
E�cient Randomized Algorithms for Some GeometricOptimization Problems�Pankaj K. Agarwaly Micha SharirzOctober 5, 1995AbstractIn this paper we �rst prove the following combinatorial bound, concerning the com-plexity of the vertical decomposition of the minimization diagram of trivariate functions:Let F be a collection of n totally- or partially-de�ned algebraic trivariate functions ofconstant maximum degree, with the additional property that, for a given pair of func-tions f; f 0 2 F , the surface f(x; y; z) = f 0(x; y; z) is xy-monotone (actually, we need asomewhat weaker property). We show that the vertical decomposition of the minimiza-tion diagram of F consists of O(n3+") cells (each of constant complexity), for any " > 0.In the second part of the paper we present a general technique that yields faster ran-domized algorithms for solving a number of geometric optimization problems, including(i) computing the width of a point set in 3-space, (ii) computing the minimum-widthannulus enclosing a set of n points in the plane, and (iii) computing the `biggest stick'inside a simple polygon in the plane. Using the above result on vertical decompositions,we show that the expected running time of all three algorithms is O(n3=2+"), for any" > 0. Our algorithm improves and simpli�es previous solutions of all three problems.
� Work on this paper by the �rst author has been supported by NSF Grant CCR-93-01259, an NYI award,and matching funds from Xerox Corporation. Work on this paper by the second author has been supportedby NSF Grants CCR-91-22103 and CCR-93-11127, by a Max-Planck Research Award, and by grants fromthe U.S.-Israeli Binational Science Foundation, the Israel Science Fund administered by the Israeli Academyof Sciences, and the G.I.F., the German-Israeli Foundation for Scienti�c Research and Development.y Department of Computer Science, Box 90129, Duke University, Durham, NC 27708-0129z School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel, and Courant Instituteof Mathematical Sciences, New York University, New York, NY 10012, USA0

Introduction 11 IntroductionIn this paper we present a general technique that yields faster randomized algorithms forthe following problems:1. Computing the width of a set of points in R3 .2. Computing an annulus of minimum width that contains a given set of points in theplane.3. Computing a longest segment that can be placed inside a simple polygon in the plane.In order to achieve a fast implementation of our technique, we use the following combi-natorial result, which is derived in the �rst part of the paper. Let F be a collection of ntotally- or partially-de�ned algebraic trivariate functions of constant maximum degree, withthe following additional xy-monotonicity property: For any pair f; f 0 2 F , the xy-plane canbe decomposed into a constant number of faces, each of constant description complexity,such that, for every face c, the surface f(x; y; z) = f 0(x; y; z) is the graph of a continuousbivariate function (of x and y) over the interior of c. The lower envelope EF of F is thepointwise minimum EF (x; y; z) = minf2F f(x; y; z) ;and the minimization diagram MF is the projection of the graph of EF onto R3 . That is,MF is a decomposition of R3 into relatively-open connected cells of dimension 0, 1, 2, and3, so that, over each cell, EF is attained by a �xed subset of functions of F (and/or offunction boundaries). It is known [27] that MF has O(n3+") cells (of all dimensions).We prove that the vertical decomposition of MF also consists of O(n3+") cells, each ofconstant description complexity. See below and [8, 10, 14, 28] for the de�nition of verticaldecompositions. Briey, this is the only known general-purpose technique for decomposingcells of arrangements of low-degree algebraic surfaces in higher dimensions into a reasonablysmall number of subcells of constant complexity. Such a decomposition is a prerequisiteto many randomized incremental or divide-and-conquer algorithms involving arrangementsof this kind. Unfortunately, the known upper bounds on the number of resulting subcellsare much higher than the actual complexity of the cells being decomposed, and this a�ectsadversely (the upper bounds one can prove on) the complexity of the relevant algorithms.Hence any result, like the one we prove here, which establishes nearly-tight bounds for thesize of vertical decompositions, is signi�cant, as indeed will be demonstrated below.Our bound on the vertical decomposition immediately leads to a data structure, ofsize O(n3+"), for e�cient point location queries in the region below EF : For a point x =(a1; a2; a3; a4) in R4 , we can determine in O(logn) time whether a4 < EF (a1; a2; a3). Thetechnique for constructing this data structure crucially relies on the existence of a verticaldecomposition of this region with near-cubic complexity.Geometric Optimization October 5, 1995

Complexity of the Vertical Decomposition 2We next observe that each of the three optimization problems mentioned above canbe reduced to the problem of computing a closest (or farthest) pair between two sets ofobjects in Rd , under some appropriate (pseudo-)distance function. That is, we de�ne twosets of objects A;B and a function � : A � B ! R+ [f0g, and reduce the original opti-mization problem to that of computing �� = mina2A;b2B �(a; b). Actually, we need to solveseveral instances of the closest-pair problem, but we show that the overall running time isstill bounded by (a polylogarithmic factor times) the time complexity of the algorithm forcomputing ��. We use a randomized divide-and-conquer approach to compute ��, whichis inspired by the Clarkson{Shor algorithm [11] for computing the diameter of a set of npoints in 3-space. The merge and the divide steps of our algorithm require a data structurefor point location in the minimization diagram of a set of trivariate functions that satisfythe aforementioned properties. Surprisingly, the xy-monotonicity property, which mightbe regarded as a somewhat restrictive condition, is also satis�ed for each of the three op-timization problems under consideration. Using our bounds on the complexity of verticaldecompositions, we show that the expected running time of our algorithms, for all threeproblems, is O(n3=2+"), for any " > 0. The previously best known algorithms for theseproblems are due to Agarwal et al. [1], and are based on Megiddo's parametric search tech-nique (see also [3, 7]). The expected running time of the algorithms in [1] is O(n17=11+"),for any " > 0.We consider the main contributions of this paper to be the general algorithmic techniqueitself and the bound on the size of the vertical decomposition, both of which might beuseful in other problems. Even though Megiddo's parametric search technique is a verypowerful paradigm, it typically leads to quite complicated algorithms. Recently, there havebeen several attempts [5, 12, 19, 20, 23] to present simpler and more direct algorithms forsome of the problems that have traditionally been solved using parametric searching. Ourtechnique can be viewed as another step in this direction.The paper is organized as follows. We �rst establish in Section 2 our bound on thecomplexity of the vertical decomposition. We then present in Section 3 the general algo-rithmic technique for computing a closest pair, and exemplify it by applying it to the widthproblem. We then discuss, more briey, the minimum width annulus and the biggest stickproblems in Sections 4 and 5, respectively.2 Complexity of the Vertical DecompositionLet F be a collection of n totally- or partially-de�ned algebraic trivariate functions ofconstant maximum degree b that satisfy the following properties:(F1) If a function f 2 F is partially de�ned, then we require that the set of points where fis unde�ned have measure 0, in the following strong sense: There is a constant numberof algebraic arcs of constant maximum degree in the xy-plane (these arcs depend onGeometric Optimization October 5, 1995

Complexity of the Vertical Decomposition 3f), so that, for each point (x; y) not lying on any of these arcs, f is de�ned at allpoints (x; y; z), for any z 2 R.(F2) For any pair of functions f; f 0 2 F , the surface f(x; y; z) = f 0(x; y; z) is xy-monotone,that is, every z-vertical line (not passing through any curve where f or f 0 is unde�ned)crosses this surface in exactly one point. Actually, we somewhat relax this assumption,requiring only that, for each such surface �, the xy-plane can be decomposed into aconstant number of regions, each of constant description complexity (i.e., describedby a constant number of polynomial equalities and inequalities of constant maximumdegree), so that, for each of these regions c, the surface � is the graph of a continuousbivariate function (of x and y) over the interior of c.These assumptions are rather restrictive, but, as we will show below, and rather surprisingly,they hold for several of the current main applications of lower envelopes in 4-space, as listedin the introduction and studied recently in [1, 3, 7]. We also assume that the functions inF are in general position, as de�ned, e.g., in [27]; it is easy to show, using a variant of theargument given in [27], that this assumption does not involve any loss of generality, andthat our results also hold for collections not in general position. Under this assumption, forj = 0; : : : ; 3, the envelope EF is attained by at most (or, if the functions in F are totallyde�ned, exactly) 4 � j functions of F over any j-dimensional cell of MF . We will use theterms vertex, edge, face, and cell to denote, respectively, 0-dimensional, 1-dimensional, 2-dimensional, and 3-dimensional cells of MF . Each vertex, edge, face, or cell c of MF willbe labeled by the corresponding set of functions of F attaining EF over c. In particular,the term f -cell will refer to a (3-dimensional) cell of MF over which EF is attained by thefunction f .The vertical decomposition of MF is de�ned in the following standard manner. In the�rst decomposition stage, we erect, for each edge e of MF , a z-vertical wall from e, whichis the union of all maximal z-vertical relatively-open segments passing through points ofe and not meeting any other vertex, edge or face of MF . The collection of these wallspartitions the cells of MF into subcells, so that each subcell c is bounded from above andfrom below (in the z-direction) by (portions of) a �xed pair of faces of MF ; c may alsoextend to in�nity in either direction. In the second decomposition step, we take each ofthese subcells c and project it onto the xy-plane. We construct the 2-dimensional verticaldecomposition of the projection c�, by erecting a maximal y-vertical segment, contained inthe closure of c�, from each vertex of c� and each (locally) x-extremal point on @c�. Thecollection of these segments partitions c� into `pseudo-trapezoidal' subcells. Each of thesesubcells � induces a subcell of c, obtained by intersecting c with the vertical cylinder � � Rover � . The resulting collection of subcells constitutes the vertical decomposition of MF ,which we denote by M�F . Each of these cells has constant description complexity, in thesense that it is de�ned by a constant number of polynomial equalities and inequalities ofconstant maximum degree (depending on the maximum degree b of the functions of F). See[8, 10, 28] for more details concerning vertical decompositions.Geometric Optimization October 5, 1995

Complexity of the Vertical Decomposition 4Theorem 2.1 If F is a collection of trivariate functions satisfying the assumptions madeabove, then the number of subcells of M�F is O(n3+"), for any " > 0, where the constant ofproportionality depends on " and on the maximum degree b.Proof: Let F be a collection of n trivariate functions satisfying the above assumptions. Itis easily seen that, in general, the second vertical decomposition step does not increase thecomplexity of the decomposition by more than a constant factor, so it su�ces to bound theincrease in the complexity of MF caused by the �rst vertical decomposition step. In otherwords, we want to count the number of pairs (e; e0) of edges of MF , both bounding thesame cell c, such that there exists a z-vertical segment connecting a point on e to a pointon e0 and fully contained in c. (We actually want to count the number of these verticalsegments, but, by assumption, this number is larger than the number of pairs (e; e0) by onlya constant factor, depending on the maximum degree b.) We say that such a pair (e; e0) ofedges are vertically visible. Suppose c is an f0-cell, for some f0 2 F (note that assumption(F1) implies that there is no 3-dimensional cell of MF over which EF is unde�ned). Thene must be either a portion of an intersection curve of the form f0 = f1 = f2, for some pairof functions f1; f2 2 F , or a portion of the boundary of an xy-monotone piece of a surfacef0 = f , for some f 2 F . Similarly, e0 must also be a portion of an intersection curve or ofa boundary curve of the above forms.We estimate the number of vertically-visible pairs of edges for which the vertical segmentconnecting the edges crosses an f0-cell, separately for each �xed f0 2 F . Recall that,by assumption, each surface f0 = f can be decomposed into a constant number of xy-monotone pieces, so that the xy-projections of these pieces are pairwise disjoint. Considerthe collection �(f0) consisting of all these xy-monotone portions of surfaces of the formf0 = f , for f 2 F . We regard each such portion as a partially-de�ned function of x andy. It follows from assumption (F1) that, for each surface � 2 �(f0) contained in the graphof f0 = f , for some f 2 F , either all points lying vertically above � (in the z-direction)satisfy f0 > f or all such points satisfy f0 < f (this property may fail at points lying onthe boundary @� of �, but this limit behavior does not a�ect our analysis). Let �+(f0)(resp. ��(f0)) denote the subset of surfaces � 2 �(f0) for which the corresponding functionf satis�es f0 > f (resp. f0 < f) for all points lying vertically above � (note that a function fmay contribute surfaces to both collections �+(f0), ��(f0), over pairwise-disjoint portionsof the xy-plane). It is then clear that the union of all f0-cells is the same as the regionenclosed between the upper envelope of ��(f0) and the lower envelope of �+(f0). It thenfollows from Theorem 3.2 of [2], concerning the complexity of the region enclosed betweentwo envelopes in 3-space, that the complexity of the vertical decomposition of all f0-cells isO(n2+"), for any " > 0. Repeating this argument over all functions f0 2 F , we obtain thebound asserted in the theorem. 2
Geometric Optimization October 5, 1995

Width in 3-Space 5Let CF be the cell in the arrangement of F lying below EF . The vertical decompositionof CF , denoted as C�F , can be obtained by lifting each cell � 2M�F to the cell�̂ = f(x; z) j x 2 �; �1 � z � EF (x)g :Since each cell of M�F contributes exactly one cell to C�F , the latter also has O(n3+") cells.Similarly, it follows that the vertical decomposition of the cell lying above the graphs of allfunctions in F also has O(n3+") cells.Remark 2.2 An obvious open problem is to extend this bound to vertical decomposi-tions of minimization diagrams of more general trivariate functions. Using recent analysistechniques, as those in [2, 27], we can obtain an O(n4+") bound for the general case ofpartially-de�ned trivariate low- degree algebraic functions, but we conjecture that the cor-rect bound is near-cubic.3 Width in 3-SpaceThe width of a set S of n points in R3 is the smallest distance between a pair of parallelplanes such that the closed slab between the planes contains S. Although the width of aset of n points in the plane can be computed in O(n log n) time [18], the problem becomesconsiderably harder in three dimensions. Houle and Toussaint [18] gave a simple O(n2)-time algorithm for computing the width in R3 , and raised the open problem of obtaininga subquadratic solution. Chazelle et al. [7] presented an O(n8=5+")-time algorithm, for any" > 0, which was subsequently improved by Agarwal et al. [1] to O(n17=11+"). As observedin [7], and further exploited in [1], the problem of computing the width in 3-space can bereduced to the following bichromatic closest line-pair problem: Given a set L of m `red'lines and another set L0 of n `blue' lines in R3 , such that all red lines lie above all bluelines,1 compute the closest pair of lines in L�L0, where the distance between a pair of lines`; `0 2 R3 is d(`; `0) = minp2`;q2`0 d(p; q):Let d(L;L0) = min`2L; `02L0 d(`; `0) denote the distance between a closest pair in L� L0.Before presenting the algorithm, we need to describe some geometric transforms, whichwill be crucial for our algorithm. We can map each line ` 2 L, not parallel to the yz-plane, toa point (`) = (a1; a2; a3; a4) in R4 , where y = a1x+a3 is the equation of the xy-projectionof `, and z = a2x+a4 is the equation of the xz-projection of `. For any �xed real parameter� � 0, we can also map a line `0 2 L0 to a surface (`0), which is the locus of all points (`)1For any pair of nonparallel and nonvertical lines ` 2 L, `0 2 L0, we say that ` lies above `0 if the verticalline passing through the intersection point of the xy-projections of ` and `0 intersects ` above `0. It isinteresting to note that the requirement that all red lines lie above all blue lines crucially a�ects the analysisof the complexity of the resulting algorithm.Geometric Optimization October 5, 1995

Width in 3-Space 6such that d(`; `0) = � and ` lies above `0. We refer to the coordinates of this parametricspace as �1; �2; �3; �4. Observe that any line parallel to the �4-axis intersects = (`0) in atmost one point. If the corresponding lines ` in R3 lie in a vertical plane parallel to `0 and notcontaining `0, then the intersection point may not exist. It follows that can be partitionedinto a constant number of surface patches, each of constant description complexity, suchthat, for each patch ~, all points of R4 lying vertically above ~ represent lines ` in R3 that lieabove `0 and d(`; `0) > �, and all points lying below ~ represent lines ` that either lie below`0, pass through `0, or lie above `0 and d(`; `0) < �. In other words, (`0) is the graph of apartially-de�ned function �4 = f`0(�1; �2; �3). For a point (`) = (a1; a2; a3; a4), such that `lies above `0, if f`0(a1; a2; a3) is de�ned, then a4 > f`0(a1; a2; a3) if and only if d(`; `0) > �,and a4 < f`0(a1; a2; a3) if and only if d(`; `0) < �. Let F be the collection ff`0 j `0 2 L0g,and let UF denote the upper envelope of F . For a line ` 2 L with (`) = (a1; a2; a3; a4), wehave a4 � UF (a1; a2; a3) if and only if d(f`g; L0) � �. It is easily checked that the functionsf`0 are all partially-de�ned, algebraic functions of constant maximum degree.Lemma 3.1 (a) For any line `0 2 L0 and for any �xed �1, �2, so that �1 is not equal to the�1-coordinate of `0, the function f`0(�1; �2; �3) is de�ned for all �3.(b) For any pair of non-parallel lines `01, `02 2 L0 and for any �xed �1; �2, the equationf`01(�1; �2; �3) = f`02(�1; �2; �3) (3.1)has a unique solution �3, except when (�1; �2) lies on a certain critical line �(`01; `02) thatdepends on `01 and `02, or when �1 is equal to the �1-coordinate of `01 or of `02.Proof: Part (a) is trivial: Let �1; �2; �3 be a triple such that �1 is not equal to the �1-coordinate of `0. Then the spatial orientation of all corresponding lines is �xed and theirxy-projection has di�erent orientation than that of `0. Consider the line of the form y =�1x+ �3; z = �2x+ �4 and intersecting `0. If we translate this line in the +z-direction (i.e.,increase the value of �4), its distance with `0 monotonically increases, and therefore thereis a unique �4 = � such that the line `, with '(`) = (�1; �2; �3; �), lies above `0 and is atdistance � from `0. Hence, f`0(�; �2; �3) is de�ned. (If the xy-projection of these lines hasthe same orientation as that of `0, then f`0(�1; �2; �3) is de�ned only when �2 is equal to the�2-coordinate of `0 and when �3 is such that ` and `0 lie in the same vertical plane.)As to part (b), let �3 be a solution of (3.1), and let �4 = f`01(�1; �2; �3) = f`02(�1; �2; �3).The line `�, parametrized by (�1; �2; �3; �4), thus lies in the vertical plane �(�3) : y = �1x+�3,and, as is easily checked, its slope in that plane, with respect to the coordinate frame (u; z),where u is the axis orthogonal to the z-axis, is equal to �2=q1 + �21 . Moreover, by de�nition,`� is a common upper tangent line to the two cylinders C1, C2 of radius �, whose symmetryaxes are the lines `01, `02, respectively. Let Ki = Ki(�3) = Ci \ �(�3), for i = 1; 2. The setsK1 and K2 are two ellipses, and the line `� must be a common upper tangent to K1 andK2 in the plane �(�3) (this holds provided that �1 is not equal to the �1-coordinate of `01 orof `02). As �3 varies, the plane �(�3) translates parallel to itself, and the two ellipses Ki(�3)Geometric Optimization October 5, 1995

Width in 3-Space 7also translate within that plane, so that the positions of their centers are given by two linearfunctions of �3. Moreover, for i = 1; 2, let wi = wi(�3) denote the point on Ki(�3) so thatthe line tangent to Ki at wi has slope �2=q1 + �21 and lies above Ki. It follows that, as �3varies, wi(�3) moves within the plane �(�3) as a linear function of �3, for i = 1; 2. Thus,�3 solves (3.1) if and only if the line connecting w1(�3) and w2(�3) has slope �2=q1 + �21 in�(�3). This equation is linear in �3, as easily follows from the above arguments, and so hasone solution, no solutions, or in�nitely many solutions.To analyze when this equation has no solution, or has in�nitely many solutions, werepresent the above geometric reasoning in an algebraic form. It is easily veri�ed thatthe existence of a unique solution to (3.1) is not a�ected if we translate `01 and `02 byany amounts (such a translation only changes the constant term in the resulting linearequation), so we may assume, with no loss of generality, that both lines pass through theorigin. Let (a1; b1; c1), (a2; b2; c2) be two unit vectors lying, respectively, on the lines `01, `02.The intersection s1(�3) of `01 with �(�3) is a point (a1t; b1t; c1t) that satis�es the equationb1t = �1a1t+ �3, so we have t = �3=(b1 � a1�1), which implies that s1(�3) is the point� a1�3b1 � a1�1 ; b1�3b1 � a1�1 ; c1�3b1 � a1�1� ;and, similarly, the intersection s2(�3) of `02 with �(�3) is the point� a2�3b2 � a2�1 ; b2�3b2 � a2�1 ; c2�3b2 � a2�1� :(As above, these points are well-de�ned only when �1 is not equal to the �1-coordinate of`01 or of `02.) For i = 1; 2, the point wi(�3) is a translated copy of si(�3) by a �xed vector,independent of �3. The coe�cient of �3 in the equation (3.1) is thus easily seen to be(proportional to) c2b2 � a2�1 � c1b1 � a1�1 � �2 � a2b2 � a2�1 � a1b1 � a1�1� :Hence, the equation (3.1) does not have a unique solution only when this expression is 0.That is, c2 � a2�2b2 � a2�1 = c1 � a1�2b1 � a1�1 ;which is easily seen to be a linear equation in �1 and �2 (it does not vanish identically, unless`01 and `02 are parallel). This completes the proof of the lemma. 2Lemma 3.1 implies that the collection F satis�es the assumptions (F1), (F2) of Theo-rem 2.1. Let CF denote the cell in the arrangement of F that lies above the upper envelopeof F . In view of Lemma 3.1, Theorem 2.1, the above discussion, and standard point-locationtechniques (such as those in [8, 9]), we obtainGeometric Optimization October 5, 1995

Width in 3-Space 8Corollary 3.2 The vertical decomposition C�F of CF consists of O(n3+") cells, for any" > 0. Moreover, CF can be preprocessed in time O(n3+") into a data structure of sizeO(n3+"), for any " > 0, so that, for any query point p, we can determine in O(logn) timewhether p 2 CF .We now describe a divide-and-conquer algorithm for computing d(L;L0). The basic ideais as follows: We randomly choose a line ` 2 L, and compute the distance �0 between ` andits nearest neighbor in L0. We discard all those lines of L whose nearest neighbors in L areat distance � �0. Let L1 � L be the subset of remaining lines. If L1 = ;, we return �0;otherwise we recursively compute d(L1; L0). Using a probabilistic argument, one can showthat the expected depth of the recursion is O(logm). The only nontrivial step in the abovealgorithm is computing the subset L1. We, however, do not have an e�cient procedurefor computing L1, so, after computing �0, we proceed in a round about way. We dividethe problem of computing d(L;L0) into a number of subproblems, of which one is solvedrecursively and the others are solved using a di�erent algorithm, as described below. Wewill �rst present an outline of the algorithm, and then explain each of the nontrivial stepsin some detail.Algorithm Closest-Pair1. Let n0 be a su�ciently large constant, whose value will be �xed later. If n � n0,then we compute d(`; `0) for every pair (`; `0) 2 L� L0, in O(m) time, and return theminimum distance.2. Assume that n > n0. Randomly choose a line `0 2 L and compute �0 = d(f`0g; L0),in O(n) time.3. Set r = lm3=8=n1=8m. We partition L into k + 1 subsets L0; L1; : : : ; Lk, with thefollowing properties:(i) k = O(r3+"), for any " > 0;(ii) if r = 1, then k = 1, L0 = ;, L1 = L;(iii) for each 1 � i � k, jf`0 2 L0 j d(Li; f`0g) < �0 gj � nr ;(iv) L0 � f` 2 L j d(f`g; L0) < �0g; L0 may be empty (as is the case when r = 1).4. For each 1 � i � k, we compute a set L0i of size at most n=r such thatL0i � f`0 2 L0 j d(Li; f`0g) < �0 g ;if r = 1 and k = 1, we put L01 = L0. Set mi = jLij and ni = jL0ij.Geometric Optimization October 5, 1995

Width in 3-Space 95. For each 1 � i � k, we do the following: If ni = 0, we set d(Li; L0i) = +1. Otherwise,we compute ��i = d(Li; L0i) directly, using a di�erent algorithm (detailed below). Wethen compute �1 = mini ��i .6. If L0 6= ;, we compute �2 = d(L0; L0) recursively.7. Return minf�0; �1; �2g as d(L;L0).Next, we explain Steps 3{5 in detail, and analyze their expected running time; the othersteps are trivial and need no further explanation. We will then conclude the analysis byproving the correctness of the algorithm.Steps 3{4: We compute Li; L0i, for 1 � i � k, using a divide-and-conquer approach. Weconstruct a tree T , each of whose nodes v is associated with two subsets Lv � L and L0v � L0.The root of the tree is associated with L and L0 themselves. The subsets associated withthe leaves of T will correspond to the sets Li and L0i.If r = 1, then T consists of a single node; we set k = 1, L1 = L, L01 = L0, and L0 = ;.Next, assume that r > 1. Let s be some su�ciently large constant. We choose a randomsubset X � L0 of size c1s log s, where c1 is an appropriate constant independent of s, andcompute C�X , the vertical decomposition of the cell CX lying above the graphs of all thefunctions ff`0 j `0 2 Xg (de�ned in terms of the parameter �0 computed in Step 2). ByCorollary 3.2, C�X has O((s log s)3+") cells. For each cell � 2 C�X , we compute the setL0� � L0 of lines `0 such that (`0) intersects � . By standard "-net theory [17], we have,with high probability, jL0� j � n=s for every � 2 C�X . If jL0� j > n=s for some � 2 C�X , wechoose another random subset and repeat the above steps. Otherwise, for each � 2 C�X wecompute the subset L� � L of lines ` such that (`) 2 � . Set m� = jL� j and n� = jL0� j. IfL� 6= ;, we create a child v� of the root corresponding to � . We associate L� ; L0� with v� .If jL0� j � n=r, then v� is a leaf. Otherwise, v� is an internal node of T , and we expand Tfurther at v� by applying the same procedure recursively to L� ; L0� .By construction, the depth of T is at most dlogs re. Since each node has at mostO((s log s)3+") children, the total number of leaves in T is k � c2r3+"0 , for any "0 > "and for some constant c2 independent of s and r (but depending on "; "0). We set Li andL0i to be the subsets associated with the ith leaf of T , for i = 1; : : : ; k. Finally, we setL0 = L�Ski=1 Li. Note that a line ` is placed in L0 only when its image (`) lies below theupper envelope of some collection ff`0 j `0 2 Xg, for some X � L0. Hence, by de�nition,all lines ` 2 L0 satisfy d(f`g; L0) < �0. In particular, `0 =2 L0, so jL0j < m, a property thatwe will use below when proving the correctness of the algorithm. This also shows that L0satis�es property (iv) of Step 3.The sets Li, for 1 � i � k, are pairwise disjoint, and jL0ij � n=r, for all 1 � i � k. Itthus remains to show that L0i � f`0 2 L0 j d(f`0g; Li) < �0 g :In fact, the following stronger claim is true, and follows easily by construction.Geometric Optimization October 5, 1995

Width in 3-Space 10Lemma 3.3 For any node v� in T ,L0� � L00� = f`0 2 L0 j d(f`0g; L�) < �0 g:Proof: We prove this by induction on the depth of v� in T . The claim obviously holds forthe root of T . Suppose it holds for the parent v� of a node v� . Since L� � L� , obviouslyL00� � L00� . Let C�X be the set of cells that we constructed at v� . Then � 2 C�X and, for every` 2 L� , we have (`) 2 � . Let `0 2 L00� and let ` be a line in L� satisfying d(`; `0) < �0.Then, by de�nition, the point (`) lies below the surface (`0). Since � is unbounded inthe +�4-direction, it follows that (`0) intersects � . Moreover, by the induction hypothesis,`0 2 L0� , which implies that ` 2 L0� , and thus the claim is true for � as well. 2Hence, the sets Li; L0i, for 1 � i � k, satisfy the desired properties of Steps 3 and 4.Next, we analyze the expected time spent in computing these subsets. Let f(a; b)denote the maximum expected time spent by the recursive algorithm for Steps 3{4, whereexpectation is with respect to the choices of random samples by the algorithm, and where themaximum is taken over all sets L;L0 of lines, as above, of respective sizes a, b. At each level ofrecursion, X is chosen, with high probability, only once, and we spend O((s log s)3+"(a+b))time to compute all the sets L� ; L0� . Since C�X consists of O((s log s)3+") cells, we obtainthe following recurrence:f(a; b) � c(s log s)3+"Xi=1 f(ai; bi) + c0(s log s)3+"(a+ b) ;where Pi ai � a, bi � b=s, and c; c0 are constants (depending on "). The recursion stopswhen b � n=r, so f(a; b) = O(1) for b � n=r.The solution of the above recurrence isf(a; b) � A a log b+ b3+"0n2 r2! ;for any "0 > "; here A = A("0) is a su�ciently large constant depending on the value of ".We prove this by induction on b. The inequality obviously holds for b � n=r. For largervalues of b, we obtain, by the induction hypothesis,f(a; b) � c(s log s)3+"Xi=1 A ai log bi + b3+"0in2 r2!+ c0(s log s)3+"(a+ b)� A c(s log s)3+"Xi=1 ai log bs + � bs�3+"0 � r2n2!+ c0(s log s)3+"(a+ b)� Aa log b+ a hc0(s log s)3+" �A log si+Geometric Optimization October 5, 1995

Width in 3-Space 11Ab3+"0 r2n2 �cs"�"0 log3+" s+ c0A n2=r2b2 (s log s)3+"�� A a log b+ b3+"0 r2n2! ;because b > n=r, "0 > ", and A is chosen su�ciently large. Since r = lm3=8=n1=8m, andinitially a = m and b = n, we obtainf(m;n) = O(m3=4+"0n3=4+"0 +m1+"0 + n1+"0) :Step 5: For each 1 � i � k, We compute d(Li; L0i) using a somewhat simpler version ofthe randomized algorithm described by Agarwal et al. [1]. We give a brief sketch of thisvariant.(i) Let n0 be some su�ciently large constant. If ni � n0, we compute d(`; `0) for all pairs` 2 Li, `0 2 L0i, in O(mi) time, and return the minimum distance.(ii) Assume ni > n0. Choose a random subset A � L0i of size dni=2e; each subset of sizedni=2e is chosen with equal probability.(ii) Recursively compute �0 = d(Li; A).(iii) Compute the set B = f`0 2 L0i �A j d(Li; f`0g) < �0g:(iv) Compute d(`; `0) for all pairs ` 2 Li, `0 2 B, and return the minimum distance (oroutput �0 if B is empty).The correctness of the algorithm is obvious (see also [1]), so we now analyze its expectedrunning time. For a line ` 2 Li, letB(`) = f`0 2 L0i �A j d(`; `0) < �0g:Using a standard probabilistic argument, it can be shown that the expected size of B(`) isO(1). Since B = S`2Li B(`), the expected size of B is O(mi), and the expected runningtime of Step 5(iv) is O(m2i).By reversing the direction of the z-axis, setting � = �0, and using Corollary 3.2, Li canbe preprocessed into a data structure of size O(m3+"i), so that, for each `0 2 L0i � A, wecan determine in O(logmi) time whether `0 2 B. The time spent in Step 5(iii) is thusO(m3+"i + ni logmi), which subsumes the expected cost of Step 5(iv). The running time ofboth steps can be improved, by a standard batching technique, to O(min2=3+"i + n1+"i); see[1]. Let '(mi; ni) denote the maximum expected running time for computing d(Li; L0i) byGeometric Optimization October 5, 1995

Width in 3-Space 12this algorithm, where the maximum is taken over all sets Li, L0i of sizes mi, ni, respectively.Then we obtain the following recurrence'(mi; ni) � '(mi; dni=2e) +O(min2=3+"i + n1+"i);whose solution is easily seen to be'(mi; ni) = O(min2=3+"i + n1+"i):By the choice of the parameter r in algorithm Closest-Pair, the expected time spent inStep 5 is thus kXi=1 '(mi; ni) = kXi=1O(min2=3+"i + n1+"i)= O �nr�2=3+" kXi=1mi + �nr�1+" � r3+"0!= O(m3=4+"0n3=4+"0 +m1+"0 + n1+"0):The total expected time spent by algorithm Closest-Pair, excluding the time spentin the recursive call, is thus O(m3=4+"0n3=4+"0 +m1+"0 + n1+").Recall that all lines ` 2 L0 satisfy d(f`g; L0) < �0. Recall also that `0 was chosenrandomly in Step 2. If we sort the lines ` 2 L in the nondecreasing order of their distancesd(f`g; L0), then the probability that ` is the ith item in this list is 1=m, and in this casewe must have jL0j < i. Let T (m;n) denote the maximum expected time for algorithmClosest-Pair to compute d(L;L0), where the maximum is taken over all sets L, L0 of sizesm and n, respectively. The arguments just given imply thatT (m;n) � 8>>>>>>>><>>>>>>>>:
c1m for n � n0,c2n1+" for n > n0;m < n1=3,1m m�1Xi=0 T (i; n) +A(m3=4+"0n3=4+"0 +m1+"0 + n1+"0)for n > n0;m > n1=3.The solution of the above recurrence isT (m;n) � B(m3=4+"0n3=4+"0 +m1+"0 log n+ n1+"0);for any "0 > " and for some constant B = B("0).To complete the analysis, we �nally show:Lemma 3.4 Algorithm Closest-Pair computes the distance �� = d(L;L0) correctly.Geometric Optimization October 5, 1995

Width in 3-Space 13Proof: We prove the lemma by double induction on m and n. Let L;L0 be sets of size mand n, respectively. If n < n0 then the correctness is trivial (see Step 1). If m � n1=3 (i.e.,r = 1), then the algorithm is also correct, by the analysis of Step 5 given above. Supposethat m > n1=3 (so r > 1), and that the algorithm computes �� = d(L;L0) correctly for allsets of lines L and L0 such that jLj < m or jLj = m and jL0j < n. Since the algorithmreturns the distance between a line of L and a line of L0, it always returns a number at leastas large as ��.If �� = �0, there is nothing to prove, because Step 7 returns the minimum of �0; �1, and�2. Suppose �� < �0. Let ` 2 L, `0 2 L0 be a pair of lines with d(`; `0) = ��. If ` 2 L0,then, d(L;L0) = d(L0; L0) = �2. Since jL0j < m, as argued above, the algorithm computesd(L0; L0) correctly, by the induction hypothesis, so d(L;L0) is also correctly computed.If ` 2 Li for some 1 � i � k, then, by construction, `0 2 L0i, and therefore d(L;L0) =d(Li; L0i) = �1. Since jLij � m and jL0ij � n=r < n, the claim follows again by the inductionhypothesis. This completes the proof of the lemma. 2Hence, we obtain the following result.Theorem 3.5 Given a set L of m red lines and a set L0 of n blue lines in R3 , such thatall red lines lie above all blue lines, d(L;L0) can be computed by a randomized algorithm inO(m3=4+"n3=4+" +m1+" + n1+") expected time, for any " > 0.Remark 3.6 Note that algorithm Closest-Pair and its analysis do not use the fact thatL and L0 are sets of lines in R3 , and that d(:; :) is the Euclidean distance function. In fact,Theorem 3.5 holds in a more general setting as long as L;L0, and the distance functionsatisfy the following properties:(i) Each object ` in L is speci�ed by 4 real parameters, so that ` can be mapped to apoint '(`) in R4 .(ii) For any parameter � > 0 and any object `0 2 L0, one can de�ne a trivariate polynomialf`0(x1; x2; x3) of constant degree such that, for any ` 2 L with '(`) = (a1; a2; a3; a4),a4 � f`0(a1; a2; a3) if and only if d(`; `0) � �.(iii) For any subset R � L0 of size r and � > 0, the vertical decomposition of the mini-mization diagram of the set ff`0 j ` 2 Rg has O(r3+") cells.Combining this result with the observations in [7], which we omit here, and which showhow the width itself can be computed using Algorithm Closest-Pair as a subroutine, weobtain the main result of this section.Corollary 3.7 The width of a set of n points in R3 can be computed by a randomizedalgorithm whose expected running time is O(n3=2+"), for any " > 0.Geometric Optimization October 5, 1995

Minimum Width Annulus 144 Minimum Width AnnulusGiven a set S = fp1; : : : ; png of n points in the plane, we want to compute an annulus ofthe smallest width that contains S. That is, we want to compute two concentric circles,centered at a point �, of radii r1; r2, respectively, such that r2� r1 is minimized, subject tothe constraints r1 � d(�; pi) � r2, for each 1 � i � n.For a given point x, let !(x) denote the smallest width of an annulus containing S andcentered at x. Let pc; pf be the nearest and the farthest neighbors of x in S, respectively.Then !(x) = d(x; pf)� d(x; pc) :

Figure 1: A minimum width annulusLet Vor c(S) (resp. Vor f (S)) denote the closest (resp. farthest) point Voronoi diagramof S. Ebara et al. [15] observed that the center of a minimum width annulus containing Sis a vertex of Vor c(S), a vertex of Vor f (S), or an intersection point of an edge of Vor c(S)and an edge of Vorf (S) (see also [29]). Based on this observation, they gave a rather simpleO(n2)-time algorithm for computing a minimum width annulus, which was improved byAgarwal et al. [3] to O(n8=5+"), and subsequently by Agarwal et al. [1] to O(n17=11+"). Herewe obtain a further improved algorithm that runs in O(n3=2+") expected time, for any " > 0,using the machinery developed in the previous section. If one is interested in minimizingthe area of the annulus, instead of the width, the problem can be formulated as an instanceof linear programming in R4 , and therefore can be solved in O(n) time, using Megiddo'salgorithm [25]. See also [21, 30] for other related results.We �rst make the following observation, which was missed in the earlier treatments ofthe problem cited above, and which transforms the problem into a width-like problem inR3 . We lift the points of S to the paraboloid z = x2 + y2 by the standard lifting map(x; y) 7! (x; y; x2+y2).Tthen a circle C of radius r with center (a; b) is mapped to the planeC� : z = 2ax+ 2by + (r2 � a2 � b2). A point p 2 R2 lies inside (resp. on, outside) C if andonly if its lifted image p� lies below (resp. on, above) the plane C�. Thus an annulus withGeometric Optimization October 5, 1995

Minimum Width Annulus 15center (a; b) and radii r1 < r2 and containing S is mapped to a pair of parallel planesz = 2ax+ 2by + (r21 � a2 � b2)and z = 2ax+ 2by + (r22 � a2 � b2);such that the image S� of S is fully contained in the slab bounded between these two planes.In other words, the minimum-width annulus problem reduces to the problem of �nding apair of parallel planes�1 : z = �1x+ �2y + �03 and �2 : z = �1x+ �2y + �3that supports S�, such thatg(�1; �2) = s�03 + �21 + �224 �s�3 + �21 + �224 (4.1)is minimized.For a pair of (skew) lines `1; `2 in R3 , we de�ne the distance between `1 and `2 to bed(`1; `2) = g(�1; �2) where �1; �2 are parallel planes containing `1; `2, respectively. Usingthe observation in [7], this width-like problem can also be formulated as the bichromaticclosest line-pair problem de�ned in the beginning of Section 3 (i.e., given a set L of m linesin R3 and another set L0 of n lines in R3 such that all lines in L lie above all blue lines inL0, compute a closest pair between L and L0), except that we use the distance function justdescribed. An explicit expression for d(`; `0) can be obtained as follows. Let the equationsde�ning `; `0 be, as in Section 3,` : y = a1x+ a3; z = a2x+ a4;`0 : y = b1x+ b3; z = b2x+ b4:The direction of the common normal to both lines isn = (a1b2 � a2b1; a2 � b2; �(a1 � b1)) ;and the planes orthogonal to n and containing `, `0, respectively, are(x� (0; a3; a4)) � n = 0 and (x� (0; b3; b4)) � n = 0 ;or z = a1b2 � a2b1a1 � b1 x+ a2 � b2a1 � b1 y � a3(a2 � b2)� a4(a1 � b1)a1 � b1and z = a1b2 � a2b1a1 � b1 x+ a2 � b2a1 � b1 y � b3(a2 � b2)� b4(a1 � b1)a1 � b1 :Geometric Optimization October 5, 1995

Biggest Stick in a Polygon 16Plugging this into (4.1), we thus can writed(`; `0) = p�a3 + a4 + � �p�b3 + b4 + � ;where � and � depend only on a1, a2, b1, b2.In order to use algorithm Closest-Pair, we need to prove an appropriate variant ofLemma 3.1. First, we note that if `0 is �xed then d(`; `0) is de�ned whenever the �1-coordinate of ` is di�erent than that of `0. In this case d(`; `0) monotonically increases witha4, which implies that the appropriate variant of the functions f`0 is well-de�ned (wheneverthe �1-coordinates of ` and of `0 are di�erent). To establish the second part of the lemma,for a �xed parameter �, let `01, `02 be two given lines, let �1 and �2 be �xed (with �1 di�erentfrom the �1-coordinates of `01 and of `02), and consider the equationf`01(�1; �2; �3) = f`02(�1; �2; �3) : (4.2)We seek a line ` that lies above `01 and `02 and satis�es d(`; `01) = d(`; `02) = �. This can bewritten as p�1�3 + �4 + �1 = q�1b(1)3 + b(1)4 + �1 + �;p�2�3 + �4 + �2 = q�2b(2)3 + b(2)4 + �2 + � ;where b(1), b(2) are the 4-tuples de�ning `01, `02, respectively, and �1, �1, �2, �2 are inde-pendent of �3, �4. We thus get a linear system of equations in �3, �4, which can be easilyreduced to a linear equation in �3 of the form (�1 � �2)�3 = �. This shows that (4.2) has aunique solution, unless �1 = �2, or�2 � b(1)2�1 � b(1)1 = �2 � b(2)2�1 � b(2)1 ;which is the equation of a line in the �1�2-plane.We have thus shown that conditions (F1) and (F2) of Section 2, and therefore theconditions of Remark 3.6, are satis�ed in this case too, so the algorithms and the analysisof the preceding section apply here as well. We thus obtain the following result.Theorem 4.1 An annulus of smallest width that contains a given set S of n points in theplane can be computed by a randomized algorithm in O(n3=2+") expected time, for any " > 0.5 Biggest Stick in a PolygonThe biggest stick problem is to �nd the longest segment that can be placed inside a simplen-gon P in the plane. Chazelle and Sharir gave an O(n1:99)-time algorithm [11], which wasGeometric Optimization October 5, 1995

Biggest Stick in a Polygon 17
aP1P2 c

Figure 2: Biggest stick in a polygonimproved by Agarwal et al. [1] to O(n17=11+"); see also [3] for an intermediate bound. Ifthe endpoints of the segment are restricted to be at vertices of P , the problem becomesconsiderably easier, and can be solved in O(n log3 n) time [4].Following the same idea as in [3], we use a divide-and-conquer approach. Partition Pinto two simple polygons P1; P2 by a chord c, so that each of P1; P2 has at most 2n=3 vertices.Let lc be the line passing through c. We recursively compute the longest segment that canbe placed within P1 or within P2. The merge step requires computing the longest segmenthaving one endpoint in P1 and the other in P2. An easy perturbation argument shows thatsuch a longest segment has to touch two vertices of P , say, v1; v2. The di�cult case is whenv1 2 P1 and v2 2 P2 (the case where both v1 and v2 belong to the same subpolygon is easy,because there can be only O(n) such pairs of vertices | see [3]). Agarwal et al. [3] showedthat �nding such a segment can be reduced to the following problem: We have a set L1 ofa lines in the plane, where each line `i 2 L1 is dual to some vertex vi of P1 and has an edgeei 2 P1 associated with it. Similarly, we have another set L2 of b lines in the plane, whereeach line `j 2 L2 is dual to some vertex vj of P2 and has an edge ej of P2 associated withit. L1 and L2 satisfy the following property: For any pair `i 2 L1; `j 2 L2, the segmentgij = aiaj lies inside P , where ai (resp. aj) is the intersection point of ei (resp. ej) with theline passing through vi and vj ; see Figure 3. The goal is to compute the longest segmentgij , over all pairs `i 2 L1; `j 2 L2. If we de�ne the distance function d(`i; `j) as the lengthof the segment gij, then the goal is to compute a farthest pair in L1�L2. The reduction ofthe original subproblem yields many instances of this problem, and the biggest stick thatcrosses the chord c is the largest of all longest segments gij , over all instances.It can be shown that L1; L2 can be parametrized by 4 real parameters (two for theGeometric Optimization October 5, 1995

Biggest Stick in a Polygon 18c aj ejviai vjeiFigure 3: Illustration of the distance function d(`i; `j)associated vertex of P and two for the associated edge), so that the setup of Remark 3.6arises here as well. In more detail, each line `i 2 L1, associated with a vertex vi and an edgeei, is mapped to a point (a1; a2; a3; a4) 2 R4 , where a1; a2 are the coordinates of the vertexvi and where the equation of the line containing ei is y = a3x + a4 (we assume, withoutloss of generality, that no such line is vertical). Let w be a real parameter. For each line`j 2 L2, associated with a vertex vj and an edge ej , we de�ne a trivariate function fj suchthat x4 = F (x1; x2; x3) if and only if the following holds: Let v be the point (x1; x2), � bethe line y = x3x + x4, and a (resp. b) be the intersection point of the line containing ej(resp. �) with the line passing through the points vj and v. Then d(a; b) = w.Lemma 5.1 The set F = ffj j `j 2 L2g satis�es (F1) and (F2).Proof: To establish (F1), we need to show that, for a given line `j 2 L2 and for �xed x1; x2,the value fj(x1; x2; x3) is de�ned for all x3, except when (x1; x2) lies on any of a constantnumber of algebraic arcs of constant maximum degree. Since the point (x1; x2) is �xed, theline � passing through vj and (x1; x2) is also �xed. If � is parallel to ej then fj(x1; x2; x3)is unde�ned for all x3. Otherwise, there exists a unique point p on � at distance w fromthe intersection of � with the line containing ej and lying to the left of vj ,-1- and for any [1]: Shouldn't it be e?x3 there is a unique line y = x3x + x4 passing through p, so fj(x1; x2; x3) is de�ned forall x3. (There is a small technical issue here, in which we would like to exclude the casewhere y = x3x+x4 coincides with �. The analysis of [3] does indeed allow us to ignore thispossibility.)Next, to establish (F2), we need to show that, for two given lines `j ; `k 2 L2, and forany �xed (x1; x2), not lying on any of the arcs where fj or fk is unde�ned, the equationfj(x1; x2; x3) = fk(x1; x2; x3)has at most one solution x3. Assume that both functions are de�ned over (x1; x2) � R.Suppose that x3 is a solution of this equation, and that x4 = fj(x1; x2; x3). Let v be the�xed point (x1; x2). Let sj (resp. sk) be the unique segment emanating from a point on ej(resp. on ek) and passing through vj and v (resp. through vk and v) whose length is w. Letpj (resp. pk) be the other endpoint of sj (resp. sk) (not the one lying on ej (resp. on ek)).Geometric Optimization October 5, 1995

Conclusion 19
pk pj v vj ejvk eksksjFigure 4: Illustration of the case fj(x1; x2; x3) = fk(x1; x2; x3)Then the line y = x3x + x4 is the unique line connecting pj and pk. This is �ne as longas both pj and pk are di�erent from v. (If pj = pk = v, then y = x3x + x4 is unde�ned;if, say, only pj = v then y = x3x+ x4 passes through v and through one of the points vj ,vk, a situation that we wish to exclude in our analysis (as in the preceding paragraph).) Inother words, we do not want v to have the property that the length of one of the segmentsconnecting v to ej through vj or to ek through vk is equal to w. This implies that, as longas v does not lie on one of two corresponding algebraic curves (these curves are of degree 4,and are known as `conchoids of Nicomedes' [22]), the above equation has a unique solution.This completes the proof of the lemma. 2Remark 5.2 In the application of Lemma 5.1, the point (x1; x2) is restricted to a half-planebounded by the line containing the dividing chord c, so the functions of F are de�ned onlyon a corresponding halfspace of R4 . We leave it to the reader to verify that the machinerydeveloped in earlier sections is applicable in this case too.In view of the above lemma, the conditions of Remark 3.6 are satis�ed here, so we canapply a variant of algorithm Closest-Pair to �nd a farthest pair in L1 and L2. Omittingthe further, easy and technical details, we obtain the following result.Theorem 5.3 The longest segment that can be placed inside a given simple n-gon P canbe computed by a randomized algorithm in O(n3=2+") expected time, for any " > 0.6 ConclusionIn this paper we presented e�cient randomized algorithms for a number of geometric opti-mization problems. These algorithms are not only asymptotically faster than the previouslyGeometric Optimization October 5, 1995

References 20best known algorithms, but they are simpler as well. Our technique also yields simpler al-gorithms for many other geometric optimization problems, such as computing a closest linepair in 3-space, etc. [7, 26].We conclude this paper by mentioning some open problems(i) Can our algorithms be derandomized without a�ecting their running time signi�-cantly?(ii) Computing a minimum-width annulus containing a set S of points in the plane isequivalent to �tting a circle C through S, such that the maximum distance between thepoints of S and C is minimized. However, in many applications, such as computationalmetrology [31], one is interested in minimizing the sum of squares of distances betweenC and the points of S. We are not aware of any e�cient algorithm for this problem.(iii) There are various interesting extensions of the biggest stick problem, which are worthpursuing. For example, given a simple polygon P and a triangle T , is there a sub-quadratic algorithm that determines whether T can be placed inside P , allowingboth translations and rotations? A quadratic algorithm for this problem was givenby Chazelle [6]. Another related problem is: Given a segment e and a polygon Pwith holes, determine, in subquadratic time, whether e can be placed inside P , usingtranslations and rotations. A quadratic solution can be found in [28].References[1] P. Agarwal, B. Aronov and M. Sharir, Computing lower envelopes in four dimensions withapplications, Proc. 10th Annual Symp. on Computational Geometry, 1994, 348{358.[2] P. Agarwal, O. Schwarzkopf and M. Sharir, The overlay of lower envelopes in three dimensionsand its applications, Proc. 11th Annual Symp. on Computational Geometry, 1995, 182{189.[3] P. Agarwal, M. Sharir, and S. Toledo, New applications of parametric searching in computa-tional geometry, J. Algorithms 17 (1994), 292{318.[4] A. Aggarwal and S. Suri, The biggest diagonal in a simple polygon, Inf. Proc. Letters 35 (1990),13{18.[5] H. Br�onnimann and B. Chazelle, Optimal slope selection via cuttings, Proc. 6th CanadianConf. on Computational Geometry, 1994, 99{103.[6] B. Chazelle, The polygon containment problem, in: Advances in Computing Research, Vol. I:Computational Geometry (F. Preparata, ed.), JAI Press, Greenwich, CT, 1993, 1{33.[7] B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir, Diameter, width, closest line pair, andparametric searching, Discrete Comput. Geom. 10 (1993), 183{196.Geometric Optimization October 5, 1995

References 21[8] B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir, A singly exponential strati�cationscheme for real semi{algebraic varieties and its applications, Proc. 16th Int. Colloq. on Au-tomata, Languages and Programming, (1989), 179{192. Lecture Notes in Computer Sciences,vol. 371, Springer-Verlag, Berlin. (Also in Theoretical Computer Science 84 (1991), 77{105.)[9] B. Chazelle and M. Sharir, An algorithm for generalized point location and its applications, J.Symbolic Computation 10 (1990), 281{309.[10] K. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir and E. Welzl, Combinatorial complexitybounds for arrangements of curves and spheres, Discrete Comput. Geom. 5 (1990), 99{160.[11] K. Clarkson and P. Shor, Applications of random sampling in computational geometry II,Discrete Comput. Geom. 4 (1989), 387{421.[12] M. Dillencourt, D. Mount, and N. Netanyahu, A randomized algorithm for slope selection, Int.J. Comput. Geom. and Appls 2 (1992), 1{27.[13] M. de Berg, K. Dobrindt, and O. Schwarzkopf, On lazy randomized incremental construction,Proc. 26th Annual ACM Symp. on Theory of Computing, 1994, 105{114.[14] M. de Berg, D. Halperin, and L. Guibas, Vertical decomposition for triangles in 3-space, Proc.10th Annual Symp. Computational Geometry , 1994, 1{10.[15] H. Ebara, N. Fukuyama, H. Nakano, and Y. Nakanishi, Roundness algorithms using the Voronoidiagrams, First Canadian Conf. on Computational Geometry , 1989.[16] D. Halperin and M. Sharir, New bounds for lower envelopes in 3 dimensions, with applicationsto visibility in terrains, Discrete Comput. Geom. 12 (1994), 313{326.[17] D. Haussler and E. Welzl, �-nets and simplex range queries, Discrete Comput. Geom. 2 (1987),127{151.[18] M. Houle and G. Toussaint, Computing the width of a set, IEEE Transactions on PatternAnal. and Mach. Intell. 5 (1988), 761{765.[19] M. Katz and M. Sharir, Optimal slope selection via expanders, Inf. Proc. Letters 47 (1993),115{122.[20] M. Katz and M. Sharir, An expander-based approach to geometric optimization, Proc. 9thAnnual Symp. on Computational Geometry, 1993, 198{207.[21] V. B. Le and D. T. Lee, Out-of-roundness problem revisited, IEEE Trans. Pattern Anal. Mach.Intell. PAMI-13 (1991), 217{223.[22] E.H. Lockwood, A Book of Curves, Cambridge University Press, Cambridge, 1967.[23] J. Matou�sek, Randomized optimal algorithm for slope selection, Info. Proc. Letters 39 (1991),183{187.[24] N. Megiddo, Applying parallel computation algorithms in the design of serial algorithms, J.ACM 30 (1983), 852{865.Geometric Optimization October 5, 1995

References 22[25] N. Megiddo, Linear programming in linear time when the dimension is �xed, J. Assoc. Comput.Mach. 31 (1984), 114{127.[26] M. Pellegrini, On collision-free placement of simplices and the closest pair of lines in 3-space,SIAM J. Comp. 23 (1994), 133{153.[27] M. Sharir, Almost tight upper bounds for lower envelopes in higher dimensions, Discrete Com-put. Geom. 12 (1994), 327{345.[28] M. Sharir and P. Agarwal, Davenport-Schinzel Sequences and Their Geometric Applications ,Cambridge University Press, Cambridge-New York-Melbourne, 1995.[29] M. Smid and R. Janardan, On the width and roundness of a set of points in the plane, Tech.Rept. MPI-I-94-111, Max-Planck-Institut f�ur Informatik, 1994.[30] K. Swanson, An optimal algorithm for roundness determination on convex polygons, Proc. 3rdWorkshop Algorithms Data Structures 1993, 601{609.[31] G. Wilfong, private communication.

Geometric Optimization October 5, 1995

