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1 Introduction

A range space (X,R) is defined by a ground set X and a family R of subsets of X, which are called
ranges (for example, X = R2 and R is the set of all disks in the plane). A coloring of a set P ⊆ X
is conflict-free (CF for short) for R if for any range R ∈ R with P ∩ R 6= ∅, there is at least one
point in P ∩R that has a unique color among the points of P ∩R. Namely, for any range R ∈ R,
there is a color that appears exactly once in the set P ∩R.
The problem of CF coloring is motivated by frequency assignment in wireless networks. Specif-

ically, in the context studied in this paper, the points of P are base stations (or antennas) with a
fixed transmission radius r, and the ranges are disks of radius r, centered at the clients. The colors
are frequencies assigned to the antennas, and the conflict-free property means that any client can
always find a frequency that is assigned to a unique antenna, among those that it can reach. In
this case the communication with that antenna is free from interference with other antennas that
are assigned the same frequency. The goal is then to minimize the number of distinct frequencies
assigned to the antennas, while maintaining the conflict-free property.
The problem was introduced by Even et al. [5]. They showed that one can find an assignment

of O(logn) frequencies to the base stations which is conflict-free for disks in the plane, and this
is tight in the worst case. Har-Peled and Smorodinsky [6] extended those results by considering
other range spaces. They gave sufficient conditions for the CF chromatic number to be small for
more general ranges. The dual version of the CF coloring problem was studied in [5, 6], where
one colors the ranges so that, for any point, the set of ranges that contain the point is conflict-
free. Recently, Smorodinsky [9] improved several results studied in [5] by providing a deterministic
coloring algorithms for those problems. For more interesting variations on the online CF coloring
problem see [2].
The problem has been extended to a dynamic scenario, in which the points of P (the base

stations) are inserted one by one, starting with an empty set [4]. When a point is inserted, a
color is assigned to it and the color cannot be changed later. The coloring should remain conflict-
free at all times. Chen et al. [4] considered the case where P is a set of n points on the line,
and R is the set of all intervals on the line. They present both deterministic and randomized
algorithms for the problem. The best deterministic algorithm uses O(log2 n) colors, and the best
randomized algorithm uses O(log n) colors with high probability. The best known lower bound
for both randomized and deterministic algorithms, which also holds in the static case, is Ω(log n)
colors [7, 8].
The paper [4] contains one negative result concerning online CF coloring of points in the plane

for arbitrary disks as ranges. It shows that in the worst case n colors are needed (by any coloring
algorithm). That is, there are situations where each newly inserted point requires a new color.
(Recall, in contrast, that O(logn) colors suffice for the static case.)

Our results. The starting point of our work has been the lower bound in [4] for CF coloring
of points in the plane with respect to arbitrary disks as ranges. This lower bound is particularly
discouraging since the wireless application does involve circular ranges in the plane.
Our goal has therefore been to restrict the problem so that the lower bound does not apply.

One possible such restriction is to fix the radius of the disks. The lower bound proof for general
disks uses disks of varying sizes (actually, they are small perturbations of a unit disk) and does
not apply for unit disks. On the other hand, the case of unit disks is still a natural model for the
frequency assignment application, as explained above.
The one-dimensional analog of this restriction is online CF coloring of points on the line for unit

intervals. As was observed in [4], this problem is much easier than online CF coloring for arbitrary

1



intervals, and can be solved by a simple algorithm that uses only O(logn) colors.
Our main result, presented in Section 4, is a randomized algorithm for online CF coloring of

points in the plane for unit disks, that uses O(logn) colors with high probability. The algorithm is
a generalization of the randomized algorithm of Chen et al. [4] for CF coloring points on the line
for intervals. As in the algorithm of Chen et al., we also use the positive integers as the colors, and
guarantee that the largest integer in each range is unique. The analysis of our algorithm, however,
is more delicate than the one of Chen et al., and does make use of the geometry of the problem.
It is based on an observation that allows us, in certain cases, to charge a high color assigned to a
point, to the disappearance of previously inserted points from the boundary of the convex hull of an
appropriate subset of the high-colored points inserted so far. These charges imply that the expected
number of points that require color at least j decreases exponentially in j, thereby implying the
logarithmic bound on the number of colors.
We start in Section 2 by reviewing the randomized algorithm of Chen et al. [4] for CF coloring

points on the line for intervals. Then we continue in Section 3 with a related problem of online CF
coloring of points in the plane for halfplanes. This is a simple generalization of the one-dimensional
CF coloring problem. Indeed, if we restrict the two-dimensional problem to sets P of points on
the upper unit semi-circle, and map the inserted points by projecting them on the x-axis, then the
subsets of P that can be cut off the unit circle by halfplanes, when projected on the x-axis, are
the same as the subsets of the projected set that can be cut off by intervals, or by complements of
intervals.
Micha says: Do the 1-D algorithms also work when complements of intervals are allowed? If yes, ←−

add: “(It is easily checked that the algorithms of [4] continue to apply when complements of intervals
are also valid ranges.)”
Ke says: When complements of intervals are allowed, the 1-D algorithms don’t work. Say, if we ←−

insert points A, B, C onto the line in that order, then by the deterministic algorithm, A, B, C will get
colors (1,1), (2,1), (1,1), respectively. Suppose B is the interval, the complement of this interval is not
conflict free
The case of halfplanes is simpler than that of unit circles. However, it already demonstrates

how geometry enters the analysis in a nontrivial manner. We present a randomized algorithm for
this problem that uses O(log n) colors with high probability. We then extend this technique to the
case of unit disks, using similar machinery.
In Section 5 we extend the approach to the problem of online CF coloring of points in the

plane for nearly equal axis-parallel rectangles, namely, rectangles for which the ratio between the
largest and the smallest widths, and the ratio between the largest and the smallest heights, are
both bounded by some constant. Here too we obtain a coloring that uses, with high probability,
O(logn) colors.
Notice that the offline version of all the problems we consider in this paper is quite easy. Offline

CF coloring of n points for any of the three kinds of ranges mentioned above can be done with
O(logn) colors, using, for example, the approach of [6]. We recall that the known lower bound to
the above problems, which also holds in the static cases, is Ω(log n) colors [5, 7].
Finally in Section 6 we present a deterministic online algorithm for CF coloring with respect to

nearly-equal axis-parallel rectangles in the plane. The algorithm uses O(log3 n) colors. This is the
first efficient deterministic online CF coloring algorithm for this problem.

Computational model. When analyzing randomized online algorithms, there is a distinction
between the oblivious adversary model and the adaptive adversary model. The oblivious adversary
must construct the entire input sequence in advance, while the adaptive adversary may choose
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each input point based on the actions of the online algorithm made so far. We refer the interested
reader to [3] for a discussion of these models. The analysis of all our algorithms is in the (weaker)
oblivious adversary model. Ke says: I made changes here, see if it is OK. There are no known ←−
online algorithms for CF coloring against an adaptive adversary using only O(logn) colors. (The
O(logn) algorithm of Chen et al. [4] for the 1-dimensional case also works only against an oblivious
adversary.) In fact, it is an open question of whether one can bound the number of colors used
by any of our algorithms when the adversary is adaptive. (This is also open for the randomized
algorithm in [4].)
Micha says: Add somewhere a sentence discussing the competing shakhar et al’s recent results. ←−

2 CF Coloring for Intervals: A Brief Overview

To motivate our 2-dimensional algorithms we first review the randomized algorithm of [4] for CF
coloring of points on the line for interval ranges. As already mentioned, we identify the colors
with the integers, so that there is a total order on the set of colors. The coloring produced by the
algorithm is such that the maximum color in any (nonempty) interval is unique.
Let p be the next point inserted. We say that p sees a point x (alternatively, p sees the color

c(x)) if all the colors of points between p and x (exclusive) have color smaller than c(x). We say
that p is eligible for color m if p does not see m. To give p a color, we scan all colors in increasing
order. For each color i, if p is not eligible for color i we continue to color i + 1. Otherwise, if p is
eligible for color i, we set c(p) = i with probability 1/2, and continue to color i+1 with probability
1/2.
It is easy to prove, by induction on the insertion order, that the maximum color in any interval

is unique at any stage. To show that this algorithm uses O(logn) colors with high probability, one
argues that if the algorithm reaches color i when processing a point p, then p gets the color i with
probability at least 1/8. More formally, let Ci (resp., C≥i) be the (random variable) set of points
of color i (resp., of color ≥ i). Then

Pr

{

p ∈ Ci | p ∈ C≥i
}

≥ 1
8
.

To see this, assume that p is neither the leftmost nor the rightmost point in C≥i at the time of its
insertion, and let q, r be its left and right neighbors in that set. In order for p to get color i, it is
necessary that both q and r “advance” to higher colors, and that p “stays” at color i. The first two
events happen together with probability at least 1/4, and the conditional probability of the third
event, conditioned on the first two occurring (and on p reaching C≥i), is 1/2, since p does not see
color i.1 Hence, the probability of p to be in Ci, assuming it is in C≥i, is at least 1/8, as claimed
(the argument is simpler, and the probability is larger, when p is the leftmost or rightmost point
in C≥i).
This implies that

E (|C≥i+1|) ≤
7

8
E (|C≥i|) .

Since |C≥1| = n, we have, for i ≥ 1,

E (|C≥i+1|) ≤
(

7

8

)i

n .

1Note that this analysis strongly uses the fact that the adversary is oblivious.
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For i = c log8/7 n, we get that E (|C≥i+1|) ≤ 1/nc−1. Hence, by Markov’s inequality,

Pr

{

|C≥i+1| ≥ 1
}

≤ 1/nc−1 ,

which shows that, with high probability, the algorithm uses only i = O(log n) colors.

3 CF Coloring for Halfplanes

In this section we present an algorithm for CF coloring points in the plane for halfplane ranges. The
algorithm is similar to the one-dimensional algorithm of Section 2 but with a different definition of
when a point p sees a color m. To simplify the presentation, we assume that the points of P are in
general position, namely that no three of them are collinear.
Let p be the next point to be inserted. We say that p sees a point x (alternatively, p sees the

color c(x)) if there is a halfplane h that contains x and p and no point of color higher than c(x).
As we will shortly argue, the coloring algorithm guarantees that in this case x is the only point of
color c(x) in h. We say that p is eligible for color m if p does not see m. To give p a color, we scan
all colors in increasing order. For each color i, if p is not eligible for color i we continue to color
i + 1. Otherwise, if p is eligible for color i, we set c(p) = i with probability 1/2, and continue to
color i+ 1 with probability 1/2.
It is easy to prove by induction that the maximum color in any halfplane is unique at any stage.

Indeed, consider a halfplane h at some stage which contains at least two points of maximum color
i (among those of the current points in h). Let p be the last inserted point that lies in h and got
color i. By definition, when p was inserted it saw color i (with h as a “witness’ halfplane), and
therefore was not eligible for this color, contradicting the assumption that it has color i. This also
shows that if a newly inserted point p sees color i, then any halfplane that contains p, some points
of color i, and no point of a larger color, must contain exactly one point of color i.
We next show that the algorithm uses O(logn) colors with high probability. Let Ci (resp., C≥i)

be the set of points of color i (resp., of color ≥ i). Let B≥i ⊆ C≥i be the the set of those points
p ∈ C≥i that see at least four other points of C≥i when they are inserted. Let E≥i = C≥i \ B≥i.
All these sets are random variables, depending on the random choices made by the algorithm.

Lemma 3.1. Any point p ∈ B≥i must lie outside the convex hull of the points in C≥i that were
inserted before it.

Proof. Let A be the set of points of C≥i inserted before p, and let CH(A) denote the convex hull of
A. Assume to the contrary that p ∈ B≥i and p ∈ CH(A). A point in CH(A) can only see vertices
of CH(A) so if CH(A) has at most 3 vertices then p 6∈ B≥i, a contradiction.
So assume that |CH(A)| > 3. Let q1, . . . , qh be the vertices of CH(A) in clockwise order.

Assume that p sees q2, say. Then pmust be inside triangle△q1q2q3, because otherwise any halfplane
that contains q2 and p must contain q1 or q3 (or both), contradicting the assumption that p sees q2
(we use here the property that the maximum color in any witness halfplane is unique).
Since p is within △q1q2q3, any halfplane that contains p must contain at least one point of q1,

q2 and q3. This implies that p cannot see any point other than q1, q2 and q3, contradicting the
assumption that p ∈ B≥i. See Figure 1.

Let f = |C≥i| and let p1, . . . , pf be the points in C≥i in the order in which they were inserted.
For 1 ≤ j ≤ f let Aj = CH({p1, . . . , pj}) (the convex hull of {p1, . . . , pj}). By Lemma 3.1 and its
proof, if pj ∈ B≥i then Aj 6= Aj−1. The point pj is a vertex of Aj and all the at least four points
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Figure 1: A point p ∈ C≥i and the convex hull of the points in C≥i inserted before p. (a) If p is
inside the hull then it can see at most 3 points of C≥i. (b) p is outside the hull and it sees q1, q2,
q3, and q4. Thus p is in B≥i.

that p sees when it is inserted are consecutive vertices of Aj−1. All these vertices except the first
and the last are not vertices of Aj , and, since the hulls keep growing, nor are they vertices of any
Aℓ, for ℓ > j. Thus each point pj ∈ B≥i removes at least two vertices from CH(Aj−1), and no
point of P is removed more than once. See Figure 1. This implies that |B≥i| ≤ 1

2 |C≥i| and thus
|E≥i| ≥ 1

2 |C≥i|.
Lemma 3.2.

Pr

{

p ∈ Ci | p ∈ E≥i
}

≥ 1
16
.

Proof. Fix the set C≥i and consider only the coin flips that assign colors to the points of C≥i,
after the points did reach C≥i (note that, once C≥i is fixed, the subsets B≥i and E≥i are also
determined). Assume that p ∈ E≥i. By definition, the probability that p gets color i is 1/2 the
probability that p is eligible for color i.
Point p is eligible for color i if all the points of C≥i that it sees when it is inserted did not get

color i. Since p sees at most three points of C≥i, the probability that none of them got color i is at
least 1/8.

We thus obtain the following theorem.

Theorem 3.3. The CF coloring algorithm of points for halfplanes presented in this section uses
O(logn) colors with high probability.

Proof. Using the same notation as above, since |Ei| ≥ |Ci|/2, and since by Lemma 3.2 a point in
Ei gets color i with probability ≥ 1/16, we obtain that

E (|C≥i+1|) ≤
(

1− 1
32

)

E (|C≥i|) .

Since |C≥1| = n, we have, for i ≥ 1,

E (|C≥i+1|) ≤
(

31

32

)i

n .

For i = c log32/31 n, we get that E (|C≥i+1|) ≤ 1/nc−1. Hence, by Markov’s inequality,

Pr

{

|C≥i+1| ≥ 1
}

≤ 1/nc−1 ,

from which the theorem follows.
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Figure 2: The partition of Q0 into four sub-squares and the corresponding stabbing points o
d. The

cone K1 with apex o1 spanned by Q is also shown.

4 CF Coloring for Congruent Disks

We next extend the analysis of the preceding section to the case where the ranges are congruent
disks of common radius 1, say. We tile the plane with axis-parallel squares of side 1/2, and assign
to each of them a color class, so that no unit disk intersects two distinct squares with the same
color class, and so that the total number of classes is a constant. Within each square we color the
points independently, using the colors of the class assigned to the square.
Let Q be a square in the tiling. The coloring procedure for points in Q is identical to the one

given for halfplanes, except that we say that p sees a point x (alternatively, p sees the color c(x))
if there is a unit disk D that contains x and p and no point of color higher than c(x). As before, in
this case, x is the only point of D ∩Q of color c(x). We say that p is eligible for color m if p does
not see m, and apply the algorithm of Section 3 to the points in Q.
Correctness follows by induction, as in the preceding section, showing that for any unit disk D

that contains points from a square Q, the maximum color of the points of Q ∩D is unique.
We next bound the number of colors used by the algorithm. For any unit disk D that intersects

Q, the center of D lies in an axis-parallel square Q0 that is concentric with Q and has side length
5/2. Partition Q0 into four disjoint equal sub-squares, Q

1
0, . . . , Q

4
0, each an axis-parallel square of

side length 5/4, and all having the center of Q as a common vertex. See Figure 2. Let o1, . . . , o4 be
the centers of Q10, . . . , Q

4
0, respectively. It is easy to check that a unit disk centered at o

d contains
Qd0, for d = 1, . . . , 4. This implies that each unit disk which intersects Q, contains at least one of
the points o1, . . . , o4. We arbitrarily associate each such unit disk with one of the points among
o1, . . . , o4 that it contains. We denote by Dd the set of unit disks associated with od. The following
is a crucial property of this partitioning.

Lemma 4.1. Let Kd denote the convex cone with apex od spanned by Q, for d = 1, . . . , 4. Then,
for any pair of disks D,D′ ∈ Dd, the intersection ∂D ∩ ∂D′ ∩Kd consists of at most one point.
Proof. Note that the opening angle of each of the cones Kd is smaller than π/2. Assume to the
contrary that ∂D ∩ ∂D′ ∩Kd contains two points, say x and y. Then D ∩ D′ ∩Kd contains the
triangle xody, which is easily seen to imply that the angle ∠xody is greater than π/2; see Figure 3.
This however is impossible, since this angle is smaller than the opening angle of Kd.

Let Ci (resp., C≥i) be the random variable which is equal to the set of points of color i (resp.,
of color ≥ i). Let B≥i ⊆ C≥i be the random variable that consists of any point p ∈ C≥i that sees
more than 36 other points of C≥i when it is inserted. Let E≥i = C≥i \B≥i.
In section 3 we controlled the sizes of the analogous sets B≥i, E≥i by arguing that when a point

of B≥i is inserted, it removes at least two points from being vertices of the convex hull of C≥i from
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Figure 3: If od ∈ D ∩D′, the angle ∠xody has to be obtuse.

this point on. To extend the argument to the case of unit disks, we replace the notion of convex
hull vertices by d-maximal vertices, defined as follows.
Let I be a set of points in Q. For d = 1, 2, . . . , 4, we define a point p ∈ I to be d-maximal if

there is a disk in Dd that contains p and no other point of I. Let Md(I) denote the subset of the
d-maximal points in I.

Lemma 4.2. Let f = |C≥i| and let p1, . . . pf be the points in C≥i in the order in which they are
inserted. Let Adj = M

d({p1, . . . , pj}) for d = 1, 2, 3, 4. If pj ∈ B≥i then for some d = 1, 2, 3, 4,
|Adj−1 \Adj | ≥ 8. Moreover, the points of Adj−1 \Adj will never again become d-maximal.

Proof. Since pj ∈ B≥i, pj sees at least 37 points pℓ, ℓ < j. That is, for each such point pℓ, there
exists a unit disk Dℓ containing only pj and pℓ, among all points p1, . . . , pj . For d = 1, 2, 3, 4, let H

d

denote the subset of points pℓ for which the disk Dℓ is in Dd. Clearly, for at least one d ∈ {1, 2, 3, 4},
|Hd| ≥ 10. Without loss of generality, assume that |H1| ≥ 10. It also follows by definition that the
points in H1 are 1-maximal in {p1, . . . , pj−1}.
Let m := |H1| and let us also denote the points in H1 by q1, . . . , qm. Let Di ∈ D1 be the unit

disk that contains pj and qi, and let γi denote the circle bounding Di, for i = 1, . . . ,m.
Consider the situation in polar coordinates about the center o = od. Let θ1 < θ2 be the

orientations of the two rays bounding the cone Kd defined in Lemma 4.1. We regard each γi as
the graph of a function ρ = γi(θ), for θ1 ≤ θ ≤ θ2. By Lemma 4.1, these graphs form a collection
of θ-monotone pseudolines. By construction, pj lies below (in the ρ-direction) all the graphs γi.
Furthermore we can choose the disks Di so that each point qi lies on γi and above all the other
graphs γj . That is, pj lies below the lower envelope of the γi’s, and the points qi lie on the upper
envelope of these arcs.
Without loss of generality, assume that the clockwise order (about od) of the points qi along

the envelope is q1, . . . , qm. Let r be the index for which the θ-coordinate of p lies between those of
qr and qr+1. We claim that all the points of H

1, except possibly for q1 and qm, are not in A
1
j .

Suppose, contrary to what the claim asserts, that there exists a unit disk D ∈ D1 that contains
q = qℓ for some 1 < ℓ < m but does not contain any other point of {p1, . . . , pj}. Assume also that
ℓ ≤ r, and let γ be the boundary of D.
The arc γ then passes below q1, above q, and below pj . On the other hand, the arc γ1 passes

above q1, below q, and above pj . Since q1, q, pj appear in this clockwise order about o
d, γ and γ1

must intersect twice in K1, contradicting the pseudoline property of these arcs. See Figure 4. The
case where j ≥ r + 1 is treated similarly, with qm playing the role of q1.
The second assertion is obvious.

Each point in C≥i can leave A
d
j at most once, for each d = 1, 2, 3, 4. Therefore Lemma 4.2

implies that |B≥i| ≤ 4|C≥i|/8 = |C≥i|/2. From here on, the proof continues exactly as in Section
3, leading to the following theorem.
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Figure 4: Illustrating the proof of Lemma 4.2. After inserting pj every maximal point that it sees,
except for the first and last in the θ-order, stops being maximal.

Theorem 4.3. The CF coloring algorithm of points for congruent disks presented in this section
uses O(logn) colors with high probability.

5 CF Coloring for Nearly Equal Axis-parallel Rectangles

A (possibly infinite) family F of axis-parallel rectangles is a family of nearly-equal axis-parallel
rectangles, if there exists some positive constant α, such that the ratio between the largest width
and the smallest width of the rectangles of F , and the ratio between the largest height and smallest
height of the rectangles of F , are both at most α.
Consider a family F of nearly-equal axis-parallel rectangles. By scaling the coordinate axes, we

may assume that the width and the height of any rectangle in F lie in [1, α]. We tile the plane
with an axis-parallel square grid whose cells have side length 1/2. This ensures that both the width
and the height of any rectangle in F are larger than the side length of a square tile of the grid.
We assign to each grid tile a color class, so that no rectangle in F intersects two distinct grid
tiles with the same color class. As in the case of unit disks, it is easy to verify that a constant
number (indeed, O(α2)) of color classes suffices. We assign colors to points within each grid tile
independently, using the colors of the class assigned to the tile. Let Q be an arbitrary square tile.
By the discussion above, we can assume (without loss of generality) that all the points are inserted
into the interior of Q.
The algorithm for online CF coloring of the points within Q is the same as the algorithm of

Section 4. Here we say that p sees a point x (alternatively, p sees the color c(x)) if there is a
rectangle in F that contains x and p and no point of color higher than c(x).
The analysis is analogous to the analysis of Section 4. Here the corners of Q, denoted by o1,

o2, o3, and o4, play the same role in the analysis as o1, o2, o3, and o4 in the previous section. That
is, each rectangle in F that intersects Q contains at least one corner of Q, as is easily checked, and
we arbitrarily associate it with one of the corners that it contains. Let F i be the set of rectangles
associated with oi, for i = 1, . . . , 4. The rest of the proof is similar to the one in Section 4, and
is based on the easy observation that the boundaries of the rectangles in each fixed subfamily F i
behave as pseudolines within Q. Hence we have the following result.

Theorem 5.1. The coloring algorithm always produces a conflict-free coloring, and the number of
colors that it uses is O(logn), with high probability.

Remark: If the rectangles in F are not nearly equal then, even in the static case, the number
of colors required by the best known CF coloring algorithm is close to

√
n [6] (see also [1, 7]).

The intuitive reason that we can extend our approach and improve this bound for nearly-equal
rectangles is the fact that if R and R′ are two nearly equal rectangles whose boundaries intersect,
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then any pair of boundary intersection points lie “far apart” from each other, unless R and R′

slightly overlap each other near a vertex of each (and this latter case is bypassed by the analysis,
as then R and R′ are placed in different subfamilies F i). In contrast, two nearly equal disks can
almost overlap one another and yet the two intersections of their boundaries can be arbitrarily close
to each other.
In other words, for our algorithm to work, it is crucial that the boundaries of the ranges behave

like pseudolines. For halfplanes this holds trivially, whereas for congruent disks and nearly equal
axis-parallel rectangles the property is enforced by tiling the plane, focusing on a single tile, and
partitioning the ranges into subfamilies.

6 Deterministic CF Coloring for Nearly-equal Axis-parallel Rect-

angles

In this section, we present a deterministic online algorithm for online CF coloring a sequence P
of points in the plane for a family F of nearly equal axis-parallel rectangles, which uses O(log3 n)
colors. As discussed in Section 5, we can assume that the points of P all lie in a fixed square Q,
whose side length is smaller than the width and the height of any rectangle of F .
With each point p ∈ P , we associate the four quadrants delimited by the horizontal and vertical

lines passing through p; we denote by NEp, NWp, SEp, SWp the northeastern, northwestern,
southeastern, and southwestern quadrants, respectively. We regard these quadrants as open; since
we assume general position, no point, other than p, lies on the boundary of any of these quadrants.
By the time p is inserted, some of its quadrants may be empty (of points of the current prefix

of P ), and we classify p according to which of its quadrants are empty. A coarse classification of
this sort is as follows:

• All four quadrants are empty. This can happen only for the first inserted point.

• Three of the quadrants are empty. There are four sub-classes of this kind. For example, if
the empty quadrants are NWp, NEp, SEp, we refer to p as NE-extreme. The other three
sub-classes, of NW -extreme points, SE-extreme points, and SW -extreme points, are defined
analogously.

• Two opposite quadrants are empty. There are two sub-classes of this kind, the inclining
backbone points, for which NWp and SEp are empty, and the declining backbone points, for
which NEp and SWp are empty.

• Two adjacent quadrants are empty. There are four sub-classes of this kind, the highest, lowest,
rightmost, and leftmost points (at the time of their insertion).

• Only one quadrant is empty. There are four sub-classes of this kind, the NE-maximal points,
for which NEp is empty, and the analogously defined NW -maximal points, SE-maximal
points, and SW -maximal points.

• None of the quadrants is empty. We call p an interior point.

See Figure 5.
We color each of these 16 classes using a different set of colors, using only O(log3 n) colors in

each class.
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Figure 5: The classification of a newly inserted point p ∈ P .

The structure of each class. We ignore the first point and the interior points (at the time of
insertion); see below for details.
The other classes have certain monotone structure. The NE-extreme points, for example, form

a single monotone increasing sequence, and each newly inserted NE-extreme point is added at
the top-right end of that sequence. Moreover, any rectangle R ∈ F intersects this sequence in a
contiguous subsequence (which, in case R contains the top-right or the bottom-left vertex of Q, is
a suffix or a prefix, respectively). Similar properties (with the respective sequences being either
monotone increasing or monotone decreasing) hold forNW -extreme, SE-extreme, and SW -extreme
points.
The inclining backbone points also form a single monotone increasing sequence, but new inclin-

ing backbone points can be inserted anywhere in the sequence. A similar property holds for the
declining backbone points (the sequence is monotone decreasing). In both cases, a rectangle R ∈ F
intersects any of these sequences in a contiguous subsequence.
The sequence of highest points, sorted in increasing y-order, has the property that a newly

inserted highest point is inserted at its end. This case, however, is more involved than the preceding
cases, because, for any rectangle range R ∈ F , the intersection of R with that sequence can consist of
many pairwise disjoint contiguous subsequences, so we cannot regard R as inducing a single interval
of that sequence. We will treat the highest points, and, symmetrically, the lowest, leftmost, and
rightmost points in a different manner; see below.
Finally, the monotonicity structure of the NE-maximal points, say, is also involved. The points

that were NE-maximal at the time of insertion and are still NE-maximal at some later given time,
form a single monotone decreasing sequence. However, when a new NE-maximal point is inserted,
it may replace a (contiguous) subsequence of NE-maximal points, making them all interior. See
below for the handling of these points, as well as the NW -maximal, SE-maximal, and SW -maximal
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points.

The building blocks. We use the following two algorithms as building blocks. The first is an
online algorithm for CF coloring of points on the line for interval ranges, but with the additional
operation that allows to replace a consecutive sequence of points by a single new point. The second
is an online algorithm for CF coloring of points on the line for interval ranges, for the special case
where each point is inserted to the right of all the preceding points. We will consider two variants
of this second algorithm, one in the normal setting defined above, and one which also supports the
additional operation of replacing a suffix of the current sequence by the newly inserted point.
We note that while the problems are formulated for points on a line, they apply to any linearly

ordered set of points, and we will indeed apply them to certain linearly ordered subsets of our
planar point set.
Chen et al. [4] present a deterministic algorithm that CF colors points on the line for interval

ranges with O(log2 n) colors. The colors assigned by this algorithm are pairs (i, j) of integers, where
i is the level of the color and j is a color assigned to points in that level. The colors are ordered
lexicographically, and the maximum color in each interval at any stage is unique. We adapt this
algorithm to support the operation of replacing a consecutive sequence σ of points with a single
point p, by giving p the maximum color associated with a point in σ.
We claim that the modified algorithm maintains a CF coloring of the points at all times, and

still uses only O(log2 n) colors. Indeed, the proof is by induction on the insertion order. Note first
that new colors are created only when a point is inserted without replacing an existing subsequence.
Consider an interval range I at some stage, and suppose to the contrary that I contains more than
one point with maximum color c. Let p be the last point in I of this color to be inserted, and let
p′ be another point of color c in I, so that no point between p and p′ has that color.
If p has replaced a subsequence σ then, at the moment just before p has been inserted, I,

extended if necessary so as to contain all elements of σ, contains more than one point of color c
(which is still maximal in (the extended) I): the point of σ from which p has inherited its color,
and the point p′ (which is clearly not in σ). This however contradicts the induction assumption,
and thus rules out this case.
Suppose then that p has been inserted without replacing a subsequence. The coloring algorithm

of [4] first assigns a level to p, skipping levels where p sees a point of that level (i.e., similar to
the standard definition, no point of higher level lies in between p and the other point) both to its
left and to its right, and then it colors p as a point of the run of its level (maximal contiguous
subsequence not encompassing any point of higher level) that it joins, which it does as either the
rightmost point or the leftmost point of the run. By assumption, p and p′ have the same level.
Since this level is maximal in I, they must be consecutive points in the same run. But then the
coloring algorithm of [4] ensures that p is given, within this level, a color different from that of p′,
again a contradiction that establishes the claim.
The fact that the modified algorithm still uses only O(log2 n) colors is argued as in [4], where it

suffices to show that it produces only O(logn) levels. This is done by charging each newly inserted
point p to the intervals of the runs of lower levels that it “destroys” (by being inserted into the
interval); more precisely, p is charged to one endpoint of each interval, which is the endpoint that
has “created” the interval when it was inserted (as an extreme point in the run, it creates only
one interval). This recursive charging induces, for any point p of level i, a binomial tree of level i
(and size 2i) spanned by the points of P and rooted at p. This implies that the maximum level is
at most log n. The argument for the modified algorithm proceeds in the same way, with the twist
that, when an inserted point p replaces a subsequence σ, it inherits the charges of the point q ∈ σ
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of highest color. It is easily verified that a point p at level i is still the root of a binomial tree of
level i, and the proof continues as above.
We refer to this modified algorithm as Algorithm I1.
A simple algorithm, also presented in [4], serves our second purpose: Consider first the case

where no suffix replacement takes place. For i ≥ 1, let b(i) be the position of the rightmost ‘1’-bit
in the binary representation of i. The algorithm colors the ith point with the number b(i). For
example, the first ten colors b(1), . . ., b(10) are 1, 2, 1, 3, 1, 2, 1, 4, 1, 2. As observed in [4], this is a
valid CF coloring for intervals.
If suffix replacements are allowed, we use the following modification of the algorithm. First, if

a newly inserted point p replaces a suffix σ, we give p the highest color of a point in σ. Second,
when a point p is inserted without replacement, we give p the smallest color that it does not see
(p sees a color c if no point after the last c-colored point has larger color); see [4] for more details.
It is easily verified that the second rule produces exactly the coloring described in the preceding
paragraph, when no suffix replacements take place. (It is this algorithm that the algorithm I1, or
the replacement-free original algorithm of [4], uses to give colors to points within a fixed level.)
It is also easy to verify that the modified algorithm produces a valid CF-coloring, and that it

uses only O(log n) colors. For more details, consult [4].
We refer to (both variants of) this algorithm as Algorithm I2.

The coloring algorithm. Let p be the next point to be inserted. If p is interior (relative to the
prefix of P up to, and including p) then we give it a special color 0. If p is the first point to be
inserted, we give it another special color 0′. Otherwise, we use a separate set of colors for each of
the other remaining classes; for the sake of convenience, we think of each of these color classes as
the integers or, in case we employ the I1 algorithm, as the lexicographically ordered set of pairs of
integers.

Coloring NE-, NW -, SE-, and SW -extreme points. Each of these sets is colored using the
I2 algorithm without suffix replacement. The preceding discussion implies that the algorithm is
indeed applicable in this case. Hence, these classes require only O(log n) colors.

Coloring backbone points. We color each of the two sub-classes of backbone points using the
I1 algorithm, with a total of O(log2 n) colors. Again, the preceding discussion concerning the
structure of backbone points justifies the use of this algorithm.

Coloring NE-, NW -, SE-, and SW -maximal points. We assign to each NE-maximal point
two colors, which we denote as the B-color and the G-color. The B-color is obtained by applying
Algorithm I1 to the chain CNE of current NE-maximal points, ordered by the increasing x-order
(or decreasing y-order) of its points. When a newly inserted NE-maximal point p is added, it may
eliminate a contiguous subchain σ(p) of CNE (whose points now become interior), in which case
the algorithm assigns to p the highest B-color in σ(p).
However, unlike the preceding classes, this coloring in itself need not be conflict-free, at least

not in the strong sense of a unique maximum color. To see why, denote by SNE the set of points
that were NE-maximal at the time of insertion. A rectangle R ∈ F may intersect SNE in a subset
that contains both currently NE-maximal points and interior points (that were NE-maximal when
inserted), and the overall maximum B-color in R need not be unique (it is guaranteed to be unique
only among the currently NE-maximal points).
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Figure 6: Illustrating the directed paths formed by the points of SNE . The numbers beside the
points show the order they are inserted. The points on the current NE-maximal chain are black. In
(a), the B-colors of p1, p2, p3, p4 are 1, 1, 2, 3, respectively. In (b), p5 dominates p3 and is assigned
the B-color of p3, which is 2. In (c), p6 dominates p2 and p5, and is assigned the higher of the
B-colors of p2 and p5, which is 2. The G-colors of the points p3, p5, p6 are 1, 2, 1, respectively.

To overcome this difficulty, we use the second set of G-colors. To introduce them, we define a
directed graph G on SNE , each of whose edges connects a pair of points p, q, where p is the (unique)
point of σ(q) of the highest B-color (which is also the B-color of q). See Figure 6. It follows that
G is a collection of vertex-disjoint paths, and that the B-colors of all the points on the same path
are equal. Moreover, each path is a monotone increasing chain (in both the x- and y-coordinates);
when a path is extended by a new point p, both its x- and y-coordinates are larger than those of
the previous last point on the path.
We assign G-colors to the points on each path separately, using the same set of colors, by apply-

ing Algorithm I2 without suffix replacement (the preceding argument implies that the algorithm
is indeed applicable in this setup).
The final color assigned to a NE-maximal point p is the pair (B-color(p), G-color(p)). Hence,

the number of colors used is O(log3 n).
Symmetric procedures, with different sets of colors (both B-colors and G-colors) are applied to

the NW -, SE-, and SW -maximal points. Hence, the coloring algorithm uses a total of O(log3 n)
colors for these classes.

Coloring highest, lowest, rightmost, and leftmost points. Consider the coloring of the
highest points. We regard each highest point p as being both NE-maximal and NW -maximal, and
apply the preceding procedure twice, to color p by the quadruple

(

B(NE)-color(p), G(NE)-color(p), B(NW )-color(p), G(NW )-color(p)

)

of the two resulting B-colors and the two resulting G-colors. We emphasize though that the
coloring of the highest points is done independently (with disjoint sets of colors) of the coloring of
the “standard” NE-maximal and NW -maximal points.
To argue that we do not use too many colors, we first note that a newly inserted highest point

p is always inserted at the end of the current NE-maximal chain C ′NE of the highest points, and
similarly for the current NW -maximal chain C ′NW of highest points. Hence, both B-colors can be
assigned using the I2 algorithm with suffix replacement, rather than the I1 algorithm. Hence, the
number of B-colors, of either kind, that the algorithm generates is only O(logn).
This still leaves us with a potential number of O(log4 n) colors. However, we note that when a

new highest point p is inserted, it will replace a suffix of exactly one of the chains C ′NE , C
′
NW (and
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Figure 7: The G-links and the coloring of the highest points. The quadruple associated with a

point p is

(

B(NE)-color(p), G(NE)-color(p), B(NW )-color(p), G(NW )-color(p)

)

.

will be added, without replacement, at the end of the other chain). Hence, p will acquire exactly
one G-link, either from a point in the previous NE-maximal chain of highest points that it has
replaced, or from a a point in the previous NW -maximal chain that it has replaced. Consequently,
one of its G-colors will always be 1, as it will be the first point on the respective G-path. See
Figure 7. Hence, the algorithm colors highest points (and, symmetrically, lowest, rightmost, and
leftmost points) using only O(log3 n) colors, which is thus a bound on the grand total number of
colors that it uses.

Correctness. Let R be a rectangle in F , and consider some stage during the online process.
Without loss of generality, assume that R contains the top-right corner of Q. If R contains the
first point of P then it has the unique color 0′. Otherwise, it must contain some point p whose
NE-quadrant is empty now, and thus was empty at the time of insertion. Thus p is (at the time
of insertion) either an NE-extreme point, a declining backbone point, a highest point, a rightmost
point, or just a “plain” NE-maximal point. Thus R must intersect at least one of these classes of
points, and we argue for each of these cases separately.
If R contains NE-extreme points, then R intersects the sequence of these points in a suffix, and

the correctness follows from the correctness of the I2 algorithm, which is applied to this sequence.
Similarly, if R contains declining backbone points, the correctness follows from the correctness of
the I1 algorithm, which is applied to this sequence.
Suppose next that R contains NE-maximal points. We claim that the maximum color in

R∩SNE , under the lexicographical order, is unique. Indeed, R intersects the current chain CNE in
a contiguous subsequence σ, and it intersects each of the G-paths leading to the elements of σ in
a suffix; see Figure 8. The maximum B-color bmax in σ is unique, by the properties of Algorithm
I1, and the maximum G-color gmax of the suffix of the path leading to the unique point of σ with
B-color bmax is also unique, by the properties of Algorithm I2. R may also intersect G-paths that
do not lead to elements of the current CNE (as in the figure); any such path ends at a point q
that belongs to subsequence σ that has been replaced by some point p, but q did not have the
highest B-color in σ Since p dominates every point on σ, it also dominates q and thus lies in R.
Consequently, the B-color of any such “stranded” G-path cannot be the highest B-color in R.
Hence, the combined color (bmax, gmax), which is the lexicographically largest NE-maximal color
in R, is also unique in R.
Finally, consider the case where R contains, say, highest points (the case of rightmost points is
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Figure 8: Illustrating the correctness of the CF coloring of NE-maximal points. The points on the
current NE-maximal chain are black. The numbers beside the points are their B-colors.

symmetric). For each highest point p, consider only the first two components

(

B(NE)-color(p), G(NE)-color(p)

)

of the color of p. Arguing exactly as in the case of NE-maximal points, we conclude that R has a
highest point p with a unique “sub-color” of this form, so necessarily the “whole” color of p is also
unique in R.
This completes the proof of correctness of the algorithm, and allows us to conclude with the

main result of this section:

Theorem 6.1. One can deterministically online color a sequence of n points in the plane, such that
the coloring is always conflict-free with respect to a family of nearly-equal axis-parallel rectangles.
The algorithm uses O

(

log3 n
)

colors.

7 Conclusions

In this paper, we presented randomized online CF coloring algorithms (against oblivious adver-
saries) for several range space in the plane, using O(logn) colors with high probability. We also
presented the first efficient deterministic algorithm for CF coloring points in the plane with respect
to nearly-equal axis-parallel rectangles (which works against a non-oblivious adversary).
Interestingly, we were unable to extend the deterministic algorithm to other ranges (in partic-

ular, halfplanes, and congruent disks) in the plane, and we leave as open the problem of finding
any deterministic algorithm for these ranges that uses only polylogarithmically many colors. An-
other open problem is to obtain randomized algorithms with comparable performances against
non-oblivious adversaries. As noted, this is also a challenge for the simpler 1-dimensional variant
studied in [4].
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