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Abstract

We present an O(n log9 n)-time algorithm for computing the 2-center of a set S of
n points in the plane (that is, a pair of congruent disks of smallest radius whose union
covers S), improving the previous O(n2 log n)-time algorithm of [10].

The 2-Center Problem

Let S be a set of n points in the plane. The 2-center problem for S is to cover S by (the
union of) two congruent closed disks whose radius is as small as possible. This is a special
case of the general p-center problem, where we wish to cover S by p congruent disks whose
radius is as small as possible. When p is part of the input, the problem is known to be NP-
complete [16], so one expects the complexity of algorithms for solving the p-center problem,
for any fixed p, to increase exponentially with p. A recent improved result in this direction,
given in [9], is an nO(

√
p)-algorithm for the p-center problem. At the other extreme end, the

1-center problem, also known as the smallest enclosing disk problem, can be solved in O(n)
time [15]. The 2-center problem is the next problem down the list, and is of some practical
interest, e.g., in the context of efficient transportation [4]. This problem has been studied
in several recent papers [1, 5, 10, 11], and the currently best algorithm for its solution runs
in time O(n2 log n) [10].

In this paper we present a new algorithm for solving the 2-center problem. The algo-
rithm runs in O(n log9 n) time, thus providing the first subquadratic solution, and improving
substantially the previous solutions. Our solution uses a mixture of techniques, including
parametric searching, searching in monotone matrices, dynamic maintenance of planar con-
figurations, and techniques similar to those used to handle ‘fat’ objects (see [17]).

As in the previous solutions, a major component of the algorithm is a procedure for
solving the fixed-size problem: Given a radius r, we want to determine whether S can be
covered by two closed disks of radius r. We will then combine this procedure with the
parametric searching technique of [14], to obtain the complete algorithm (see below for
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details). We refer to this problem as the 2DC (2-disk cover) problem. The best previous
solution of the 2DC problem runs in O(n2) time [6] (see also [7]). Our strategy is to assume
that such a pair of disks exist, call them D1, D2, and to conduct a search for their centers.
Let ci denote the center of Di, and let Ci denote the circle bounding Di, for i = 1, 2. We
may assume, with no loss of generality, that |c1c2| is as small as possible. In this case it is
clear that, for i = 1, 2, the circle Ci passes through at least one point of S that lies on the
portion of Ci that appears on the boundary of the convex hull of D1 ∪ D2; see Figure 1.

D1 D2

Figure 1: C1 and C2 must pass through points lying on the boundary of conv(D1 ∪ D2)

Dynamic Maintenance of the Intersection of Congruent Disks

Before describing the main algorithm, we first describe in detail a procedure, which the
algorithm will use repeatedly, for solving the following problem. We want to maintain dy-
namically a set P of points in the plane, under insertions and deletions of points. After each
update, we wish to determine whether the intersection K(P ) =

⋂

p∈P Br(p) is nonempty,
where Br(p) is the closed disk of radius r centered at p. This condition is equivalent to the
condition that P can be covered by a disk of radius r. Such a procedure is also used in
the preceding algorithms of [6, 7]. We give here a slightly inferior implementation of this
procedure. This is done because it is easier to describe, and, more importantly, it is easier
to parallelize, which is required by the parametric searching technique.

To keep track of K(P ) as P is being updated, we maintain separately the intersections
K+(P ) =

⋂

p∈P B+
r (p) and K−(P ) =

⋂

p∈P B−
r (p), where B+

r (p) (resp. B−
r (p)) is the region

consisting of all points that lie in or above (resp. in or below) Br(p). The boundaries of
these regions are (weakly) x-monotone, one of them is a convex curve and the other is
concave, so it is fairly easy to determine, by a binary search through the vertices of both
regions, whether their intersection is nonempty; see below for more details.

Consider the problem of maintaining K+(P ); the maintenance of K−(P ) is fully sym-
metric. Let γ(p) denote the boundary of B+

r (p). Note that the set {γ(p) | p ∈ P} is a
collection of ‘weak pseudolines’ in the plane, meaning that any pair γ(p), γ(p′) of curves
intersect in at most one point. Moreover, γ(p) and γ(p′) intersect if and only if their x-
projections overlap (that is, the difference between the x-coordinates of p and p′ is ≤ 2r),
and then γ(p) appears to the left of γ(p′) on ∂(B+

r (p) ∩ B+
r (p′)) if and only if p lies to the

2



right of p′.

All the sets P for which we want to maintain K+(P ) will be subsets of the given set S.
This allows us to use the following variant of the dynamic data structure of Overmars and
van Leeuwen [12]. We sort the points of S by their x-coordinates, and store them in this
order at the leaves of a minimum-height binary tree T . Each node v of T maintains the
intersection K+(Pv), where Pv is the subset of the current set P whose points are stored at
the leaves of the subtree of T rooted at v. Each leaf of T stores a flag that indicates whether
the point p of S associated with it belongs to the current set P . (Actually, to conform with
the structure of internal nodes, we store the x-range of B+

r (p) at the leaf, if p belongs to
the current set P , and store the full x-axis otherwise.) If v is an internal node, with a left
child wl and a right child wr, then:

(a) v stores the x-range of K+(Pv), which is simply the intersection of the x-ranges of
K+(Pwl

) and K+(Pwr
).

(b) If the x-range of K+(Pv) is nonempty, then the pseudoline property of the curves γ(p),
and the fact that the points of S are stored in T in increasing x-order, are easily seen
to imply that ∂K+(Pwl

) and ∂K+(Pwr
) intersect in exactly one point q, and we also

store q at v (with pointers to the pair of curves that intersect at q).

We construct, search and update this structure as in [12]. We first describe the searching
procedure. We are given a query point z and wish to determine whether z lies in K+(P ).
To do so, we examine the root v of T . If the x-range of K+(Pv) is empty, we report that z
lies outside K+(Pv). Similarly, if the x-coordinate of z falls outside the x-range of K+(Pv),
we also report that z lies outside K+(Pv). Otherwise, let q be the point stored at v. If
x(q) < x(z) then we continue the search recursively at the left child of v. If x(q) > x(z),
we continue the search at the right child of v, and if x(q) = x(z), we simply test whether z
lies above or below v, to obtain the answer to the query. (Note that, once we have decided
that q falls in the x-range stored at the root, there is no need to repeat this test at other
nodes along the search path, because the answer will always be positive.) When we reach
a leaf of T , we test explicitly whether q lies in the corresponding set B+

r (p), and thereby
obtain the answer to the query. The cost of the query is thus O(log n).

Consider next the updating of T , when a point p is inserted into or deleted from P . We
find the path π in T leading to p, and update the data stored at the nodes of π, proceeding
along π in a bottom-up fashion, and leaving all other nodes of T intact. We update the x-
range stored at the leaf of p, as appropriate. To update an internal node v, with a left child
wl and a right child wr, we first compute the intersection of the x-ranges of K+(Pwl

) and
K+(Pwr

), and store it at v. If it is empty, no further updating at v is needed. Otherwise,
we next compute the unique intersection point qv of ∂K+(Pwl

) and ∂K+(Pwr
). This is done

in a manner similar to the technique of [12]. That is, let qwl
, qwr

be the intersection points
stored at wl, wr, respectively. We take an arc γl adjacent to qwl

and an arc γr adjacent
to qwr

, and apply a case analysis to decide which subtree of wr or of wl can be discarded
in the further searching. We refer the reader to [12] for additional details concerning the
analogous decision step that they use, and conclude that the updating at v can be done in
O(log n) time, so the total cost of an update is O(log2 n).

Finally, the initial construction of T , for the initial value of P (and with knowledge of
the full set S), can be done in a similar manner: We sort the points of S by x-coordinate,

3



and construct a minimum-height binary tree T over them (with the points stored at the
leaves). We then traverse T in a bottom-up fashion, computing the data to be stored at
each node v of T from the data already stored at the children of v, exactly as above. Since
T has O(n) nodes, its construction takes O(n log n) time.

We maintain a symmetric tree structure for the set K−(P ), in which searches and
updates are performed in a symmetric fashion. After each update, we can determine, in
a final step, whether K+(P ) and K−(P ) intersect, by conducting a binary search through
the ‘breakpoints’ of ∂K+(P ) and ∂K−(P ). This search also takes O(log2 n) time, as is easy
to check.

Solving the 2DC Problem: The Case Where the Centers Are

Well-Separated

Suppose first that |c1c2| > r. Let δ > 0 be some sufficiently small constant angle, say
1 degree. We rotate the coordinate axes by jδ, for j = 0, 1, . . . , ⌊2π/δ⌋. In one of these
orientations, c1 and c2 will be ‘almost co-horizontal’ (meaning that the orientation of c1c2

has absolute value < δ), with c1 lying to the left of c2. In this case we have x(c2)− x(c1) >
r cos δ > 0.99r.

Assume further that |c1c2| > 3r, say. Then there exists a vertical line separating D1

and D2. To detect whether this case arises, we sort the points of S by their x-coordinates,
and scan them from left to right. Let SL denote the set of points to the left of the currently
scanned point q, including q, and let SR denote the complementary set. We maintain
the sets SL and SR dynamically, repeatedly moving each scanned point from SR to SL,
and checking, after each update, whether K(SL) and K(SR) are nonempty. If both are
nonempty, we have found two disks of radius r whose union covers S. If the currently
assumed configuration does exist and we are at the correct orientation, then, in exactly one
of these steps, both intersections must be nonempty, so the above procedure will detect the
existence of a 2DC of this kind. Using the dynamic procedure described above, the cost of
handling this case is O(n log2 n).

Remark: This step can also be implemented using a simpler approach, which performs a
binary search over the sorted sequence of points of S, to locate the line separating SL from
SR. Each binary search step computes the smallest enclosing circles of the current SL and
SR (in linear time, using the algorithm of [15]). If the radii of both circles are ≤ r, then we
have found a solution to the 2DC problem. If both are > r, this subcase cannot arise. If
the radius of the circle enclosing SL (resp. of SR), is > r and the other is ≤ r, the binary
search has to continue to the left (resp. to the right). This procedure takes only O(n log n)
time, but this will be subsumed in the cost of the subsequent steps of the algorithm.

Next assume that r < |c1c2| ≤ 3r. Let v1 and v2 denote the points of intersection of C1

and C2, with v1 lying to the left of v2. See Figure 2. If D1 and D2 are disjoint, we define v1

to be the leftmost point of D2 and define v2 to be the rightmost point of D1; if v1 lies to the
right of v2, we can proceed as in the previous case, because D1 and D2 are then separated
by a vertical line; so we still assume that v1 lies to the left of v2. Since we assume that the
orientation of c1c2 is at most δ in absolute value and that x(c2)− x(c1) > 0.99r, it is easily
seen that x(v1) − x(c1) > 0.4r. Note that the left semicircle of C1 must pass through at
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c1

v1

v2

Figure 2: The case r < |c1c2| ≤ 3r

least one point q of S (or else we could have brought D1 and D2 closer together, by moving
D1 to the right). Let λ be any vertical line separating c1 from v1, and let SL denote the
subset of points of S lying to the left of λ. Then SL contains q and is fully contained in
D1. Note that the difference between the largest and smallest x-coordinates of points of S
is at most 5r, so we can draw a constant number of vertical lines λ, say with horizontal
separation 0.3r between adjacent lines, so that at least one of them will separate c1 and
v1. Assume that λ is the correct line. We then have the set SL available, and we compute
the region K(SL) =

⋂

p∈SL
Br(p), in O(n log n) time. The above arguments imply that c1

must lie on the (right) boundary of K(SL). For each p ∈ SR = S \ SL, we intersect ∂Br(p)
with ∂K(SL). As is well known (see, e.g., [7]), each such intersection consists of at most 2
points. We obtain all these points, and sort them, including the vertices of K(SL), into a
list Γ. This can easily be done in O(n log n) time.

We now iterate over each point v in Γ, place the center c1 of D1 at v, or on the subarc
of ∂K(SL) between v and the next point in Γ, and update the set S′(c1) of points of S
not covered by D1. We note that when c1 moves from a point in Γ to an adjacent subarc,
or from a subarc to an adjacent point, either a single point is added to S′(c1), or a single
point is removed from that set, or the set remains unchanged. At each point c1 that we
visit, we test whether S′(c1) can be covered by a disk of radius r, and stop as soon as this
happens, for we have obtained an affirmative solution to the 2DC problem (with radius r).
Otherwise, we continue until Γ is exhausted, and conclude that λ cannot be the desired
line. If this procedure fails for all of the O(1) lines λ, and for all the O(1/δ) orientations, we
conclude that there is no solution to the 2DC problem (with radius r) with the currently
assumed configuration. Using the dynamic procedure described earlier, the cost of handling
this case is O(n log2 n).
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Solving the 2DC Problem: The Case Where the Centers Are

Close to Each Other

Finally, assume that |c1c2| < r. In this case the area of D1∩D2 is at least r2
√

3/2 ≈ 0.866r2,
whereas the entire S can be covered by, say, an axis-parallel square R of size 3r, which we
can easily compute in O(n) time. It follows that we can construct O(1) points within R,
so that at least one of them will lie in D1 ∩ D2 (and fairly close to both c1 and c2). Let z
be such a point. We sort the points of S in angular order about z, and partition the sorted
list into two sublists, Q+, Q−, by the horizontal line passing through z. Assume that Q+ is
sorted in clockwise direction about z and that Q− is sorted in counterclockwise direction.
See Figure 3 for an illustration.

z

Q+

Q−

ρ+

ρ−

Figure 3: The case where |c1c2| < r

Lemma 1 There exist prefixes S+
L of Q+ and S−

L of Q−, such that S+
L ∪ S−

L ⊆ D1 and

S \ (S+
L ∪ S−

L ) ⊆ D2.

Proof: Note that A = D1 ∪ D2 is star-shaped with respect to z. Let ρ+, ρ− denote the
rays emanating from z and passing through the two points of intersection of C1 and C2,
where ρ+ passes through the top intersection point. Let S+

L be the prefix of Q+ consisting
of points that lie counterclockwise to ρ+ (with respect to z), and let S−

L be the prefix of Q−

consisting of points that lie clockwise to ρ−. It is easily seen that S+
L and S−

L satisfy the
desired properties. See Figure 3; it is interesting to note that we only need here the fact
that the point z lies in D1 ∩ D2. 2

We now apply a technique that resembles standard searching in monotone matrices. Let
M be the matrix whose rows correspond to points in Q+ (in clockwise angular order), and
whose columns correspond to points in Q− (in counterclockwise order). For a ∈ Q+, b ∈ Q−,
we define Mab as follows. Let ρ+ be a ray emanating from z and passing between a and
the next point of Q+, and let ρ− be a ray emanating from z and passing between b and the
next point of Q−. Let S+

L be the prefix of Q+ consisting of points that lie counterclockwise
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to ρ+, and let S−
L be the prefix of Q− consisting of points that lie clockwise to ρ−. Let

SL = S+
L ∪ S−

L and let SR = S \ SL. Then

Mab =



















‘YY’ if both SL and SR can be covered by disks of radius r
‘YN’ if SL can be covered by a disk of radius r but SR cannot
‘NY’ if SR can be covered by a disk of radius r but SL cannot
‘NN’ if neither SL nor SR can be covered by a disk of radius r.

(Note that the number of rows plus the number of columns of M is n.) Our goal is thus
to determine whether M has an entry ‘YY’. We denote by M (L) (resp. M (R)) the matrix
containing the left (resp. right) characters of the entries of M . The matrices M (L), M (R)

have the following monotonicity properties, whose proof is obvious:

(a) If M
(L)
ab = ‘N’ then M

(L)
a′b′ = ‘N’ for any a′ ≥ a, b′ ≥ b.

(b) If M
(R)
ab = ‘N’ then M

(R)
a′b′ = ‘N’ for any a′ ≤ a, b′ ≤ b.

Moreover, if Γ is any sequence of entries of M , so that each element of Γ is adjacent to
the preceding one in some row or column of M , then the values of all entries in Γ can be
computed in time O(n log n + |Γ| log2 n). This is immediate from the dynamic scheme for
maintaining intersections of disks, and from the observation that each of the sets SL, SR is
updated by the insertion or deletion of a single point as we move from one entry in Γ to an
adjacent entry.

We first compute all entries in the middle column of M . As just noted, this can be
done in O(n log2 n) time. If an entry ‘YY’ has been detected then we are done. Suppose
we have found an entry Mab =‘NN’. Then properties (a) and (b) imply that the top-left
submatrix {Ma′b′}a′≤a

b′≤b

and the bottom-right submatrix {Ma′b′}a′≥a

b′≥b

of M can be discarded

from further analysis, because they cannot contain a ‘YY’ entry. We thus recurse with the
remaining bottom-left and the top-right submatrices of M . If no ‘NN’ entry is detected,
then either all entries in the middle column are ‘YN’, or all are ‘NY’, or there is a single
transition from a ‘YN’ entry to a following ‘NY’ entry. In the first case we can discard the
left submatrix of M , and in the second case we can discard the right submatrix of M . In the
third case we can discard, as above, the top-left and the bottom-right submatrices of M .
(The difference from the previous case is that, if Mab =‘YN’ and Ma+1,b =‘NY’, then now
we discard {Ma′b′}a′≤a

b′≤b

and {Ma′b′}a′≥a+1

b′≥b

.) In each case we thus recurse on subproblems

whose total size is half the size of the original matrix, so the procedure will terminate after
logarithmically many steps. The terminal stage is when the current submatrix has only a
single column. We then scan this column, as above; if a ‘YY’ entry has been found, we
have an affirmative solution to the 2DC problem. Otherwise, if no ‘YY’ entry is found
in any subproblem, for all possible orientations, we conclude that the currently assumed
configuration cannot arise, which implies a negative solution to the 2DC problem, because
by now we have exhausted all possible cases.

Concerning the efficiency of this procedure, we note that the total width and height
of all submatrices in any fixed recursive level is at most n, as is easily checked. In fact,
these submatrices have pairwise-disjoint row ranges and pairwise-disjoint column ranges,
and they lie within M in a bottom-left to top-right order; see Figure 4. It follows that we
can trace the middle columns of all submatrices in a fixed recursive level efficiently. For
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this, we construct a monotone sequence Γ of entries of M , consisting of the concatenation
of the middle columns of the submatrices, interspersed with ‘horizontal moves’ (along rows
of M) that connect between these columns; see Figure 4. The total length of Γ is at most
n, so we can trace all its entries in a total of O(n log2 n) time. Hence the total cost of the
above procedure is O(n log3 n).

Figure 4: The submatrices of M arising in a fixed recursive level of the algorithm, and the
sequence Γ that connects their middle columns

We thus conclude:

Theorem 2 The 2DC problem, for a set of n points in the plane and for any fixed radius

r, can be solved in O(n log3 n) time.

Solving the 2-Center Problem

As already mentioned, we next apply the parametric searching paradigm of Megiddo [14].
To do so, we need to design an efficient parallel algorithm (in Valiant’s comparisons model)
for the 2DC problem, with the intention of simulating its execution at the unknown optimal
radius of the 2-center solution. (We assume familiarity of the reader with the parametric
searching paradigm. More details can be found, e.g., in [1].)

Most of the steps of the preceding 2DC algorithm are fairly routine to parallelize. The
main difficulty is in parallelizing the dynamic maintenance of the intersection of disks, used
in the various steps of the algorithm. This maintenance appears to be inherently sequential,
but the data structures that we have used enable us to parallelize it efficiently. In doing so,
we exploit the fact that the sequence of updates, in each application of this dynamic scheme
in the algorithm, is known in advance. The parallel implementation proceeds as follows.

We first solve the following subproblem. Suppose we have the above tree structures
for some subset P of S, and we have two other subsets, A+, A−, where we assume that
A+ ∩ A− = ∅. We want to compute, in a single step, the tree structures for the set
P ∪A+ \A−, where we can use |A+|+ |A−| processors for this task. We explain how to do
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it for the tree T that represents K+(P ); the handling of the other tree is fully symmetric.
We search for all leaves of T storing the points of A+ ∪ A−. We next process the nodes
encountered along all the search paths, level by level, in a bottom-up fashion. At each node
u we recompute the data stored at u as described for the sequential procedure. The total
number of nodes at which we have to recompute the data is (|A+| + |A−|) log n, and each
recomputation takes O(log n), so we can perform this task with |A+| + |A−| processors, in
O(log2 n) parallel steps.

We now apply the following procedure, which resembles the standard parallel prefix-sum
algorithm. Let Γ be the sequence of updates to be performed on some initial set P . We
construct a minimum-height binary tree Y whose leaves store the elements of Γ in order,
and compute, for each node v of Y , the sets A+

v , A−
v , so that A+

v and A−
v are disjoint, and,

after all the updates of P stored at the leaves of the subtree of Y rooted at v, we have
Pnew = Pold ∪ A+

v \ A−
v , where Pold is the value of P before this sequence of updates, and

Pnew is its value after these updates. These sets are easy to construct in parallel, traversing
Y in a bottom-up fashion, and computing the sets at a node v from the sets at its children.
This can be done with O(|Γ|) processors in O(log2 n) parallel steps.

Once the sets A+
v and A−

v are computed for all nodes v of Y , we perform a top-down
traversal of Y . When we visit a node v in this traversal, we already have available the value

P
(v)
old of P before starting the sequence of updates stored at the subtree rooted at v. Let

wl, wr be the left and the right child of v, respectively. We then have P
(wl)
old = P

(v)
old , and

P
(wr)
old = P

(v)
old ∪ A+

wl
\ A−

wl
. As noted above, obtaining K(P

(wr)
old ) from K(P

(v)
old ) can be done

in parallel with |A+
wl
| + |A−

wl
| processors in O(log2 n) time.

There is however a new technical problem: Since we do not want to maintain multiple
copies of the tree structures that store the various intersections K(P ), and since several
updates are performed on these trees simultaneously at each parallel step of the algorithm,
we need to organize these tree structures so that all these updates can be performed without
interfering with each other. This is done using the following time-stamping scheme. Each
node w of any of the two trees T used above stores a sequence σw of data items (each
consisting of an appropriate x-range and an intersection point), sorted by the preorder of
the nodes of Y that have modified w. When a new update step accesses w, it performs a
binary search through σw, with the preorder index of the current node of Y , to find the
item of σw that is relevant to the currently performed update. If w needs to be updated,
the new value is inserted into σw at the appropriate place.

At the end of this top-down traversal, we have computed the value of K(P ) after each
update operation in Γ. By the above analysis, this can be done with O(|Γ|) processors in
O(log4 n) parallel steps (where one additional logarithmic factor is due to the cost of the
time-stamping scheme, and one due to the height of Y ).

There are several other steps of the algorithm that also require parallelization, such as
sorting the points of S in various orders, constructing the sets K(SL) and their intersections
with a collection of disks, and the initial construction of the tree structures of the dynamic
scheme. All these steps are relatively easy to parallelize, and the cost of their parallel
versions is dominated by the cost of the parallel procedure just decribed. We leave it to the
reader to check the easy details.

We now plug all this into the parametric searching machinery. We note that the parallel
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implementation of the 2DC algorithm consists of O(log5 n) parallel steps (the last step of
the algorithm invokes the above dynamic scheme O(log n) times), and that each parallel
step makes O(log n) calls to the sequential 2DC algorithm. Hence we obtain:

Theorem 3 The 2-center of a set of n points in the plane can be computed in O(n log9 n)
time.

Remark: We have not made a serious attempt to improve the performance of the above
parametric searching procedure, because our main interest was in obtaining a near-linear
solution of the 2-center problem. For example, it might be possible to adapt the more
efficient technique for off-line dynamic maintenance of convex hulls, as described in [8].
One might also be able to apply Cole’s improved parametric searching technique [3], or to
bypass parametric searching altogether by using either randomization (such as in [13]), or
other geometric techiques (such as in [2, 11]). We leave this as an open problem for further
research. Some initial ideas towards this goal were suggested to us by Pankaj Agarwal and
Matthew Katz, and we are grateful to them for sharing these ideas with us.
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