the original subproblem yields many instances of this problem, and the biggest stick that
crosses the chord c is the largest of all longest segments g;;, over all instances.

It can be shown that Lq,Ls can be parametrized by 4 real parameters (two for the

Geometric Optimization October 5, 1995

BIGGEST STICK IN A POLYGON 18

Figure 3: Illustration of the distance function d(¢;, ¢;)

associated vertex of P and two for the associated edge), so that the setup of Remark 3.6
arises here as well. In more detail, each line ¢; € L, associated with a vertex v; and an edge
e;, is mapped to a point (a1, az,as,as) € R*, where aq,as are the coordinates of the vertex
v; and where the equation of the line containing e; is y = agz + a4 (we assume, without
loss of generality, that no such line is vertical). Let w be a real parameter. For each line
; € Lo, associated with a vertex v; and an edge e;, we define a trivariate function f; such
that 4 = F(x1,x2,23) if and only if the following holds: Let v be the point (z1,z2), A be
the line y = x32 + x4, and a (resp. b) be the intersection point of the line containing e;
(resp. A) with the line passing through the points v; and v. Then d(a,b) = w.

Lemma 5.1 The set F = {f; | ¥; € Lo} satisfies (F1) and (F2).

Proof: To establish (F1), we need to show that, for a given line ¢; € Ly and for fixed z1, z2,
the value f;(z1,x2,x3) is defined for all x3, except when (z,z2) lies on any of a constant
number of algebraic arcs of constant maximum degree. Since the point (x1,x2) is fixed, the
line A passing through v; and (z1, z2) is also fixed. If X is parallel to e; then f;(z1,z2,x3)
is undefined for all 3. Otherwise, there exists a unique point p on A at distance w from
the intersection of A with the line containing e; and lying to the left of v;, and for any
x3 there is a unique line y = z3x + x4 passing through p, so fj(z1,z2,23) is defined for
all z3. (There is a small technical issue here, in which we would like to exclude the case
where y = z3x + x4 coincides with A. The analysis of [3] does indeed allow us to ignore this
possibility.)

Next, to establish (F2), we need to show that, for two given lines ¢;,¢; € Lo, and for
any fixed (z1,22), not lying on any of the arcs where f; or fj is undefined, the equation

fi(x1, 22, 23) = fr(w1, 22, 23)

has at most one solution z3. Assume that both functions are defined over (z1,z2) x R.
Suppose that z3 is a solution of this equation, and that z4 = fj(z1,22,23). Let v be the
fixed point (z1,z2). Let s; (resp. s;) be the unique segment emanating from a point on e;
(resp. on ej) and passing through v; and v (resp. through v, and v) whose length is w. Let
pj (resp. pi) be the other endpoint of s; (resp. si) (not the one lying on e; (resp. on ey)).

Geometric Optimization October 5, 1995

[1]: Shouldn’t it be

CONCLUSION 19

Figure 4: Tllustration of the case fj(z1,z2,23) = fi(z1, 22, 23)

Then the line y = z3z + x4 is the unique line connecting p; and p;. This is fine as long
as both p; and p, are different from v. (If p; = py, = v, then y = z32 + x4 is undefined,;
if, say, only p; = v then y = 232 + x4 passes through v and through one of the points v;,
vk, & situation that we wish to exclude in our analysis (as in the preceding paragraph).) In
other words, we do not want v to have the property that the length of one of the segments
connecting v to e; through v; or to ej through vy is equal to w. This implies that, as long
as v does not lie on one of two corresponding algebraic curves (these curves are of degree 4,
and are known as ‘conchoids of Nicomedes’ [22]), the above equation has a unique solution.

This completes the proof of the lemma. O

Remark 5.2 In the application of Lemma 5.1, the point (21, z2) is restricted to a half-plane
bounded by the line containing the dividing chord ¢, so the functions of F are defined only
on a, corresponding halfspace of R*. We leave it to the reader to verify that the machinery
developed in earlier sections is applicable in this case too.

In view of the above lemma, the conditions of Remark 3.6 are satisfied here, so we can
apply a variant of algorithm CLOSEST-PAIR to find a farthest pair in L; and Ls. Omitting
the further, easy and technical details, we obtain the following result.

Theorem 5.3 The longest segment that can be placed inside a given simple n-gon P can
be computed by a randomized algorithm in O(n3/2+5) expected time, for any e > 0.

6 Conclusion

In this paper we presented efficient randomized algorithms for a number of geometric opti-
mization problems. These algorithms are not only asymptotically faster than the previously

Geometric Optimization October 5, 1995

REFERENCES 20

best

known algorithms, but they are simpler as well. Our technique also yields simpler al-

gorithms for many other geometric optimization problems, such as computing a closest line

pair

in 3-space, etc. [7, 26].

We conclude this paper by mentioning some open problems

(i)

(if)

(iii)

Can our algorithms be derandomized without affecting their running time signifi-
cantly?

Computing a minimum-width annulus containing a set S of points in the plane is
equivalent to fitting a circle C' through S, such that the maximum distance between the
points of S and C' is minimized. However, in many applications, such as computational
metrology [31], one is interested in minimizing the sum of squares of distances between
C and the points of S. We are not aware of any efficient algorithm for this problem.

There are various interesting extensions of the biggest stick problem, which are worth
pursuing. For example, given a simple polygon P and a triangle T, is there a sub-
quadratic algorithm that determines whether 7' can be placed inside P, allowing
both translations and rotations? A quadratic algorithm for this problem was given
by Chazelle [6]. Another related problem is: Given a segment e and a polygon P
with holes, determine, in subquadratic time, whether e can be placed inside P, using
translations and rotations. A quadratic solution can be found in [28].

References

[1]

2]

[3]

P. Agarwal, B. Aronov and M. Sharir, Computing lower envelopes in four dimensions with
applications, Proc. 10th Annual Symp. on Computational Geometry, 1994, 348-358.

P. Agarwal, O. Schwarzkopf and M. Sharir, The overlay of lower envelopes in three dimensions
and its applications, Proc. 11th Annual Symp. on Computational Geometry, 1995, 182—189.

P. Agarwal, M. Sharir, and S. Toledo, New applications of parametric searching in computa-
tional geometry, J. Algorithms 17 (1994), 292-318.

A. Aggarwal and S. Suri, The biggest diagonal in a simple polygon, Inf. Proc. Letters 35 (1990),
13-18.

H. Bronnimann and B. Chazelle, Optimal slope selection via cuttings, Proc. 6th Canadian
Conf. on Computational Geometry, 1994, 99-103.

B. Chazelle, The polygon containment problem, in: Advances in Computing Research, Vol. I:
Computational Geometry (F. Preparata, ed.), JAI Press, Greenwich, CT, 1993, 1-33.

B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir, Diameter, width, closest line pair, and
parametric searching, Discrete Comput. Geom. 10 (1993), 183-196.

Geometric Optimization October 5, 1995

REFERENCES 21

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir, A singly exponential stratification
scheme for real semi-algebraic varieties and its applications, Proc. 16th Int. Collog. on Au-
tomata, Languages and Programming, (1989), 179-192. Lecture Notes in Computer Sciences,
vol. 371, Springer-Verlag, Berlin. (Also in Theoretical Computer Science 84 (1991), 77-105.)

B. Chazelle and M. Sharir, An algorithm for generalized point location and its applications, J.
Symbolic Computation 10 (1990), 281-309.

K. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir and E. Welzl, Combinatorial complexity
bounds for arrangements of curves and spheres, Discrete Comput. Geom. 5 (1990), 99-160.

K. Clarkson and P. Shor, Applications of random sampling in computational geometry II,
Discrete Comput. Geom. 4 (1989), 387-421.

M. Dillencourt, D. Mount, and N. Netanyahu, A randomized algorithm for slope selection, Int.
J. Comput. Geom. and Appls 2 (1992), 1-27.

M. de Berg, K. Dobrindt, and O. Schwarzkopf, On lazy randomized incremental construction,
Proc. 26th Annual ACM Symp. on Theory of Computing, 1994, 105-114.

M. de Berg, D. Halperin, and L. Guibas, Vertical decomposition for triangles in 3-space, Proc.
10th Annual Symp. Computational Geometry, 1994, 1-10.

H. Ebara, N. Fukuyama, H. Nakano, and Y. Nakanishi, Roundness algorithms using the Voronoi
diagrams, First Canadian Conf. on Computational Geometry, 1989.

D. Halperin and M. Sharir, New bounds for lower envelopes in 3 dimensions, with applications
to visibility in terrains, Discrete Comput. Geom. 12 (1994), 313-326.

D. Haussler and E. Welzl, e-nets and simplex range queries, Discrete Comput. Geom. 2 (1987),
127-151.

M. Houle and G. Toussaint, Computing the width of a set, IEEFE Transactions on Pattern
Anal. and Mach. Intell. 5 (1988), 761-765.

M. Katz and M. Sharir, Optimal slope selection via expanders, Inf. Proc. Letters 47 (1993),
115-122.

M. Katz and M. Sharir, An expander-based approach to geometric optimization, Proc. 9th
Annual Symp. on Computational Geometry, 1993, 198-207.

V. B. Le and D. T. Lee, Out-of-roundness problem revisited, IEEE Trans. Pattern Anal. Mach.
Intell. PAMI-13 (1991), 217-223.

E.H. Lockwood, A Book of Curves, Cambridge University Press, Cambridge, 1967.

J. Matousek, Randomized optimal algorithm for slope selection, Info. Proc. Letters 39 (1991),
183-187.

N. Megiddo, Applying parallel computation algorithms in the design of serial algorithms, J.
ACM 30 (1983), 852-865.

Geometric Optimization October 5, 1995

REFERENCES 22

[25]

[26]

[27]

[28]

[29]

[30]

31]

N. Megiddo, Linear programming in linear time when the dimension is fixed, J. Assoc. Comput.
Mach. 31 (1984), 114-127.

M. Pellegrini, On collision-free placement of simplices and the closest pair of lines in 3-space,
SIAM J. Comp. 23 (1994), 133-153.

M. Sharir, Almost tight upper bounds for lower envelopes in higher dimensions, Discrete Com-
put. Geom. 12 (1994), 327-345.

M. Sharir and P. Agarwal, Davenport-Schinzel Sequences and Their Geometric Applications,
Cambridge University Press, Cambridge-New York-Melbourne, 1995.

M. Smid and R. Janardan, On the width and roundness of a set of points in the plane, Tech.
Rept. MPI-1-94-111, Max-Planck-Institut fiir Informatik, 1994.

K. Swanson, An optimal algorithm for roundness determination on convex polygons, Proc. 8rd
Workshop Algorithms Data Structures 1993, 601-609.

G. Wilfong, private communication.

Geometric Optimization October 5, 1995

