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Answer four of the following six problems. All problems have equal
weight (25 percent). You may use any written material.
The exam is 3 hours long.
You may assume general position of the input.
Good luck!!

Problem 1

Let P be a set of n points in the plane. For each pair of distinct points
a, b ∈ P , let V (a, b) denote the set of all points q ∈ R

2 such that

d(q, a), d(q, b) ≤ d(q, c) for all c ∈ P \ {a, b}.

That is, a and b are the two points of P nearest to q (we don’t care which of
a, b is nearer to q).

Let Vor2(P ) denote the partition of the plane into all the nonempty cells
V (a, b).
(a) What is the shape of each cell V (a, b)? Show that these cells cover the
plane and have pairwise disjoint interiors.
(b) Show that V (a, b) is nonempty if and only if a and b are neighbors in
the standard Voronoi diagram Vor(P ).
(c) What is the maximum possible number of nonempty cells of Vor2(P )?
(Give a concrete upper bound, without the O(·) notation.)
(d) Show that Vor2(P ) can be computed in O(n log n) time.
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Problem 2

(a) Let D = {D1, D2, . . . , Dn} be a set of n unit disks in the plane. Describe
an O(n log n)-time algorithm for computing the convex hull of D (that is,
the convex hull of the union of thee disks of D). Describe also the geometric
structure of the hull.
(b) Solve the same problem (both parts) for a set of n unit balls in three
dimensions.

Problem 3

(a) Let R be a collection of n axis-parallel rectangles in the plane. Give an
algorithm that finds, in O(n log n) time, a point q that lies in the maximum
number of rectangles of R. (Hint: Use a sweep.)
(b) Preprocess R into a data structure, so that, for any given query point
q, we can find, in O(log n) time, the depth of q, which is the number of
rectangles of R containing q. What are the storage and preprocessing costs
of the structure?

Problem 4

Let E = {e1, e2, . . . , en} be a set of n line segments in the plane. Using dual-
ity, construct a data structure on E that can answer in O(log n) time queries
of the form: Given an arbitrary (non-vertical) line ℓ, count the number of
segments of E that ℓ intersects. How much storage and preprocessing does
the data structure require?

Problem 5

Let R be a set of n rays in the plane.
(a) Suppose that the orientations of all the rays of R (when oriented from
their endpoint outwards) lie in the first quadrant (they are all between 0 and
π/2). How fast can you find a line that intersects all the rays, or report that
no such line exists?
(b) Suppose that the orientation of each ray (when oriented from its end-
point outwards) lies either in the first or in the third quadrant (each such
orientation is either between 0 and π/2 or between π and 3π/2). How fast
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can you find a line of negative slope that intersects all the rays, or report
that no such line exists?

Problem 6

Let P be a set of n points in the plane. Let δ > 0. The graph G(δ) is the
graph whose vertices are the points of P , and whose edges connect all the
pairs p, q ∈ P whose distance is at most δ.
(a) Given P and δ, give an efficient algorithm for computing G(δ), which
runs in time O((n+k) log n), where k is the number of edges of G(δ). (Hint:
Transform each point into “something”, so that (p, q) is an edge of G(δ) iff
the “something” of p and the “something” of q intersect.)
(b) Suppose that G(δ) is not connected. Give an efficient algorithm for
finding the smallest δ′ > δ such that G(δ′) has fewer connected components
than G(δ). That is, find a shortest segment pq that connects two points p, q
in different connected components of G(δ). (Hint: Show that such a pair
p, q must be neighbors in Vor(P ).)
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