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1 IntrodutionLet S be a olletion of n pairwise-disjoint objets in Rd . A binary spae partition (or BSPfor short) for S is a reursively de�ned onvex subdivision of spae obtained by uttingspae into two open regions C;C 0 by a hyperplane, and by onstruting reursively a BSPfor fs \ C j s 2 Sg within C and a BSP for fs \ C 0 j s 2 Sg within C 0; the proessterminates when eah (open) ell of the BSP is interseted by at most one objet of S.The input objets are usually assumed to be pairwise disjoint; however, the de�nition of aBSP we have given is appliable to any set of polyhedral objets in Rd for whih no pair ofobjets interset in a full-dimensional set. In partiular, the de�nition applies to arbitrarysets of polyhedral objets S that are not full-dimensional. The de�nition also applies to setsof urved objets; however, the number of ells of the BSP will depend on the omplexityof polyhedral separators between pairs of objets, and a BSP may not exist if the urvedobjets are allowed to interset.Binary spae partitions were introdued by the omputer graphis ommunity [6, 7, 8℄and have numerous appliations for rendering, ray shooting and traing, solid modeling,retangle tiling, et. (see [5, 13℄).Ideally, a BSP for S should not split any objet of S into piees, and wind up with eahobjet lying fully in a separate ell or fully on a utting hyperplane (see [3℄). However, in mostases this is impossible; utting spae (and objets) with a hyperplane may reate fragmentsof objets that either lie in one of the two open halfspaes bounded by the hyperplane or areontained in the hyperplane. The size of a BSP for a set of k-dimensional objets (k � d) inRd is the number of k-dimensional fragments of objets of S that it produes (in the idealase, the size is n [3℄). We remark that one often de�nes the size of a BSP as the number ofonvex regions of Rd in the deomposition. Here, we opt for the de�nition in terms of thenumber of objet fragments; this hoie makes some of the analysis leaner, partiularly inthe ase of BSPs of low-dimensional hyperretangles within higher-dimensional spaes.One of the major researh diretions in this area is to onstrut BSP's of small size.Paterson and Yao [9, 10℄ proved that for a set of n line segments in the plane there exists aBSP of size O(n logn), and when the segments are retilinear (i.e., parallel to the oordinateaxes), there exists a BSP of size at most 3n. They have also onjetured that any set of nline segments admits a BSP of size O(n). Only very reently, a lower bound of 
(n log nlog log n),in the worst ase, has been obtained by C. T�oth [11℄. For both the general ase and theaxis-parallel ase, BSP's with the above size bounds an be omputed in O(n logn) time.Linear size bounds for BSP's have also been obtained (see [2℄) for sets of fat objets, for setsof line segments having a bounded (O(1)) ratio between the lengths of the longest and theshortest segments, and for sets of homotheti objets. A linear bound for segments in theplane with a �xed number of orientations was reently obtained by T�oth [12℄.The bound 3n of [10℄ on the size of a BSP for n axis-parallel line segments has been(impliitly) improved by d'Amore and Franiosa in [1℄ to 2n. What they have expliitlyobtained is an upper bound of 4n for axis-parallel retangles in 2D. By speializing theiranalysis to the ase of segments, one obtains the bound 2n (or rather 2n � 1, with anobvious optimization). One more, in [4℄, the same approah, aompanied by an improvedharging sheme, has redued the upper bound for the ase of axis-parallel retangles to 3n.2



In this paper we onsider the ase in whih S is a olletion of axis-parallel1 hyperret-angles of various dimensions in Rd . While we do onsider some ases in whih the hyper-retangles are allowed to interset, unless otherwise spei�ed, we assume from now on thatthey are pairwise-disjoint. The simplest suh ase is that of line segments (or retangles) inthe plane, mentioned above. In higher dimensions, Paterson and Yao [10℄ show that if S isa set of n (axis-parallel) line segments in Rd , then S admits a BSP of size O(nd=(d�1)), andthat this bound is tight in the worst ase. They also onsider the ase of retangles in R3and show that the same bound, O(n3=2), an also be obtained for retangles (and also forboxes). They leave as an open problem to obtain sharp bounds for the size of BSP's forhigher-dimensional hyperretangles in dimensions � 4.In this paper we improve and simplify the analysis leading to the bounds obtained in[10℄ and derive new bounds for the ases left open in that paper. Spei�ally, we �rstonsider the ase of axis-parallel line segments in the plane. We show, in Setion 2, thatthere exist olletions of n (axis-parallel) line segments in the plane for whih any retilinearBSP has size at least 2n�o(n), thus showing that the upper bound of [1℄ is worst-ase tight,apart for lower-order terms. This answers the open problem posed by S. Smorodinsky atEuroCG'2000. We also give an improved lower bound for the ase of retangles in the plane,showing that in the worst ase a BSP must have size at least 73n� o(n).We then onsider the ase of axis-parallel line segments in Rd , and obtain, in Setion 3,a very simple alternative onstrution of BSP's of size O(nd=(d�1)). In addition to beingsimpler, the onstants of proportionality that our method yields appear to be onsiderablysmaller than those produed by the tehnique of [10℄. We also onsider the ase of retanglesin R3 , and again present an alternative simple onstrution of a BSP of size O(n3=2).We then (Setions 4,5) onsider higher-dimensional ases. We provide the �rst nontrivialbounds on the worst-ase size of BSP's for hyperretangles of dimension greater than 1 inhigher dimensions, showing that, for k < d=2 there exist BSP's of size O(nd=(d�k)) for a setof n k-retangles in d dimensions, and that this bound is tight in the worst ase. This boundsubsumes the bound �(nd=(d�1)) for segments, mentioned above. In fat, both upper andlower bounds hold for any k � d� 1 if our retangles are allowed to interset.The next simplest ase that is not overed by the results reported so far is the ase k = 2and d = 4. We show that a BSP of size O(n5=3) exists for a set of n disjoint (axis-parallel)2-retangles in R4 , improving the bound O(n2) that follows from the general bounds (forpossibly interseting retangles) stated in the preeding paragraph. We also have a mathinglower bound of 
(n5=3)), showing that our upper bound is tight.Our results are summarized in Table 1.We make one �nal remark regarding the de�nition of BSP and how it applies to setsof hyperretangles that are not in general position2 in higher dimensions. One an modifythe de�nition of BSP in order to require that lower-dimensional subon�gurations of objetsthat are ontained in a utting hyperplane are deomposed aording to a partitioning ofthe hyperplane, and then reursively down dimensions. This modi�ation is useful in some1From now on, we freely drop the adjetive \axis-parallel"; in all ases, the segments, retangles, orhyperretangles we onsider are axis-parallel.2Here, a set of hyperretangles is said to be in general position if for eah i = 1; : : : ; d the xi oordinatesthat de�ne the extents of the hyperretangles are all distint.3



d k upper bound lower bound2 1 2n� 1 (y) 2n� o(n)2 2 3n (y) 7n=3� o(n)d 1 O(nd=(d�1)) (�) 
(nd=(d�1)) (�)3 2 O(n3=2) (�) 
(n3=2) (�)d k < d=2 O(nd=(d�k)) 
(nd=(d�k))d k � d� 1 O(nd=(d�k)) 
(nd=(d�k))interseting4 2 O(n5=3) 
(n5=3)Table 1: Summary of our bounds. A bound tagged by (y) indiates a known bound, givenfor referene. A bound tagged by (�) indiates a known bound, rederived here with a simplerproof.appliations; e.g., see Van�e�ek [14℄. It does lead to di�erent omplexity bounds on the size ofthe resulting deomposition, sine, for instane, a set of n line segments that lie in a ommonhyperplane h in R4 require only a single utting hyperplane (h) for a BSP by our de�nition,resulting in two ells and size n (sine there are n objet fragments). However, the n segmentsmay form a on�guration in the three-dimensional spae of the hyperplane h suh that thedeomposition of h by a three-dimensional BSP of the segments requires size 
(n3=2). (Seethe disussion in Setion 6 of [10℄.) In this paper, we use the strit de�nition of BSP de�nedearlier (and introdued in [8℄), not requiring that lower dimensional subon�gurations bereursively deomposed. If the input objets are in general position, there is no modi�ationneessary to our stated bounds on the sizes of BSPs if one were to onsider the modi�edde�nition of BSP; in ase the input is not in general position, though, our omplexity boundswould require appropriate modi�ation under the modi�ed de�nition.2 Segments and Retangles in Two DimensionsWe start with the ase in whih S is a set of n axis-parallel pairwise-disjoint line segments inthe plane. By applying the method of d'Amore and Franiosa [1℄, whih is designed for thease of retangles (based on a minor variant of Paterson and Yao's method [10℄), we readilyobtain the following result for line segments:Theorem 2.1 A set of n axis-parallel and pairwise-disjoint line segments in the plane admitsa binary spae auto-partition of size at most 2n � 1. This BSP an be omputed usingO(n logn) time and spae and has the additional property that no input segment is ut morethan one.We turn our attention now to establishing the tightness of the upper bound. The bestonstrution known prior to this work is a yle of thikness n=4, shown in Figure 1(a) forn = 20, whih requires a BSP of size at least 5n=4.4
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() (d)Figure 1: (a). A yle on�guration of thikness w = 5. (b). A 4 � 4 1-grid. (). A 4 � 42-grid (double grid). (d). Charging sheme in a 5-grid.
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Theorem 2.2 There exists a set S of n disjoint axis-parallel line segments with the propertythat any binary spae auto-partition of S has size at least 2n� o(n).Proof: If s; t 2 S, we say that s uts t if by extending the supporting line of s (within theell of the urrent BSP ontaining s and t), the segment t is the �rst that is ut in two parts.Any segment an ut at most two other segments (on either side of s). This de�nes a diretedsimple graph G = (S;E) with vertex set S, and edge set E given by the (asymmetri) utrelation. A yle is minimal if no proper subset of it is a yle.In general, the size of the BSP is n + n, where n denotes the number of uts that aremade during the partitioning proess. Sine n � n4 in the example of Figure 1(a), it yieldsthe lower bound n + n4 = 5n4 .Our onstrution for the lower bound is based on a grid-like on�guration of segments,as illustrated in Figure 1(b,). We parameterize it by the number of anhored horizontalsegments on the left side of R, and the number of anhored vertial segments on the bottomside of R: if these numbers are k and l respetively, we have a k � l simple grid (or a k � l1-grid); see Figure 1(b). We restrit our attention to the set C of minimal yles of length4 assoiated with the (large and small) ells in the grid. It is easy to see that a BSP isobtained only when all yles in the set C have been ut.First, onsider a k � k 1-grid, to obtain a lower bound on n. The number of ells ise = k2+(k�1)2, k2 of whih are small ells, and the total number of segments is n = 2k(k+1).Eah small ell is a yle and requires at least one ut by itself. We have n � k2 = n2 �o(n),from whih we get a lower bound of 1:5n�o(n) on the size of any BSP for this on�guration.In order to improve this lower bound, we onsider a k � k m-grid, in whih eah singlesegment of the simple k�k 1-grid is replaed by a set of m parallel segments of equal length.A 2-grid is shown in Figure 1(), and a portion of a 5-grid is shown in Figure 1(d). Herethere are n = 2mk(k + 1) segments and e = k2 + (k � 1)2 ells.We laim that n � (m� 12)e; seleting m = k implies a lower bound of 2n� o(n) on thesize of any auto-partition BSP for this on�guration, sinenn = (2k2 � 2k + 1)(2k � 1)4k2(k + 1) = 1� o(1):(To be more preise, the lower-order term is O(n2=3).)For a given ell C, denote by A(C) the set of at most 4m segments assoiated with C;namely, A(C) onsists of m segments on eah of the four sides of C. We say that ell C istouhed by a utting line l if either (i) l intersets the interior of the ell, viewed as a onvexregion (square), or (ii) l is one of the supporting lines of the 4m segments assoiated withC. Case (i) de�nes a middle ut, ase (ii) de�nes a boundary ut.The (urrent) thikness of C, denoted w(C), is the minimum number of segments that oneneeds to ut suh that there are no more yles determined by C. We observe an equivalentharaterization of the (urrent) thikness: the minimum number of segments that one needsto ut, suh that w(C) is stritly dereased. In the example of Figure 1(d), the thiknessof the ell C1 after the �rst horizontal ut is 3, and one needs to ut at least 3 segments toredue it. After the seond vertial ut, the thikness beomes 2. The thikness of eah ellis dereased during the utting proess, from m to 0, through one or more uts.6



We employ a harging sheme that harges eah ell of the grid with (at least) m � 12 .It maintains the following invariant: If a ell has not been touhed, its urrent harge is 0;if a ell has been touhed, and its urrent thikness is w (0 � w � m� 1), its harge is (atleast) m� w � 12 . Let us examine the �rst ut that touhes a �xed ell C1. The number ofloally ut segments in A(C1) is  = m. The harge (= m) is distributed to the ell and itsneighbor as illustrated in Figure 1(d): m� x� 12 = m� w1 � 12 to ell C1 and m� y � 12 toits neighbor ell. The total harge is (m� x� 12) + (m� y � 12) = m, sine x + y + 1 = m.Thus, the invariant holds after the �rst ut that touhes C1 is made.For any of the subsequent uts, we distinguish two ases:Case 1: The ut does not redue the thikness of any adjaent ell. If the ut does notredue the urrent thikness of C1, we an just ignore the exess harge. If it does redue w1,let w01 < w1 be its redued thikness. We only have to ensure that the number  of loallyut segments in A(C1) satis�es  � w1�w01 to maintain the invariant. But this is lear, sine � w1 from our seond (equivalent) haraterization of thikness.Case 2: The ut redues the thikness w2 of the adjaent ell C2 (as well as the thiknessw1 of C1, otherwise the exess harge is ignored). Denote by �1 = w1�w01; �2 = w2�w02;the two redutions. We only have to ensure that the number  of loally ut segments inA(C1) satis�es  � �1 + �2 to maintain the invariant. Sine w01 + w02 = m � 1 (by theassumption of redution), this is equivalent to  +m� 1 � w1 + w2 whih follows from theinequalities  � w2 and m� 1 � w1. The �rst is implied by our equivalent haraterizationof thikness (more generally,  � max(w1; w2)), and the seond is true sine this is not the�rst ut for C1.After the partitioning proess ends, eah ell has thikness 0, and its harge is (at least)m� 12 , as desired. 2We turn now to the ase in whih S is a set of n disjoint axis-parallel retangles. The bestknown upper bound on the size of the BSP is 3n, given in the reent paper of Berman et al. [4℄,improving the prior bound of 4n [1℄. Our onstrution for line segments gives immediately alower bound of 2n� o(n) (a similar bound was also obtained independently in [4℄; however,their bound applies only for retangles, not for segments). We are able to show an evenbetter lower bound for retangles:Theorem 2.3 There exists a set S of n disjoint axis-parallel retangles (in fat, of n unitsquares, as in Figure 2) with the property that any binary spae auto-partition of S has sizeat least 73n� o(n).Proof: Consider a k � k square on�guration (with n = k2 unit squares) with the patternshown in Figure 2. We have s = (k � 1)2 \juntions," orresponding to the small ells inthe grid on�guration (of size � > 0), at eah of whih 4 squares are \meeting". Considerany orthogonal ut in the BSP tree, having (physial) length l. We distinguish 3 types ofparts of our ut: (i) the border part, if any, of length lb � 0 lies on a side or in between the2 sides of 2 adjaent squares (adjaeny in the grid refers to the N,S,E,W squares only); (ii)the aligned part, if any, of length la � 0 measures the at most 2 parts of length � 1 adjaentto the border part; (iii) the middle part, if any, of length lm � 0 enompasses the rest of thelength. 7



Figure 2: A set of disjoint unit squares used in the lower bound of Theorem 2.3.

Figure 3: A 4 � 6 square on�guration (an instane for T (3; 5)); the three portions of theut are: border (solid), aligned (dashed) and middle (dotted)
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We have l = lb + la + lm; lb � 1 + �; la � 2: As before, let n denote the number ofuts (additional number of objet parts in the BSP tree); then, the size of the BSP tree isn+ n. It is easy to see that eah of the (k� 1)2 juntions will reate at least one ut. Thisgives us a lower bound of 2n � o(n) on the size of the BSP tree. To aount for more, wewill prove a lower bound on the number of additional parts generated by middle portions ofthe uts: unless a retangular subell R obtained during the BSP tree onstrution has one\short" side, any ut of R will generate additional parts due to the middle part omponent,whih are unaounted for by the juntions inside the retangle. For i; j � 0, denote byT (i; j) the minimum number of additional \middle" parts in the BSP tree attributed to themiddle portions of the ut, obtained when a retangle ontaining a omplete i � j array ofinterior juntions is ut by a line. It is easy to see that T (3; 3) � 1 (a 3� 3 array of interiorjuntions is illustrated in Figure 2). A lower bound on the size of a BSP tree (with n = k2)for a k � k square on�guration isn+ n = k2 + (k � 1)2 + T (k � 1; k � 1):We proeed to prove by indution on i + j the followingClaim 2.4 For i; j � 3; T (i; j) � (i�2)(j�2)3 .Proof: The basis i = j = 3 holds by the above observation. Without loss of generalityassume the orthogonal ut splits the retangle ontaining the i� j array of juntions into 2subretangles ontaining i�j1 and i�j2 arrays of juntions, with j�1 � j1+j2 � j; j1 � j2.Then T (i; j) � T (i; j1) + T (i; j2) + i� 2:(For example, the bounding retangle of the square on�guration in Figure 3 would ontributeT (3; 5) \middle" parts, while the 2 resulting subretangles after the horizontal ut is madewould eah ontribute T (1; 5) \middle" parts.) We distinguish 3 ases:Case 1. j � 5. Then, T (i; j) � i� 2 � (i� 2)(j � 2)3 :The last inequality is satis�ed by the hoie of j.Case 2. j � 6; j1 � 2. Sine j2 � j � 3 � 3, we an use the indutive bound on T (i; j2).T (i; j) � T (i; j2) + i� 2 � T (i; j � 3) + i� 2� (i� 2)(j � 5)3 + i� 2 = (i� 2)(j � 2)3 :Case 3. j � 6; j1; j2 � 3. Using the indutive bounds on both terms yieldsT (i; j) � T (i; j1) + T (i; j2) + i� 2� (i� 2)(j1 � 2)3 + (i� 2)(j2 � 2)3 + i� 2= (i� 2)(j1 + j2 � 1)3 � (i� 2)(j � 2)3 :9



2Our lower bound on the size of the BSP tree beomesk2 + (k � 1)2 + (k � 3)23 = 73n� o(n):We note that, most likely, the onstant in the lower bound o�ered by our square on�gu-ration annot be improved substantially, if at all; ertainly, a BSP of size smaller than 2:5nan be onstruted for this on�guration: using a 3 � k strip utting yields a BSP of size� 229 k2 � 2:444n, using a 4� k strip utting yields a BSP of size � 3916k2 � 2:437n, et. 23 Segments in Higher Dimensions and Retangles inR3Segments in Three Dimensions. Let E = X[Y [Z be a set of n axis-parallel segmentsin 3-spae, where X (resp. Y; Z) is the subset of segments of E that are parallel to the x-axis(resp. to the y-axis, z-axis). Put x = jXj, y = jY j, z = jZj, so that x + y + z = n. Forsimpliity of presentation, suppose that the segments of E are in general position, meaningthat no two endpoints of di�erent segments have the same x, y or z-oordinate.We onstrut a binary spae partition of E in the following simple manner.(i) If one of x; y; z is zero, say z = 0, then we an obtain a BSP of size O(n) by a sequeneof horizontal uts.(ii) Suppose next that eah of x; y; z is at least 1 and that z � x; y. Then we have z � n=3and x+y � 2n=3. Put t = �2pxyz � � 2pmaxfx; yg � 2pn3 . We partition spae into a stakof t horizontal slabs �1; : : : ; �t by a sequene of horizontal uts, so that, if xi; yi; zi denote,respetively, the numbers of segments in X; Y; Z that interset (the interior of) �i, then werequire that xi � x=t, for eah i. We learly also have Pi yi � y.For eah slab �i, projet all the segments of E that interset �i onto the xy-plane. Weobtain xi horizontal segments, yi vertial segments and zi points. We partition the segmentsinto subsegments at their intersetion points. The number of suh points is ki � xiyi andthe total number of subsegments is xi + yi + 2ki � xi + yi + 2xiyi.We apply the planar binary spae partitioning sheme of Theorem 2.1, and note thatnone of the zi � z singleton points will be split. We lift this planar partitioning sheme intothree dimensions, lifting eah ut by a line (segment) in the xy-plane to a ut by the vertialplane (strip) ontaining the line (segment). It follows that the size of the partition within �iis at most 2(xi + yi + 2xiyi) + zi � 2xt + 2yi + 4xyit + z:Hene the overall size of the BSP is at most 2x+2y+ 4xyt + zt � 2(x+ y) + 4pxyz + z. Wehave thus shown:Theorem 3.1 Let E be a olletion of n segments in 3-spae, onsisting of x segmentsparallel to the x-axis, y segments parallel to the y-axis and z segments parallel to the z-axis.Then E admits a BSP of size 4pxyz + 2n� z, for z � x; y.10



Remark: The maximum value of this bound is easily seen to be at most 43p3n3=2+ 53n. Thisimproves signi�antly the onstant in the bound given in [10℄. The lower bound onstrutiongiven in [10℄ yields a BSP of size at least 13p3n3=2 + n. This leaves the open problem oftightening the gap of the fator 4 in the onstant of proportionality between our upper boundand this lower bound.Segments in Higher Dimensions. Let E = X1[X2[� � �[Xd be a set of n axis-parallelsegments in d-spae, where Xi is the subset of segments of E that are parallel to the xi-axis,for i = 1; : : : ; d. Put ni = jXij, for i = 1; : : : ; d, so that n1 + � � �+ nd = n.We re-establish the following result of [10℄ with a simpler proof whih also gives betteronstants of proportionality. As noted in [10℄, the upper bound is tight in the worst ase|seealso Setion 4 below for an extended lower bound.Theorem 3.2 Let E be a olletion of n segments in d-spae, for d � 3, onsisting of nisegments parallel to the xi-axis, for i = 1; : : : ; d. Then E admits a BSP of size at most(2d� 2)(n1n2 � � �nd)1=(d�1) + 2(n1 + n2 + � � �+ nd):Proof: We proeed by indution on d, where the base ase d = 3 has already been treated.We assume, for simpliity of presentation, that the segments of E are in general position,meaning that no two endpoints of di�erent segments have an equal oordinate.(i) If one of the ni's is zero, say nd = 0, then we an obtain a BSP of linear size by asequene of uts orthogonal to the xd-axis.(ii) Suppose next that eah of the ni's is at least 1 and that nd � nd�1 � � � � � n1. Putt = &(n1n2 � � �nd�1)1=(d�1)n(d�2)=(d�1)d ' � n1=(d�1)1 � (n=d)1=(d�1):We partition spae into a stak of t slabs �1; : : : ; �t by a sequene of uts orthogonal to thexd-axis, so that the following property holds. Let n(�)i denote the number of segments inXi that interset (the interior of) the slab ��. We require that n(�)1 � n1=t, for eah �. Welearly also have P� n(�)i � ni, for i = 2; : : : ; d� 1.For eah slab ��, projet all the segments of E that ross �� onto the hyperplane xd = 0.We obtain a olletion of n(�)1 +� � �+n(�)d�1 segments whih, by our general position assumption,are pairwise disjoint (as long as d > 3), and n(�)d points. We apply the partitioning algorithmfor d�1 dimensions, provided by the indution hypothesis, to the projeted set, lifting, alongthe xd dimension, eah (d � 2)-dimensional ut performed by this algorithm to a (d � 1)-dimensional ut (within ��). Note that the presene of points in the input has little e�et onthe algorithm and adds only a linear term to the size of the resulting BSP: We simply ignorethe points and apply the algorithm only to the segments. When we are done, we take theells of the resulting BSP that ontain the input points, and split any suh ell that ontainsmore than one point into subells, say by a sequene of parallel uts.11



By the indution hypothesis, the size of the resulting BSP is at mostX� �(2d� 4)�n(�)1 n(�)2 � � �n(�)d�1� 1d�2 + 2�n(�)1 + n(�)2 + � � �+ n(�)d �� �(2d� 4)�n1t � 1d�2 �X� �n(�)2 � � �n(�)d�1� 1d�2 + 2(n1 + n2 + � � �+ nd�1) + 2tnd:We need the following easy inequality:Claim: Let m be a positive integer and let a1; : : : ; am; b1; : : : ; bm be nonnegative. Then(a1a2 � � �am)1=m + (b1b2 � � � bm)1=m ��(a1 + b1)(a2 + b2) � � � (am + bm)�1=m:Proof: By indution on m. In the ase m = 1, there is nothing to prove. For m > 1 wehave, using H�older's inequality,(a1a2 � � �am)1=m + (b1b2 � � � bm)1=m �(a1 + b1)1=m � h(a2 � � �am)1=(m�1) + (b2 � � � bm)1=(m�1)i(m�1)=m :Combining this with the indution hypothesis, the laim follows. 2Hene, applying this laim repeatedly, we onlude that the size of our BSP is at most(2d� 4)�n1t �1=(d�2) � (n2 � � �nd�1)1=(d�2) + 2(n1 + n2 + � � �+ nd�1) + 2tnd =(2d� 4)�n1n2 � � �nd�1t �1=(d�2) + 2(n1 + n2 + � � �+ nd�1) + 2tnd:By the hoie of t, this beomes at most(2d� 4 + 2) (n1n2 � � �nd)1=(d�1) + 2(n1 + n2 + � � �+ nd):This establishes the indution step and thus ompletes the proof of the theorem. 2Remark: Theorem 4.1 given below subsumes in general Theorems 3.1 and 3.2. We haveonsidered separately these theorems beause they also apply to situations where the sizes ofthe sets Xi are unbalaned and beause their more areful analysis leads to smaller onstantsof proportionality.Retangles in Three Dimensions. Let R be a set of n pairwise-disjoint axis-parallelretangles in 3-spae, and let E denote the set of their edges. Write E = X [ Y [ Z, asabove, and put x = jXj, y = jY j, z = jZj, so that x+ y+ z = 4n. We establish the followingtheorem; the upper bound O(n3=2) was also obtained in [10℄.12



Theorem 3.3 Let R be a olletion of n axis-parallel retangles in 3-spae, having a total ofx edges parallel to the x-axis, y edges parallel to the y-axis and z edges parallel to the z-axis.Then R admits a BSP of sizeO(n(min fx; y; zg)1=2 + n) = O(n3=2):Proof: We onstrut a binary spae partition of R in the following manner.(i) If one of x; y; z is zero, say z = 0, then all retangles are horizontal, and we an obtaina linear-size BSP as above.(ii) Suppose next that eah of x; y; z is at least 1 and that z � x; y. Then we havez � 4n=3 and x + y � 8n=3. Putt = �x + ypz � � (8n=3)p4n=3 = 4p33 pn:We partition spae into t horizontal slabs �1; : : : ; �t, as above, so that xi + yi � (x + y)=t,for eah i, where xi; yi; zi are as de�ned in Setion 3. We then havexiyi � �xi + yi2 �2 � (x + y)24t2 � z4 :Fix a slab � = �i, and onsider the set R� of retangles that interset �. These retanglesare of two kinds: (a) retangles that have a horizontal edge in the interior of �; (b) vertialretangles whose boundary rosses � only at two vertial segments, implying that they haveno horizontal edge inside �. Note that retangles of type (b) ontribute only to the zi-ountwithin � but not to the xi and yi-ounts. The retangles of type (a) are either horizontalretangles that are fully ontained in � or vertial retangles that `start' or `end' (or both)within �. We refer to the portions within � of all these retangles as blak retangles. Werefer to the retangles of type (b) as red. Their number is at most zi2 � z2 .We projet � onto the xy-plane. The projetions of the red retangles are red segmentsthat are pairwise disjoint and are also disjoint from the projetion of any blak retangle.Those blak projetions an be either segments or retangles, and they an interset (oroverlap) eah other.Let G be the (nonuniform) grid formed in the xy-plane by the horizontal and vertiallines that ontain the edges of the projetions of the blak retangles. We refer to the atomiretangles of G as pixels. We lassify those pixels into red pixels, whih are those that areinterseted by a red segment, and the remaining blak pixels. Note that there are a total ofO(xiyi) pixels. The blak pixels an be grouped into blak strips, whih are maximal sets ofonseutive blak pixels within a single olumn of G.We now apply the 2-dimensional BSP onstrution (provided by Theorem 2.1) to theolletion of blak strips and red segments. We obtain a deomposition of the xy-plane intoO(xiyi+ zi) retangular subregions. Moreover, any red segment or blak strip is split by thealgorithm at most one.We lift the BSP just onstruted in the z-diretion, to obtain a partition of the slab �by vertial planes orthogonal to the x- and the y-axes. Let K be a ell produed by this13



partitioning. If K projets to a (portion of a) blak strip, then it needs further partitioning,whih we do as follows. Ignoring blak retangles that overlap the boundary of K (whihare not part of the subproblem at K anyway), any other blak retangle that intersets Krosses it from left to right, i.e., neither of its edges that are orthogonal to the x-axis meetsK. Projet K onto the yz-plane. By the observation just made, the nK blak retanglesthat interset K projet to a olletion of nK pairwise-disjoint segments, and we an againapply the 2-dimensional BSP onstrution within this projetion, e�etively obtaining aBSP for K that uses only uts parallel to the x-axis, whose size is O(nK). We laim thatPK nK = O(xiyi). Indeed, a blak retangle that is ounted in nK must have an edgeparallel to the x-axis that intersets K. This follows from the fat that any blak retanglethat violates this property must be horizontal and its xy-projetion must over that of Kompletely. However, K is delimited from above and from below (in the y-diretion) byred pixels, whih no horizontal blak retangle an ross. This ontradition establishes theasserted property. Now an (x-parallel) edge of a blak retangle an ross at most xi blakregions, and sine we have only yi suh edges, we onlude that PK nK = O(xiyi).We have thus onstruted a BSP of size O(xiyi + zi) = O(z) for eah of the t slabs �i,thus obtaining an overall BSP of size O(zt) = O((x + y)z1=2). This ompletes the proof ofthe theorem. 24 Arbitrary Hyperretangles in Higher DimensionsLet R be a set of n axis-parallel k-dimensional hyperretangles (k-retangles, or just retan-gles, in short) in Rd . We assume that k < d=2 and, for simpliity, that the k-retangles arein general position, as above. We note that this assumption implies that no pair of retanglesinterset.Eah retangle r 2 R has k extent oordinates, i.e., oordinates xi for whih the projetionof r onto the xi-axis is an interval with nonempty interior, and d�k �xed oordinates (thosefor whih this projetion is a singleton point).Let K be an axis-parallel box in Rd . Let r be a retangle in R and put r0 = r \K. Wesay that r is an xi-pass-through in K if the projetion of r0 on the xi-axis is equal to theprojetion of K on the same axis. We denote by pt(r;K) the tuple of oordinates for whihr is a pass-through in K. The main result of this setion isTheorem 4.1 (a) A set R of n axis-parallel k-retangles in d-spae, as above, admits a BSPof size O(nd=(d�k)). (b) There exist sets R of n axis-parallel k-retangles in Rd , as above, forany n, d and k < d=2, so that any (retilinear) binary spae auto-partition for R has size
(nd=(d�k)).Proof of the upper bound: Let R be a set of n k-retangles in d-spae, satisfying theabove properties. Put t = n1=(d�k), for some absolute onstant  > 1. The BSP onstrutionproeeds through d phases, where in the j-th phase we ut eah of the ells produed in thepreeding phases by hyperplanes orthogonal to the xj-axis. Eah ut that we perform is atsome �xed oordinate of some retangle in R.14



In the �rst phase we slie Rd by a sequene of t�1 hyperplanes orthogonal to the x1-axis,partitioning spae into t slabs, so that eah slab � ontains at most n=t retangles that areeither orthogonal to x1 or have an extent in the x1-oordinate but are not x1-pass-throughsin �.Suppose we are in the j-th phase. Let � be a ell (subslab) produed by the previousphases. We assume indutively that, for eah subset M of f1; : : : ; j � 1g of size jM j � k, �ontains at most n=tj�1�jM j retangles that are pass-throughs in exatly the oordinates inM . (We note that this property holds for j = 2.)We ut � by O(t) uts orthogonal to the xj-axis, to ensure that, for eah subset M asabove, any resulting subslab �0 ontains at most n=tj�jM j retangles that were pass-throughsin � in exatly the oordinates in M and are not xj-pass-throughs in �0. (By the indutionhypothesis, � ontains at most n=tj�1�jM j suh retangles, so it is easy to ut this numberdown by a fator of t for eah �0.) In addition, one also has the property that for eah subsetM of f1; : : : ; jg of size � k that ontains j, �0 ontains at most n=tj�jM j retangles that arepass-throughs in exatly the oordinates inM . (These bounds are simply `arried over' fromthe indutively assumed bounds for � and j � 1.)This establishes the indutive property for j, and thus allows us to ontinue in thismanner until all d phases are exeuted.Let us analyze the performane of this partitioning sheme. We laim that, for  > 1,none of the �nal ells an ontain any retangle in their interior. Indeed, let � be a �nal ell.By the above property, for eah set M of oordinates of size jM j � k, there are at mostntd�jM j = 1d�jM jn d�jMjd�k �1 = 1d�jM jn(k�jM j)=(d�k) � 1d�k(portions of) retangles ontained in � that are pass-throughs in � in exatly the oordinatesinM . By hoosing  > 1 we are guaranteed that the interior of � does not meet any retangleof R.Hene the resulting subdivision is indeed a BSP for R. The number of ells of this BSP islearly O(td) = O(nd=(d�k)), with the onstant of proportionality depending (exponentially)on d and k. Further, any one retangle is ut into at most tk = nk=(d�k) piees, implyinga bound of O(nd=(d�k)) on the number of fragments. This ompletes the proof of the upperbound.Proof of the lower bound: Put I = [0; n1=(d�k)+1℄, and letK be the ube Id. Put L = �dk�.For eah k-tuple � of oordinates, we onstrut n k-retangles whose extent oordinates arethose of � , as follows. Put E = f1; 2; : : : ; n1=(d�k)gd�k. For eah a 2 E onstrut a retangler = r(a) whose i-th �xed oordinate is ai + "(a; �), and whose projetion on eah of theextent oordinates (i.e., those in �) is I. Here "(a; �) is a number in (0; 1), so that di�erentpairs (a; �) are assigned di�erent numbers. We thus obtain a olletion R of a total of Lnretangles.We laim that any axis-parallel BSP for R must onsist of 
(nd=(d�k)) ells. Considerthe integer grid G = f1; 2; : : : ; n1=(d�k)gd. With eah g 2 G assoiate the grid ell Q(g) =Qdi=1(gi; gi + 1). A grid ell Q = Q(g) is rossed by exatly L retangles of R: For eahk-tuple of oordinates there is exatly one retangle of R whose extent oordinates are those15



in the tuple, that rosses Q|it is the retangle whose �xed oordinates agree with theorresponding elements of g.Sine L > 1, any BSP forRmust have uts that ross Q, for otherwise Q will be ontainedin a single ell of the BSP, whih is impossible sine that ell is now rossed by more thanone retangle of R. Moreover, we argue that Q must be ut by (portions of) hyperplanes inat least k di�erent orientations (we omit the easy proof). Halt the BSP onstrution rightafter Q is ut for the �rst time by hyperplanes in k di�erent orientations; suppose that theyare the �rst k oordinates. Let r be the unique retangle of R that rosses Q and whoseextent oordinates are the �rst k oordinates. For eah i = 1; : : : ; k let hi be a hyperplaneorthogonal to xi that has already rossed Q. Then r \ �Tki=1 hi� is a singleton point v|avertex of a portion of r that the BSP has just formed. We assign Q to this portion of r, or,more preisely, to the �nal portion of r that will be formed by the BSP and will have v as avertex. No suh portion an be harged by more than 2k grid ells, whih implies that thenumber of fragments of retangles in R that the BSP has to form is at least proportional tothe number of grid ells, so the BSP has size 
(nd=(d�k)), as asserted. 2Remark: The upper bound of Theorem 4.1 hold also for d=2 � k � d � 1, even if theretangles in R are allowed to interset. The lower bound applies also for d=2 � k � d� 1,but the onstrution uses retangles that interset. The proofs are essentially idential.5 Disjoint 2-Retangles in R4Let R be a set of n axis-parallel pairwise disjoint 2-retangles in R4 . This is the simplestinstane not overed by Theorem 4.1.Theorem 5.1 (a) A set R of n axis-parallel pairwise-disjoint 2-retangles in R4 admitsa BSP of size O(n5=3). (b) There exist olletions of n (axis-parallel) pairwise-disjoint 2-retangles in R4 that only admit (retilinear) BSP's of size 
(n5=3).Proof of the upper bound: Let K be an axis-parallel box in R4 . Apply the same round-robin onstrution given in the preeding setion, but with t = 0n1=6 for an appropriate on-stant 0. We obtain O(n2=3) subells, so that eah subell � ontains at most n=t2 = O(n2=3)retangles that are pass-throughs in two oordinates, at most n=t3 = O(n1=2) retangles thatare pass-throughs in exatly one oordinate, and at most n=t4 = O(n1=3) retangles that arenot pass-throughs in any oordinate.Lemma 5.2 A subell � annot ontain two retangles r; r0 suh that r is pass-through in �in two oordinates and r0 is pass-through in � in the two omplementary oordinates.Proof: Any two suh retangles must interset, ontrary to assumption. 2By Lemma 5.2, it is easily veri�ed that there are only two possible maximal values forthe set pt(�) � fpt(r; �) j r is a retangle that ispass-through in � in 2 oordinatesg;16



up to a permutation of the oordinates; namely:(i) pt(�) � f(1; 2); (1; 3); (2; 3)g(ii) pt(�) � f(1; 4); (2; 4); (3; 4)g:Case (i). Consider �rst ase (i). Note that in this ase all the retangles that are pass-throughs in � in 2 oordinates are orthogonal to the x4-axis and lie at di�erent heights.We ut � by O(n1=6) uts orthogonal to the x4-axis so that eah of the O(n5=6) subellsontains at most n1=2 (portions of) retangles. In partiular, eah subell ontains at mostn1=2 retangles that are pass-throughs in 2 oordinates, at most n1=3 retangles that arepass-throughs in 1 oordinate, and at most n1=6 retangles that are not pass-throughs in anyoordinate. By Lemma 5.2, the extent oordinates of the 2-oordinate-pass-throughs in asubell may again fall into either ase (i) or ase (ii) (with a possible new permutation of theoordinates). For a subase-(i) subell �, we ut � by O(n1=6) uts orthogonal to the x4 axis,resulting in a total of O(n) subsubells eah ontaining at most n1=3 (portions of) retangles.For a subase-(ii) subell �, we apply the sheme desribed below, based on a round-robinutting of eah subell into n3=6 piees eah ontaining at most n1=6 (portions of) retangles.If we denote by F (n) the maximum size of a BSP that the algorithm onstruts for anyinput set of n pairwise-disjoint axis-parallel 2-retangles in R4 , then the overall number of�nal ells produed for ells � that belong to ase (i) is O(n)F (n1=3) +O(n4=3)F (n1=6).Case (ii). Next onsider ase (ii). We exeute a round-robin proedure that only makesuts orthogonal to the x1, x2, and x3-axes. At eah stage of this proedure we make t =O(n1=6) uts. This partitions eah of the preeding O(n2=3) ells into O(n1=2) subells, for atotal of O(n7=6) subells. This an be done so that eah subell � ontains� at most n2=3=t2 = n1=3 retangles that are pass-throughs in � in two oordinates, oneof whih is x4,� at most n1=2=t = n1=3 retangles that are pass-throughs in � in two oordinates, noneof whih is x4,� at most n1=2=t2 = n1=6 retangles that are pass-throughs in � in exatly one oordinate,� and no other retangles.Note that, beause of Lemma 5.2, the existene of 2-oordinate-pass-throughs of the seondategory annihilates those pass-throughs of the �rst ategory that have omplementary extentoordinates. Consequently, the extent oordinates of the 2-oordinate-pass-throughs in �may again fall into either ase (i) or ase (ii) (with a possible new permutation of theoordinates).In subase (i) we proeed in a manner similar to the one above, utting � by O(n1=6) utsorthogonal to the x4-axis, to obtain O(n1=6) subells, eah ontaining at most n1=6 retangles,for an overall reursive bound of the form O(n4=3) � F (n1=6).In subase (ii), with, say, pt(�) = f(1; 4); (2; 4); (3; 4)g, we again proeed as above,utting � in a round-robin fashion by uts orthogonal to the x1, x2, and x3-axes, making17



t = O(n1=6) uts in eah round. This an be done so as to eliminate the at most n1=6retangles that are pass-throughs in one oordinate, as well as all of the at most n1=3 2-oordinate-pass-throughs. Hene this step produes a BSP for �, whose size is O(n1=2), fora total of O(n7=6 � n1=2) = O(n5=3).Putting everything together, we obtain the following reurrene for F (n):F (n) = O(n5=3) +O(n) � F (n1=3) +O(n4=3) � F (n1=6);whose solution is easily seen to be F (n) = O(n5=3):Proof of the lower bound: Let G be the n2=3�n1=3�n1=3�n1=3 integer grid in 4-spae.Let I denote the interval [0; n1=3+1℄ and let I 0 denote the interval [0; n2=3+1℄. We onstrutthe following four families of retangles:R1 = ffi+ "(1)i;j g � fj + "(1)i;j g � I � I ji = 1; : : : ; n2=3; j = 1; : : : ; n1=3gR2 = ffi+ "(2)i;j g � I � fj + "(2)i;j g � I ji = 1; : : : ; n2=3; j = 1; : : : ; n1=3gR3 = ffi+ "(3)i;j g � I � I � fj + "(3)i;j g ji = 1; : : : ; n2=3; j = 1; : : : ; n1=3gR4 = fI 0 � [i + "(4)i;j;k; i+ "(5)i;j;k℄� [j + "(4)i;j;k; j + "(5)i;j;k℄� [k + "(4)i;j;k; k + "(5)i;j;k℄ j i; j; k = 1; : : : ; n1=3g;where the "(m)i;j 's and "(m)i;j;k's are all distint small positive real numbers (say, at most 0:1). Inaddition, we require that all the intervals ["(4)i;j;k; "(5)i;j;k℄ do not ontain any of the numbers "(m)i;j ,for m = 1; 2; 3. The elements of R4 are (long and skinny) 4-dimensional boxes rather thanretangles, but we an replae eah of them by its 24 bounding (2-dimensional) retangles,slightly shifted away from eah other, to maintain the general position property. Note thatthe retangles in R = S4i=1Ri are pairwise disjoint.Fix any 1 � i � n2=3, 1 � j; k; ` � n1=3, and onsider the ube�(i; j; k; `) = [i; i+ 0:1℄� [j; j + 0:1℄� [k; k + 0:1℄� [`; `+ 0:1℄:We refer to �(i; j; k; `) as the juntion at (i; j; k; `).Consider any retilinear BSP for R, namely, one that only uses uts orthogonal to theoordinate axes. It is lear that eah juntion � = �(i; j; k; `) must be ut by at least onehyperplane of the BSP, or else the BSP will have a �nal ell that is interseted by more thanone retangle of R.If the �rst hyperplane that intersets � is orthogonal to the x1-axis, then it intersetsthe unique skinny box of R4 that rosses �. Suh an intersetion is a tiny 3-retangle thatlies inside �. Hene the number of fragments of the boxes in R4 produed by the BSP is atleast equal to the number of juntions � with this property.Consider then a juntion � = �(i; j; k; `) that is not rossed (for the �rst time) by anyhyperplane orthogonal to the x1-axis. We make the following laim:18



Claim 5.3 Either the box of R4 that rosses � is eventually ut as in the preeding para-graph, or else there exists a retangle in R1 [R2 [R3 that is split by the BSP into subret-angles, so that at least one of them has a vertex inside �.Intuitively, the only way to \get rid" of the box of R4 that uts � by uts parallel to x1 isto ut along eah of its 3-D faets; moreover, one annot get rid of the other three retanglesin R1 [ R2 [ R3 that ross � without making at least two di�erently-oriented uts, eahbeing orthogonal to one of the axes x2, x3, x4.Proof of the Claim: Suppose, with no loss of generality, that the �rst hyperplane h ofthe BSP that uts � is orthogonal to the x2-axis. Then h splits eah of the two retanglesof R2 [ R3 that ross � into two subretangles, and h may fully ontain only the retangleof R1 that rosses � (if at all). The box of R4 that rosses � meets at least one of the twosubells into whih � is split. It follows that eah of the two piees into whih � has beensplit by h, whih is met by all three elements of R2 [R3 [R4 that ross � (and at least oneof these two sub-juntions has this property), must be further ut at least one more.Suppose �rst that the next ut of suh a sub-juntion �0 is by a hyperplane h0 orthogonalto another axis. If h0 is orthogonal to the x1-axis then we an harge � to the ut of therelevant box of R4, as above. Otherwise, suppose h0 is orthogonal to the x3-axis. Then theretangle of R3 that rosses � is ut by h and h0 into piees that have at least one vertexin (the losure of) �0. A similar property holds for the retangle of R2 if h0 is orthogonal tothe x4-axis.The only remaining ase is when h0 is also orthogonal to the x2-axis. In fat, in general,� may be ut by several suh hyperplanes. However, all of these portions are interseted byeah of the two retangles of R2 [ R3 that meet �, and at least one portion is also rossedby the box of R4 that meets �.Let �00 denote suh a portion of �, whih we assume not to be ut any more by hyperplanesorthogonal to the x2-axis. But �00 does have to be ut again, beause it is still met by morethan one retangle, and any ut in any other diretion an be harged uniquely to �, usingthe arguments in the preeding paragraphs. This ompletes the proof of the laim., 2This laimed property implies that the number of fragments of the retangles in R1 [R2 [ R3 that is produed by the BSP is at least equal to the number of juntions �. Sinethis number is n5=3, it follows that this is a lower bound on the size of any (retilinear) BSPfor R. 26 ConlusionIn onlusion, we refer again to our summary of results in Table 1. Perhaps the mostinteresting remaining open problem is to generalize our tehniques for (disjoint) 2-retanglesin R4 to higher dimensions, with the hope of obtaining asymptotially tight bounds fork-retangles in Rd , for all k and d. 19
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