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ABSTRACT
We consider the problem of approximating a set P of n
points in Rd by a collection of j-dimensional flats, and ex-
tensions thereof, under the standard median / mean / cen-
ter measures, in which we wish to minimize, respectively,
the sum of the distances from each point of P to its near-
est flat, the sum of the squares of these distances, or the
maximal such distance. Such problems cannot be approxi-
mated unless P=NP but do allow bi-criteria approximations
where one allows some leeway in both the number of flats
and the quality of the objective function. We give a very
simple bi-criteria approximation algorithm, which produces
at most α(k, j, n) = log n · (jk log log n)O(j) flats, which ex-
ceeds the optimal objective value for any k j-dimensional
flats by a factor of no more than β(j) = 2O(j). Given this
bi-criteria approximation, we can use it to reduce the ap-
proximation factor arbitrarily, at the cost of increasing the
number of flats. Our algorithm has many advantages over
previous work, in that it is much more widely applicable
(wider set of objective functions and classes of clusters) and
much more efficient — reducing the running time bound
from O(npoly(k,j)) to dn · (jk)O(j). Our algorithm is ran-
domized and successful with probability 1/2 (easily boosted
to probabilities arbitrarily close to 1).
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1. INTRODUCTION
Clustering is one of the central problems in computer sci-

ence. It is relevant to issues of unsupervised learning, clas-
sification, databases, spatial range-searching, data-mining,
etc. Input points to be clustered are often in very high di-
mensional space, (e.g., documents represented as a bag of
English words in 600,000-dimensional space or gene expres-
sion data for 10,000 genes).

Let P ⊂ Rd be a set of n points in d-dimensional space.
A reasonable goal is to “approximate” P by a small col-
lection, F , of “shapes” in Rd. Depending on the problem,
elements of F may be restricted to be single points, lines,
j-dimensional subspaces (j < d), affine spaces, or other,
nonlinear shapes in Rd. For a point p ∈ P , let c(p) ∈ F be
the element x ∈ F closest to p (ties broken arbitrarily). Ev-
ery c ∈ F represents a “cluster”, and a point p ∈ P is said
to belong to cluster c(p). The set F is called a projective
clustering of P .

Typically, the projective clustering problem pre-specifies
the class of allowable cluster shapes in F and their number,
k. The value of a projective clustering F is some function
of the distances between points p ∈ P and their associ-
ated clusters c(p), p ∈ P . A good projective clustering is
one of small value. Common objectives are to minimize∑

p∈P dist(p, c(p)), the corresponding sum of squared dis-
tances, or the maximal such distance. A projective clus-
tering F that minimizes one of these three main objective



functions, is referred to as the k-median, k-mean, or k-
center, respectively. For example, the 2-flat k-median is a
set, F , of k 2-flats in Rd, that minimizes the sum of distances∑

p∈P dist(p, c(p)). See Tables 1 and 2 for a variety of re-
sults concerning projective clustering problems. Additional
applications, heuristics, and implementations of projective
clustering includes PROCLUS [5], ORCLUS [6], DOC [22],
and CLIQUE [7]. Heuristics for projective clustering that
are based on heuristics for k-means can be found in [2], with
more references therein.

When the number of objects, k, or the dimension, d, are
part of the input, almost all such projective clustering prob-
lems are NP-hard [19]. It is therefore natural to seek ap-
proximation algorithms for projective clustering problems.
A c-approximation algorithm for a k-projective clustering
problem should produce a k-projective clustering, F , with
value not greater than c times the smallest value of any k-
projective clustering.

Unfortunately, even for planar point sets P ⊂ R2, it is NP-
complete to determine if there exist k lines (1-flats) whose
union covers P [19], when k is part of the input. If the
k lines indeed cover the points of P , then the sum of dis-
tances, sum of squared distances, and maximal distance, are
all zero. Hence, any finite approximation to the k-line me-
dian, mean, or center problems is NP-hard, even for point
sets P in the plane. In Table 1 we summarize recent work on
approximate projective clustering. (Note that all algorithms
for an arbitrary k in the table are (at least) exponential in
k.)

Given that approximate k-projective clustering is intractable
for non-constant k, it is natural to try to find a bi-criteria
approximation. For points P ⊂ Rd, an (α, β) bi-criteria
approximation for k-projective clustering by j-dimensional
flats is a set F of α j-dimensional flats whose value is within
a factor of β from the minimal value of any k j-dimensional
flats. The parameters α and β may depend on k, j, d, and
n, where the dependence on n should be small (say, polylog-
arithmic), or — even better — independent of n. In Table
2 we summarize the current state of affairs regarding such
bi-criteria approximations for projective clustering. Our re-
sults appear in rows marked ? in Table 2.

Our main result is an algorithm that produces such an
(α, β) bi-criteria approximation for k-projective clustering,
for point sets in any dimension d ≥ 1, by lines or flats of
any dimension j < d. Our algorithm is motivated by and
related to prior work on bi-criteria approximations for other
problems, in particular [13], [15], [17], etc. We achieve a bi-

criteria approximation with α(k, j, n) = log n·(jk log n log n)O(j)

and β(j) = 2O(j), in time dn · (jk)O(j). Furthermore, this
bi-criteria approximation holds simultaneously for all three
objective functions: median, mean, and center. It is note-
worthy that the running time has only linear dependence
on both the dimension d, and the number of input points
n. We also observe that one can refine the solution so as to
decrease the approximation factor β to an arbitrarily small
value, at the cost of increasing the number α of flats. The
last row of Table 2 gives such a variant. This can be done
by computing a set of flats using large β, and then surround
each of them by a “grid” of additional parallel j-flats; see [4,
11].

As Table 2 states, prior work on such approximations has
only dealt with very limited projective clustering problems,
and only for k-center clustering problems.

1.1 Some implications of bi-criteria
approximation

As mentioned above, Table 1 includes projective clus-
tering approximation results from a related companion pa-
per [11]. Rows marked ?? describe an FPTAS for the mean
and median objective functions for any number k of line
clusters or for a single j-flat cluster, j ≥ 2. The FPTAS of
[11] uses as a starting point (and as black box) a bi-criteria
approximation — the subject of the current paper.

We remark that many other results follow from our bi-
criteria approximation. For example, using a bi-criteria ap-
proximation, one can derive an FPTAS for the k-line center
clustering problem that takes O(n) time, improving upon
the O(n log n) bound of [4]. One can also derive explicit
and efficient constructions for related coresets (see [1, 11]),
previously unknown, such as coresets for a single j-flat or
for k-lines (center/mean/median). Some of these develop-
ments are given in the companion paper [11] while others
constitute work in progress.

2. RESULTS

2.1 Informal overview
We seek a small set F of α j-dimensional flats so that the

value of the objective function (median, mean, or center) is
not much larger than that of the optimal k j-dimensional
flats. One can view our algorithm as an instance of the
following “meta algorithm” for a bi-criteria projective clus-
tering for input point sets P ⊂ Rd:

• Choose a set P ′ ⊂ P of size ≥ |P |/2, and a set F ′

of k′ j-dimensional flats (for some parameter k′), such
that the value of the objective function (or, rather, of
all three objective functions) for F ′ on P ′ is no more
than c times the value of the optimal k j-dimensional
flats (for P ) on P ′, for some constant factor c.

• Set P = P \ P ′ and repeat until P is very small, in
which case take F ′ to be the set of all j-dimensional
flats spanned by P .

As |P | keeps shrinking by factors of 2, this process can be
repeated at most log |P | times. By taking the union of the
sets F ′ , we get a set F of k′ log |P | j-dimensional flats, for
which the value of the objective function, over the entire P ,
is off by no more than a factor of c.

In fact, our real algorithm, given below, is very similar
to the meta algorithm above, with the following (minor and
technical) variations:

• The set F ′ is simply a set of j-dimensional flats deter-
mined by a small set of randomly chosen points from
P .

• It follows from the fact that the points were chosen at
random that, with some non-trivial probability, some
large set of “good” points, P ′ ⊆ P , has the property
that the optimal solution, computed only over P ′, has
approximately the same value as the one for F ′.

• In fact, this set P ′ consists of a large fraction of the
|P |/2 points of P that are closest to the flats of F ′.
The intuition comes from the argument that many of
the points near the flats of F ′ are not much farther



Flat k = # Objective Approx Ref. Time
dim. j Flats Function

1 k ≥ 1 median/mean FPTAS ?? nd · kO(1) + (ε−d log n)O(dk2)

j ≥ 1 1 median FPTAS ?? nd · (jk)O(j2) + (ε−1 polylog n)O(d2j2)

j ≥ 1 1 mean Exact SVD [21] min
{
O(nd2), O(n2d)

}
j ≥ 1 1 mean PTAS [9, 14, 23] nd poly(j, 1/ε)

j ≥ 1 k ≥ 1 mean PTAS∗ [8] d(n/ε)O(jk3/ε)

j ≥ 1 1 median PTAS [24] nd · 2O(j/ε log2(1/ε))

j = 1, d = 2 1 median Exact [10] O(n4/3 log2 n)

j ≥ 1 k ≥ 1 median PTAS∗ [24] d(n/ε)poly(j,k,1/ε))

j ≥ 1 1 center PTAS [16] dnO
(

j/ε5 log(1/ε)
)

j ≥ 1 1 center PTAS [20] dn · exp
(

2O(j2)

ε2
log 1

ε

)

j ≥ 1 k ≥ 1 center PTAS [16] dnO
(

jk/ε5 log(1/ε)
)

1 k ≥ 1 center FPTAS [4] n log n · εO(−d−k)kO(k) + log n · (k/ε)O(d2k2)

j = 1, d = 2 2 center Exact [18] O(n2 log2 n)
j = 1, d = 2 2 center 3-approx [3] O(n log n)

Table 1: Approximate projective clustering (not bi-criteria). The input is a set P ⊂ Rd, |P | = n, the goal is
to find a good approximation for P using k j-dimensional flats. Unless P=NP, all such approximations must
be superpolynomial in k. The first two rows above, marked ??, give results from a companion paper [11].

∗This requires prior knowledge of the value of the optimal solution. However, using results from this paper
we can avoid this requirement (see [12]).

P ⊂ Rd Flat k = # Objective α β Ref. Time
dim. j Flats Function

d = 2 j = 1 k ≥ 1 center O(k log k) 6 [3] O(nk2 log4 n)

d = 2 j = 1 1 ≤ k ≤ n1/6 center O(k log k) 1 [13] O(n log k)

d = 3 j = 2 k ≥ 1 center O(k log k) 24 [3] O(n3/2k11/4 logO(1)(n))
d ≥ 1 j = 1 k ≥ 1 center O(dk log k) 8 [3] O(dnk3 log4 n)

d ≥ 1 j ≥ 1 k ≥ 1 center log n · (jk log log n)O(j) 2O(j) ? dn · (jk)O(j)

mean
median

d ≥ 1 j ≥ 1 k ≥ 1 center (2djk log n)O(j) 1/2 ? dn(jk)O(j) + (2djk log n)O(j)

mean
median

Table 2: Results on bi-criteria approximate projective clustering. The input is a set P ⊂ Rd, |P | = n, the
goal is to find an approximation for P using α j-dimensional flats to within a β factor off the optimal such
approximation by k j-dimensional flats. The last two entries are the contribution of this paper. Our bi-criteria
approximation holds simultaneously for all three main objective functions.



from F ′ than they are to some other (arbitrary) set of
k flats.

• Unfortunately, not all points “close” to F ′ have the
property that F ′ is a good approximation to the opti-
mal set of flats; these are “bad” points.

• Fortunately, we can amortize the high contribution to
the objective function by these “bad” points against
the next round of points to be chosen. The contribu-
tion to the objective function, appropriately scaled, of
the good points of the next round will dominate that
of the current “bad” points.

2.2 The Algorithm
We first briefly review some notation.

j-Flats. For d ≥ 1 and 0 ≤ j ≤ d − 1, a j-flat in Rd is
a shorthand notation for a j-dimensional flat in Rd. For
example, a 0-flat is a point, a 1-flat is a line, and a (d− 1)-
flat is a hyperplane in Rd. For a multi-set X of j+1 points in
Rd, we denote by flat(X) a j-flat that passes through all the
points of X. If there is more than one such flat, we choose
one of them arbitrarily. For k ≥ 1 an integer, we denote by
F(k, j, d) the collection of sets that contain at most k flats
in Rd, each of dimension of at most j.

Euclidean Distance. For a j-flat f and a point p in Rd, we
denote by dist(p, f) the minimum Euclidean distance from
p to f . For a set of flats F , we denote by dist(p, F ) =
minf∈F dist(p, f) the distance of p to its nearest flat in F .
The pseudo-code of our bi-criteria algorithm is given in Fig-

ure 1.

Theorem 2.1. Let P be a set of n points in Rd, and k, j
integers, such that k ≥ 1 and 0 ≤ j ≤ d−1. Then the proce-
dure Approx-k-j-Flats(P, k, j), given in Figure 1, returns

a set F of log n · (jk log log n)O(j) j-flats, such that, with
probability at least 1/2, we have

∑
p∈P

dist(p, F ) ≤ 2j+2 min
F∗∈F(k,j,d)

∑
p∈P

dist(p, F ∗),

∑
p∈P

(
dist(p, F )

)2 ≤ 22j+3 min
F∗∈F(k,j,d)

∑
p∈P

(
dist(p, F ∗)

)2
,

max
p∈P

dist(p, F ) ≤ 2j+1 min
F∗∈F(k,j,d)

max
p∈P

dist(p, F ∗).

The running time of this procedure is dn · (jk)O(j).

Proof. Let F ∗ be an arbitrary set of flats in F(k, j, d).
The proof relies on the following theorem which is the main
technical contribution of this paper.

Theorem 2.2. Let P be a set of n points in Rd, and k, j
integers, such that k ≥ 1 and 0 ≤ j ≤ d − 1. Let F be the
set of flats that is returned by the bi-criteria approximation
algorithm Approx-k-j-Flats(P, k, j) (see Fig. 1). For an
arbitrary set of flats F ∗ ∈ F(k, j, d), define P bad = {b ∈
P | dist(b, F ) > 2j+1 dist(b, F ∗)}. Then, with probability at
least 1/2, we can map each point b ∈ P bad to a distinct point
p ∈ P \ P bad, such that dist(b, F ) ≤ 2j+1 dist(p, F ∗).

Using Theorem 2.2, we prove the inequalities in Theorem 2.1
as follows. Assuming that the property of Thorem 2.2 does

hold (which happens with probability at least 1/2), we have
∑
p∈P

dist(p, F ) =
∑

p∈P\P bad

dist(p, F ) +
∑

b∈P bad

dist(b, F )

≤
∑

p∈P\P bad

(
dist(p, F ) + 2j+1 dist(p, F ∗)

)

≤ 2j+2
∑
p∈P

dist(p, F ∗),

where the first inequality follows from the matching of points
in P bad to points in P \ P bad, and the second inequality
follows from the definition of P \P bad. The same arguments
imply the other two inequalities. That is,

∑
p∈P

(
dist(p, F )

)2
=

∑

p∈P\P bad

(
dist(p, F )

)2

+
∑

b∈P bad

(
dist(b, F )

)2

≤
∑

p∈P\P bad

((
dist(p, F )

)2

+22j+2( dist(p, F ∗)
)2

)

≤ 22j+3
∑
p∈P

(
dist(p, F ∗)

)2
.

max
p∈P

dist(p, F ) = max

{
max

p∈P\P bad
dist(p, F ),

max
b∈P bad

dist(b, F )

}

≤ max
p∈P\P bad

{
dist(p, F ),

2j+1 dist(p, F ∗)
}

≤ 2j+1 max
p∈P

dist(p, F ∗).

We next analyze the size of F and the time for its con-
struction. Since the size of Q is reduced by at least half
in each iteration, we have tmax − 1 ≤ log n iterations. In

line 10, at most
(
32k(j +1)

)j+1
flats are added to F (by the

bound in line 2), so the overall size of the output set of flats
is

tmax−1∑
t=1

d32k(j + 1)
(
2 + log(j + 1) + log k

+min {t, log log n} )ej+1 +
(
32k(j + 1)

)j+1

=

tmax−1∑
t=1

(
O(jk) ·O(jk + log log n)

)j+1
+

(
O(jk)

)j+1

= log n · (jk log log n)O(j).

The running time of the tth iteration is dominated by the
running time of Line 6, which is (using brute force)

O(d |Q| ·
∣∣F ′

∣∣) = O(dn/2t) · (32k(j + 1)(2 + log(j + 1)

+ log k + t)
)j+1

.

Summing this over t, we get a sum of the form

O


dn · (32jk)j+1

∑

t≥1

(
2 + log(jk) + t

)j+1

2t


 = dn · f(j, k),



Algorithm Approx-k-j-Flats(P, k, j)
Input. A set of n points P ⊂ Rd, and two integers k ≥ 1, 0 ≤ j ≤ d− 1.
Output. A set of j-flats F that satisfies Theorem 2.2.

1 t ← 1, Q ← P , F ← ∅
2 while |Q| ≥ 32k(j + 1)
3 for i ← 0 to j
4 Pick a random sample Si of d32k(j + 1)

(
2 + log(j + 1) + log k + min {t, log log n} )e points

from Q, each chosen uniformly at random and independently.
5 F ′ ← {flat(X) | X ∈ S0 × S1 × · · · × Sj}.
6 Compute a set Rt ⊆ Q of the closest d|Q| /2e points to F ′, where ties are broken arbitrarily.
7 F ← F ∪ F ′

8 Q ← Q \Rt

9 t ← t + 1
10 F ← F ∪ {flat(X) | X ∈ Qj+1}
11 tmax ← t, Rtmax ← Q (used only for analysis)

Figure 1: The bi-criteria algorithm Approx-k-j-Flats.

where

f(j, k) = (jk)O(j)
∑

t≥1

(
2 + t + log(jk)

)j+1

2t

= (jk)O(j)

blog(jk)c∑
t=1

(
2 log(jk)

)j+1

2t

+ (jk)O(j)
∑

t≥blog(jk)c+1

tj+1

2t

= (jk)O(j)
[(

log(jk)
)j+1

+ jj+1
]

= (jk)O(j).

The probability that the resulting set F of Approx-k-j-
Flats satisfies the inequalities of Theorem 2.1 can be made
arbitrarily close to 1, by running Approx-k-j-Flats repeat-
edly x times with independent random choices each time.
Then we take the three sets which minimize the three ex-
pressions in Theorem 2.1. The union of these sets will satisfy
all three inequalities, with probability at least 1− 1/2x.

3. PROOF OF THEOREM 2.2
We first provide a brief overview of the proof. It begins

with Lemma 3.1, which is a simple probabilistic lemma, giv-
ing a bound on the size of a random sample from a set Q
that guarantees, with high probability, that it hits each of k
given subsets of Q of some given size.

Lemma 3.2 says that if we choose an arbitrary line `
through the origin, and a line sp(b) connecting some ar-
bitrary point b to the origin, then for all points whose angle
with ` is greater than the angle between sp(b) and `, the
distance to sp(b) is at most a constant factor times the dis-
tance to `. This observation is later generalized to higher-
dimensional flats in Lemma 3.3.

Lemma 3.4 deals with one iteration of the algorithm. It
uses the preceding lemmas argue that the set of flats F ′

chosen by the algorithm has the property that the set of
bad points (points close to F ′ that are much closer to F ∗)
is small.

Finally, the proof amortizes the contribution of the (few)
bad points against the contribution of other good points,
concluding the proof of the theorem.

Lemma 3.1. Let Q be a set of m points, k ≥ 1 an integer,
and c > k a parameter. Let Q1, Q2, . . . , Qk be any k subsets
of Q, each containing β points. Assume that we pick at
least (m/β) ln c random independent samples from Q (with
or without repetitions). Then the probability that at least
one of the subsets does not contain any sample point is at
most k/c.

Proof. The probability that the first sampled point is
not contained in Q1 is 1− β/m. Therefore, the probability
that none of the sampled points are in Q1 is at most

(
1− β

m

)(m/β) ln c

≤ e− ln c =
1

c
.

Clearly, similar calculation hold for any Qi, 1 ≤ i ≤ k.
Hence, the probability that at least one of these sets does
not contain any sample point is at most k/c.

In the following analysis, we use the notation sp(X) for
the linear span of a set X; when X is a singleton b, the
shorthand notation sp(b) thus denotes the line through b
and the origin.

Lemma 3.2. Let ` be a line in Rd that passes through the
origin. Let Q be a set of points in Rd. Then, for any natural
number β ≤ |Q| there is a set B ⊆ Q of β points, such that
for all b ∈ B and q ∈ Q \B

dist(q, sp(b)) ≤ 2 dist(q, `).

Proof. For a point q ∈ Q, denote by θ(q, `) the acute
angle formed by the lines sp(q) and `; see Figure 2(a) for
the planar case. Let B ⊆ Q be the set consisting of the β
points q with the smallest values of θ(q, `), and let b ∈ B.
For q ∈ Q \B we thus have θ(b, `) ≤ θ(q, `), and therefore

θ(q, sp(b)) ≤ θ(q, `) + θ(b, `) ≤ 2θ(q, `)

or, θ(q, sp(b))/2 ≤ θ(q, `), which implies that

sin θ(q, sp(b)) = 2 sin
θ(q, sp(b))

2
cos

θ(q, sp(ab))

2

≤ 2 sin
θ(q, sp(b))

2
≤ 2 sin θ(q, `).



ℓ

B⊆

0
�

q

`

B ⊇

sp{b}
b

qθ( , )ℓ

(a) θ(q, sp(b)) ≤ 2θ(q, `)

f

`

0f

B

0b

q

(b) dist(q, f0) ≤ 2 dist(q, f)

f

`

0f

q

1b
0b

1f
(c) dist(q, f1) ≤ 4 dist(q, f)

Figure 2: The case of one line in the plane (d = 2, j = 1). (a) The set B contains the β points in the gray
areas. (b) The set B consists of the β points of P closest to f . (c) dist(q, f1) ≤ 2 dist(q, f0) ≤ 4 dist(q, f) for every
q outside the gray area (q ∈ Q \Qbad).

The distance from q to sp(b) can then be bounded by

dist(q, sp(b)) = ‖q‖ sin θ(q, sp(b))

≤ ‖q‖ · 2 sin θ(q, `) = 2 dist(q, `).

Lemma 3.3. Let Q be a set of points in Rd, and f =
sp(v1, . . . , vj−1, vj) be a j-dimensional subspace of Rd, for
some given tuple of j mutually orthogonal unit vectors v1, . . . , vj.
Then, for any natural number β ≤ n, there exists a subset
B ⊆ Q of β points, such that for every point b ∈ B, and the
corresponding subspace f(b) = sp(b, v2, v3, . . . , vj), we have

dist
(
q, f(b)

) ≤ 2 dist(q, f),

for all q ∈ Q \B.

Proof. Let {vj+1, . . . , vd} be a set of vectors that span
the subspace orthogonal to f . For a point x ∈ Rd we
denote by x′ the projection of x onto the subspace M =
sp(v1, vj+1, vj+2, . . . , vd). For a set X ⊆ Rd, we define
X ′ = {x′ | x ∈ X}.

By substituting P = Q′, a as the origin, and ` = sp(v′1) in
Lemma 3.2, we conclude that for any natural number β ≤ n
there exists a set B′ ⊆ Q′ of β points, such that for every
b′ ∈ B′, the corresponding line sp(b′) satisfies

dist(q′, sp(b′)) ≤ 2 dist(q′, sp(v′1)) = 2 dist(q′, sp(v1)), (3.1)

for all q′ ∈ Q′ \B′ (by construction, v′1 = v1). We define B
to be the set of those b ∈ Q such that b′ ∈ B′. We claim
that B satisfies the property asserted in the lemma, that
is, for each point b ∈ B, its corresponding subspace f(b) =
sp(b, v2, v3, . . . , vj) satisfies dist

(
q, f(b)

) ≤ 2 dist(q, f), for
all q ∈ Q \B.

Indeed, let q be any point in Q \B. By definition,

dist
(
q, f(b)

)
= min

u∈f(b)
‖q − u‖ = min

u∈f(b)

∥∥q′ + (q − q′ − u)
∥∥ .

Since q′ is the projection of q onto M = sp(v1, vj+1, vj+2, . . . , vd),
we conclude that q−q′ is in sp(v2, v3, . . . , vj) ⊆ f(b). Hence,
by the previous equation,

dist
(
q, f(b)

)
= min

u∈f(b)

∥∥q′ + (q − q′ − u)
∥∥

= min
w∈f(b)

∥∥q′ + w
∥∥ = dist

(
q′, f(b)

)
.

(3.2)

Since b− b′ ∈ sp(v2, v3, . . . , vj), we also have

f(b) = sp(b, v2, v3, . . . , vj) = sp(b′, v2, . . . , vj),

and the length of the projection of q′ onto f(b) is therefore
√√√√

j∑
i=2

(q′ · vi)2 +
(q′ · b′)2
‖b′‖2 = q′ · b′/

∥∥b′
∥∥ .

By the Pythagorean Theorem we then get

dist
(
q′, f(b)

)
=

√
‖q′‖2 − (q′ · b′/ ‖b′‖)2 = dist(q′, sp(b′)).

(3.3)
Substituting this in (3.2) gives

dist
(
q, f(b)

)
= dist

(
q′, f(b)

)
= dist(q′, sp(b′)).

Similarly, by replacing f(b) and b with f and v1, respectively,
in the last equations, we get

dist(q, f) = dist(q′, f) = dist(q′, sp(v1)).

Combining the last two equations in (3.1) gives us

dist
(
q, f(b)

)
= dist(q′, sp(b′))

≤ 2 dist(q′, sp(v1)) = 2 dist(q, f),

which completes the proof of the lemma.

Lemma 3.4. Let F ∗ be a set of k arbitrary j-flats in Rd,
where k ≥ 1 and 0 ≤ j ≤ d− 1. Consider the sets Q and F ′

at the time line 7 is executed in the tth iteration of Approx-
k-j-Flats(P, k, j), and define Qbad = {q ∈ Q | dist(q, F ′) >
2j+1 dist(q, F ∗)}. Then |Qbad| ≤ |Q| /16 with probability at

least 1− 2−2−min{t,log log n}.

Proof. For a j-flat f ∈ F ∗, let B ⊂ Q be the set of the
β = b|Q| /(

16k(j + 1)
)c points of Q, closest to f , where ties

are broken arbitrarily; see Fig. 2(b). Fix a point b0 ∈ B, and
let f0 be the j-flat that is parallel to f and passes through
b0. Note that for every point q ∈ Q\B we have dist(b0, f) ≤
dist(q, f) by definition of B. Thus,

dist(q, f0) ≤ dist(q, f) + dist(b0, f) ≤ 2 dist(q, f). (3.4)

Without loss of generality, we assume that the point b0

is the origin (i.e., b0 = ~0), and f0 = sp(v1, v2, . . . , vj−1, vj),
for some given tuple of j mutually orthogonal unit vectors
v1, . . . , vj .. By Lemma 3.3, there exists a set B(b0) ⊆ Q of β
points, such that for every b1 ∈ B(b0), and the correspond-
ing j-flat f1 = sp(b1, v2, . . . , vj), we have

dist(q, f1) ≤ 2 dist(q, f0) (3.5)



for all q ∈ Q \B(b0); see Fig.2(c).
Fix a point b1 ∈ B(b0). By substituting f = f1 in

Lemma 3.3, we conclude that there is a set B(b0, b1) ⊆ Q of
β points, such that for every b2 ∈ B(b0, b1), and the corre-
sponding j-flat f2 = sp(b1, b2, v3, v4, . . . , vj), we have

dist(q, f2) ≤ 2 dist(q, f1),

for all q ∈ Q \B(b0, b1). Combining (3.4) and (3.5) with the
last equation yields

dist(q, f2) ≤ 2 dist(q, f1) ≤ 4 dist(q, f0) ≤ 8 dist(q, f),

for all q ∈ Q \ (
B ∪B(b0) ∪B(b0, b1)

)
.

Similarly, by induction, for every j-flat f ∈ F ∗, and 0 ≤
i ≤ j, there is a set Bf (bf

0 , bf
1 , . . . , bf

i−1) ⊆ Q of β points
(for i = 0, we denote the set simply as Bf ), such that for

every bf
i ∈ Bf (bf

0 , bf
1 , . . . , bf

i−1), and the corresponding j-flat

fi = bf
0 + sp(bf

1 , bf
2 , . . . , bf

i , vf
i+1, . . . , v

f
j ), we have

dist(q, fi) ≤ 2i+1 dist(q, f), (3.6)

for all q ∈ Q \⋃
0≤i≤j Bf (bf

0 , . . . , bf
i−1).

We claim that with probability at least 1−2−2−min{t,log log n},
for each f ∈ F ∗ and 0 ≤ i ≤ j, the set Si contains a
point bf

i ∈ Bf (bf
0 , bf

1 , . . . , bf
i−1). Indeed, we have k sets

Bf , of size β each, for f ∈ F ∗. Lemma 3.1 shows that if

we sample at least
|Q|
β

ln c points from Q, the probability

that at least one of the sets Bf will not contain any sample

point is at most k/c. Let c = 22+log(j+1)+log k+min{t,log log n},
and note that, by Line 2 of Approx-k-j-Flats, we have
|Q| /(

32k(j + 1)
) ≥ 1, so

β = b|Q| /(
16k(j + 1)

)c ≥ |Q| /(
32k(j + 1)

)
.

Hence

(|Q|/β) ln c ≤
d32k(j + 1)

(
2 + log(j + 1) + log k + min {t, log log n} )e

= |S0| ,
and thus the probability that S0 misses at least one of the
sets Bf is at most

k/c = k/22+log(j+1)+log k+min{t,log log n}

≤ 2−2−log(j+1)−min{t,log log n}.

Assume that this event does not arise (which happen with

probability at least 1 − 2−2−log(j+1)−min{t,log log n}). Pick a

point bf
0 ∈ Bf ∩ S0 for each f ∈ F ∗, and consider the k sets

Bf (bf
0 ), f ∈ F ∗. As in the case for S0, it can be shown that

S1 misses at least one of the sets Bf (bf
0 ) with probability at

most k/c ≤ 2−2−log(j+1)−min{t,log log n}.
By repeating this process, we conclude that, for every

f ∈ F ∗, the set S0 × S1 × . . . × Sj contains a (j + 1)-tuple

bf
0 , bf

1 , . . . , bf
j such that bf

i ∈ Bf (bf
0 , . . . , bf

i−1) for each 0 ≤
i ≤ j, with probability at least 1− (j + 1)k/c ≥ 1− (j + 1) ·
2−2−log(j+1)−min{t,log log n} ≥ 1 − 2−2−min{t,log log n}. This
implies that, with the same probability, F ′ contains a j-
flat fj that passes through bf

0 , bf
1 , . . . , bf

j for every f ∈ F ∗.
Refer to this event as E, and assume that it occurs. In this
case, by (3.6), dist(q, fj) ≤ 2j+1 dist(q, f) for all q ∈ Q \⋃

0≤i≤j Bf (bf
0 , . . . , bf

i−1), where bf
i is one of the points in Si∩

Bf (bf
0 , . . . , bf

i−1) which, since we assume that E occurs, is

nonempty. Hence, Qbad ⊆
⋃

f∈F∗
⋃

0≤i≤j Bf (bf
0 , . . . , bf

i−1).
Since, by construction, each of the sets in the union is of
size β, we get

|Qbad| ≤
∣∣∣∣∣∣

⋃

f∈F∗

⋃

0≤i≤j

Bf (bf
0 , . . . , bf

i−1)

∣∣∣∣∣∣
≤ (j + 1)kβ ≤ |Q| /16

(3.7)

with probability at least 1 − 2−2−min{t,log log n}. This com-
pletes the proof of Lemma 3.4.

Now we are ready to prove Theorem 2.2.

Proof. Note that R1, R2, . . . , Rtmax is a partition of P ,
and for every p ∈ Rtmax we have dist(p, F ) = 0, by Line 10
(i.e., P bad ∩Rtmax = ∅). Thus,

P bad =
⋃

1≤t≤tmax−1

P bad ∩Rt. (3.8)

Consider the sets Q and F ′ at the time line 7 is executed,
in some tth iteration (1 ≤ t ≤ tmax − 1) of Approx-k-j-
Flats, and define

Qbad = {b ∈ Q | dist(b, F ′) > 2j+1 dist(b, F ∗)}.
We first prove that, with probability at least 1−2−2−min{t,log log n},
we have

|Qbad ∩Rt| ≤ |Rt+1 \Qbad| . (3.9)

Indeed, In Lemma 3.4 we prove that, with probability at
least 1 − 2−2−min{t,log log n}, we have |Qbad| ≤ |Q| /16. By
Line 2 |Q| ≥ 20, so, by definition of Rt+1 we have |Q| /5 ≤
b|Q| /4c ≤ |Rt+1|. Hence,

|Qbad| ≤ |Q| /16 < |Q| /5− |Q| /16

≤ |Rt+1| − |Qbad| ≤ |Rt+1 \Qbad| ,
(3.10)

with probability at least 1− 2−2−min{t,log log n}.
Since F ⊆ F ′, and every point in Rt is closer to F ′ than

any point in Rt+1, we have by (3.9) that we can map each
point b ∈ Qbad ∩ Rt to a different point p ∈ Rt+1 \ Qbad,
such that

dist(b, F ) ≤ dist(b, F ′) ≤ dist(p, F ′) ≤ 2j+1 dist(p, F ∗).

Because P bad ∩ Rt ⊆ Qbad ∩ Rt, and Rt+1 \Qbad ⊆ Rt+1 \
P bad, we conclude that we can map each point b ∈ P bad∩Rt

to a different point p ∈ Rt+1 \ P bad such that dist(b, L) ≤
2j+1 dist(p, L∗), with probability at least 1−2−2−min{t,log log n}.
Thus, the probability that this holds for all the tmax − 1 ≤
log n iterations is at least

1−
tmax∑
t=1

2−2−min{t,log log n}

= 1−
blog log nc∑

t=1

2−2−t −
tmax∑

t=blog log nc+1

2−2−log log n

≥ 1− 1

4
− log n

22+log log n
=

1

2
.

Using (3.8), this concludes the proof of Theorem 2.2.
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