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Abstra
t

We study (1+")-fa
tor approximationalgorithms for several well-known optimization problems

on a given n-point set: (a) diameter, (b) width, (
) smallest en
losing 
ylinder, and (d) minimum-

width annulus. Among our results are new simple algorithms for (a) and (
) with an improved

dependen
e of the running time on ", as well as the �rst linear-time approximation algorithm for

(d) in any �xed dimension. All four problems 
an be solved within a time bound of the form

O(n+ "

�


) or O(n log(1=") + "

�


).
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1 Introdu
tion

The purpose of this paper is to highlight some useful te
hniques in the design of eÆ
ient approxi-

mation algorithms in geometri
 optimization. For this reason, we have 
hosen four simple problems,

all well-studied from the perspe
tives of both exa
t and approximate 
omputation: given a set P of

n points in a �xed-dimensional Eu
lidean spa
e IR

d

, 
ompute

Diameter: the maximum distan
e over all pairs of points in P ;

Width: the minimum width over all slabs that en
lose P , where a slab of width w refers to a region

between two parallel hyperplanes of distan
e w;

Smallest en
losing 
ylinder: the minimum radius over all 
ylinders that en
lose P , where a 
ylin-

der of radius z refers to the region of all points of distan
e z from a line;

Minimum-width annulus: the minimum width over any all annuli that en
lose P , where an an-

nulus (also 
alled a spheri
al shell) of width jz � yj is a region between two 
on
entri
 spheres

of radii y and z.

The last three problems are motivated from statisti
al analysis and 
omputational metrology, as they

respe
tively ask for the hyperplane, line, and sphere that best �t the data (in the sense of minimizing

the maximum distan
e to the points).

�
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It is not known how to 
ompute an exa
t solution to these problems in near-linear time even for

low dimensions (spe
i�
ally, d � 4 for diameter, d � 3 for width and smallest en
losing 
ylinder, and

d � 2 for minimum-width annulus). It is therefore of pra
ti
al interest to look for faster algorithms

that solve the problems approximately by returning a solution that is within a multipli
ative fa
tor

1+ " of the optimal value, where " > 0 is an input parameter. Indeed, for all of the above problems,

a (1 + ")-fa
tor approximation 
an be found in time linear in n (as we will see).

An important 
onsideration in approximation algorithms is the \
onstant fa
tor" in the running

time, whi
h undoubtedly in
reases as we demand higher a

ura
y. In our time bounds, we will

therefore spe
ify the dependen
e on both n and ". Sin
e we are primarily 
on
erned with low

dimensions, we will ignore 
onstant fa
tors that depend on d, whi
h usually have an exponential

growth. (EÆ
ient high-dimensional algorithms seem to require a di�erent set of te
hniques; for

example, see [11, 22, 24℄, and for 
onvex bodies, see [25℄.)

In the sequel, let E = 1=", let Æ > 0 be an arbitrarily small �xed 
onstant, and let the O

�

notation

hide log

O(1)

E fa
tors. Many algorithms from the literature have time bounds of the formO

�

(E




n) for

a small 
onstant 
 (depending on d). We 
all su
h an algorithm a linear-time approximation s
heme

(LTAS) of order 
. We are interested in minimizing the order 
, be
ause this number di
tates how

a

urate an answer we 
an get in a reasonable amount of time. (Just imagine an appli
ation that

only tolerates a relative error of 1%; here, E = 100 and a fa
tor like E

2

or E

3

would be substantial.)

Somewhat surprisingly, all of the above problems have algorithms with time bounds of the form

O

�

(n + E




) for a 
onstant 
. We 
all su
h an algorithm a strong LTAS of order 
. A strong LTAS

is interesting, be
ause the running time does not grow asymptoti
ally as long as E is kept below a

threshold of n

1=


. Again, we would like the order 
 to be as small as possible.

Known Exa
t Algorithms. The diameter problem has been extensively studied in 
omputational

geometry. In the plane, it is quite easy to obtain an optimal O(n logn) time bound [33℄. Mu
h e�ort

was dire
ted to the more diÆ
ult d = 3 
ase: Clarkson and Shor [18℄ were the �rst to obtain an

optimal randomized O(n logn) algorithm; a deterministi
 algorithm that mat
hes this performan
e

was announ
ed only re
ently by Ramos [35℄, after a long su

ession of work by various resear
hers

[10, 15, 31, 34℄. For d � 4, we 
an trivially solve the problem in quadrati
 time. With known data

stru
tures [28, 30℄ though, a slightly better bound of O(n

2�2=(dd=2e+1)

log

O(1)

n) 
an be attained [4℄.

The width problem has also been extensively studied. Again, in the plane, it is easy to obtain

an optimal O(n logn) time bound [33℄. In d = 3, Houle and Toussaint [26℄ were 
redited as the �rst

to obtain an O(n

2

)-time algorithm. A series of papers derived improved subquadrati
 algorithms [3,

5, 6, 15℄, the best of whi
h required O(n

3=2+Æ

) expe
ted time. We are not aware of any algorithms

for d � 4, although O(n

dd=2e

) time 
an be immediately a
hieved by realizing the solution spa
e as

a 
onvex polytope in d + 1 variables/dimensions (see Se
tion 3) and applying an optimal halfspa
e

interse
tion algorithm [14, 18℄.

The smallest en
losing 
ylinder for d = 2 is identi
al to width, so the �rst nontrivial 
ase for our

third problem is d = 3. Two papers studied this 
ase: one by S
h�omer et al. [37℄, who gave a near-

quarti
 algorithm, and a subsequent one by Agarwal et al. [2℄, who gave a faster O(n

3+Æ

) algorithm.

In higher dimensions, a rough bound of O(n

2d�1+Æ

) follows by realizing the solution spa
e as a 
ell

in an arrangement of surfa
es in 2d� 1 dimensions (improvements are likely).

The minimum-width annulus problem for d = 2 has re
eived mu
h attention be
ause of its relation

to testing the roundness of a point set. Quadrati
 algorithms are easy to obtain by 
onstru
tion of
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Voronoi diagrams. A series of papers derived improved subquadrati
 algorithms [3, 5, 6℄, 
ulminating

in an O(n

3=2+Æ

) randomized algorithm. For d � 3, it is not diÆ
ult to a
hieve O(n

bd=2
+1

) time, again

by realizing the solution spa
e as a 
onvex polytope, this time with d+ 2 variables (see Se
tion 5).

In
idently, this renders a re
ently published (and rather 
ompli
ated) 3-dimensional O(n

3�1=19+Æ

)

algorithm by Agarwal et al. [1℄ unne
essary. Variants and spe
ial 
ases of the problem have also

been addressed arising from pra
ti
al 
onsideration [9, 20, 23, 36℄.

Known Approximation Algorithms. For the diameter problem, it is quite easy to derive an

LTAS that runs in O(E

(d�1)=2

n) time, as noted by Agarwal et al. [4℄. Re
ently (apparently unaware

of this), Barequet and Har-Peled [8℄ des
ribed another simple (1 + ")-approximation algorithm; in

fa
t, their algorithm is a strong LTAS with a running time of O(n+E

2(d�1)

), whi
h, as they noted,


an be improved slightly to O(n+ E

2(d�1)d=(d+1)

) if advan
ed data stru
tures are used.

The approximate width problem was studied by Dun
an et al. [20℄, who gave an O(E

(d�1)=2

n)-

time LTAS, generalizing an earlier two-dimensional idea they attributed to Janardan [27℄.

S
h�omer et al.'s and Agarwal et al.'s papers on smallest en
losing 
ylinders [2, 37℄ also 
ontained

approximation algorithms for d = 3. S
h�omer et al.'s algorithm 
omputes a (1 + ")-fa
tor approx-

imation in O((EU)

2

n log(EU)) time, where U denotes the ratio of the diameter to the minimum


ylinder-radius. Note that this ratio 
an be large when the input points are \almost 
ollinear."

In 
ontrast, Agarwal et al.'s LTAS is independent of the ratio and takes O(E

2

n) time. Higher

dimensions were not dis
ussed.

The approximate minimum-width annulus problem was atta
ked in the re
ent paper by Agarwal

et al. [1℄. They des
ribed the �rst near-linear-time algorithm for d = 2, running in O(n logn +

E

2

n). They also gave algorithms in higher dimensions with running time O(E

d

n log(EU)) and

O((E

d�2

n logn + E

d�1

n) log(EU)). Here, U may either stand for the ratio of an upper bound on

the larger sphere-radius to the diameter, or the ratio of the diameter to the minimum annulus-width.

The former ratio 
an be unbounded if the optimal annulus approa
hes a slab. On the other hand,

the latter ratio 
an be large when the input point set is \almost round" (an essential 
ase in 
ertain

appli
ations). Earlier attempts by Dun
an et al. [20℄ again dealt only with spe
ial 
ases or variants

of the approximation problem. A general LTAS remained in
omplete.

New Approximation Algorithms. We des
ribe new simple algorithms that yield the following

for any �xed dimension d:

1. two strong LTASs for the diameter problem with running time O(n + E

d�0:5

), improving the

earlier O(n+E

2(d�1)

) result of Barequet and Har-Peled [8℄;

2. an LTAS for smallest en
losing 
ylinders with running time O(E

(d�1)=2

n), improving and gen-

eralizing the earlier 3-dimensional O(E

2

n) result by Agarwal et al. [2℄;

3. a strong LTAS for smallest en
losing 
ylinders, with running time O(n+E

3(d�1)=2

);

4. the �rst LTAS for minimum-width annuli (the simplest version takes O(E

(d�1)=2

n + E

4d�1

)

time, another version takes O(E

d

n logE) time), improving the 2-dimensional n logn result

by Agarwal et al. [2℄, and eliminating any dependen
e on distan
e ratios from their higher-

dimensional results.
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problem LTAS strong LTAS

previous new previous new

diameter d = 4 1.5 0.5 4.8 2.34

d = 5 2 0.8 6.67 3.34

d � 6 � d=2 � d=2 � 2d � d

width d = 3 1 0.34 { 1

d = 4 1.5 0.75 { 2.5

d � 5 � d=2 � d=2 { � 3d=2


ylinder d = 3 2 < 1 { < 2:5

d = 4 { < 1:5 { < 4

d � 5 { � d=2 { � 3d=2

annulus d = 2 1

y

0.67 { 2

d = 3 2

y

1.5 { 5

d � 4 � d

y

� d { � d

2

=4

Table 1: The order of LTASs and strong LTASs (the notation f(d) � g(d) means lim

d!1

f(d)=g(d) =

1). The \previous" 
olumn des
ribes the best results that were expli
itly stated in earlier papers

(entries marked

y

do not te
hni
ally represent LTASs, as running time has extra logn and logU

fa
tors for a 
ertain distan
e ratio U). The \new" 
olumn des
ribes the fastest theoreti
al results

mentioned in this paper. Note that not all the new entries are obtained from new ideas (for example,

some follow just by using more advan
ed data stru
tures).

All of these algorithms are not diÆ
ult to implement. In Appendix A, we also establish an inequal-

ity relating the minimum-width annulus to the \minimum-area" annulus that may be of pra
ti
al

interest.

Sin
e many of the previous papers expressed interest in improving the dependen
e of the running

time on ", we also point out (in paragraphs marked \Remark") how applying known data stru
tures

to the previous or new algorithms lead to the 
urrently best bounds on the order of LTASs and

strong LTASs. See Table 1 for a summary; for example, we 
an obtain a strong LTAS for the width

problem in three dimensions with the running time O

�

(n + E). It should be emphasized that the

data stru
tures used to obtain these results are quite 
ompli
ated and thus these results represent

what is possible in theory only. Nevertheless, the table indi
ates that determining the optimal order


an be nontrivial even for a simple problem like diameter. Lower bounds appear even harder and

will be left as open problems.

Te
hniques. Our algorithms are all obtained by various 
ombinations of known elementary te
h-

niques, for instan
e, of dividing spa
e into grid 
ells, or dividing the spa
e of dire
tions into narrow


ones . We �nd another te
hnique to be quite powerful|namely, redu
ing a geometri
 approximation

problem into a number of instan
es of �xed-dimensional linear/
onvex programming . These te
h-

niques should be appli
able to other problems, and we hope that our study here will serve as helpful

examples, and at the same time, prompt a 
loser examination into the dependen
e on ".
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2 Diameter

We begin with the simplest of the four problems, diameter, mainly to illustrate some of the te
hniques

we are going to use throughout. We �rst review two almost trivial algorithms: the �rst based on

grids (mentioned by Barequet and Har-Peled [8℄), the se
ond based on 
ones (mentioned by Agarwal

et al. [4℄). Interestingly, neither algorithm gives the best "-dependen
e. By 
ombining the two

algorithms, we immediately obtain a (new) third algorithm, and by instead \alternating" between

the two algorithms, we obtain an even better result.

Let �

�

denote the a
tual diameter of our n-point set P � IR

d

. A 
onstant-fa
tor approximation is

easy to get in O(n) time. For example, pi
k any point in P and let �

0

be its farthest-point distan
e.

Obviously, �

0

� �

�

� 2�

0

. We want to 
ompute a (1 +O("))-fa
tor approximation to �

�

.

Algorithm 1 (Grid). Here is an algorithm that easily 
omes to mind [8℄: build a uniform grid of

side length "�

0

, round ea
h point to the nearest grid point, then 
ompute the diameter of these grid

points. Rounding in
urs an additive error of O("�

0

) = O("�

�

) to the diameter, so this algorithm

returns a (1 + O("))-fa
tor approximation of �

�

.

The analysis is not diÆ
ult. Sin
e the points lie within a ball of radius O(�

�

) = O(�

0

), there

are at most O(E

d

) grid points. Now, rounding 
an be done in O(n) time by using the 
oor fun
tion

(or in O(n logE) time without it). Dupli
ates 
an be removed by bu
keting in O(n+E

d

) time. The

diameter 
omputation on the O(E

d

) grid points 
an be done by brute for
e in O(E

2d

) time. We thus

have a strong LTAS with a running time of O(n+ E

2d

).

A simple modi�
ation to the algorithm improves the time bound to O(n + E

2(d�1)

): during

rounding, only keep the topmost and bottommost grid points along ea
h verti
al line. The reason is

that the diameter is una�e
ted when the other points are pruned. As a result, we are left with only

O(E

d�1

) grid points, and the time needed to generate these points is only O(n+E

d�1

) by bu
keting.

Remark: Har-Peled (in personal 
ommuni
ation) noted that the number of grid points 
an be

further redu
ed to O(E

d�4=3

) by keeping only the extreme points along ea
h of the O(E

d�2

)

parallel grid planes. Sin
e the 
onvex hull of a point set inside an O(E) � O(E) grid has only

O(E

2=3

) verti
es [7℄, ea
h plane has O(E

2=3

) extreme points, and they 
an be generated in O(n+

E

d�1

) total time by Graham s
an with pre-sorting [33℄.

He suggested that the number of grid points 
an be further redu
ed to O(E

d�3=2

) by keeping

extreme points along ea
h of the O(E

d�3

) parallel grid 3-
ats. Ea
h 3-
at now has O(E

3=2

)

extreme points [7℄, and they 
an be generated in additional O(E

d�4=3

logE) total time by an

optimal 3-dimensional 
onvex hull algorithm [33℄. As a result, the total running time of the grid

algorithm is O(n+E

2d�3

).

Of 
ourse, one 
an 
onsider this �ltering tri
k for 
ats beyond dimension 3 using more 
ompli
ated

higher-dimensional 
onvex hull algorithms (as mentioned in Barequet and Har-Peled's paper [8℄),

but this theoreti
al improvement is at best minor and will not be 
onsidered here.

Algorithm 2 (Cones + RS). Let �

"

= ar

os(1=(1 + ")) = �(

p

"). The se
ond algorithm [4℄ is

based on the well-known observation [40℄ that the spa
e of dire
tions 
an be 
overed by O(1=�

d�1

"

)


ones of angle �

"

. In other words, we 
an form a set V

d

of O(1=�

d�1

"

) unit ve
tors in IR

d

satisfying

the following property: for every x 2 IR

d

, there exists a 2 V

d

su
h that the angle

6

(a; x) is at most

�

"

.
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Note that 
os

6

(a; x) = a � x = kxk. The desired property of V

d


an therefore be paraphrased as

follows: for every x 2 IR

d

,

kxk=(1 + ") � max

a2V

d

a � x � kxk: (1)

Now, we want a pair of points p; q 2 P to maximize kp�qk. By (1), a (1+")-fa
tor approximation


an be found by maximizing a � (p � q) over all p; q 2 P and a 2 V

d

. This value 
an be 
omputed

by determining for ea
h a 2 V

d

the point p 2 P that maximizes a � p and the point q 2 P that

minimizes a � q. In other words, we have redu
ed our problem to �nding extreme points of P along

O(1=�

d�1

"

) = O(E

(d�1)=2

) query dire
tions. In the dual, these queries are more 
ommonly known as

ray shooting (RS) in a 
onvex polytope.

The trivial method for RS (and the one most suitable for implementation) requires O(n) time

per query. So, the running time of this simple algorithm, an LTAS, is O(E

(d�1)=2

n).

Remark: With advan
ed data stru
tures [28, 30℄, we 
an answer m RS queries on a d-dimensional


onvex polytope de�ned by n halfspa
es in O(t

d

(n;m)) time [13℄, where

t

d

(n;m) := n logm + (nm)

1�1=(bd=2
+1)

log

O(1)

n+m log

O(1)

n: (2)

So, the time bound of the algorithm 
an be improved to O(t

d

(n;E

(d�1)=2

)). By straightforward


al
ulations,

minfn

�

; t

d

(n;E

�

)g =

�

O

�

(E

�(��1)bd=2
=(�+(��1)bd=2
)

n) if � � bd=2


O

�

(E

�(��1)=�

n) otherwise;

(3)

and

t

d

(n;E

�

) = O

�

(n+ E

�bd=2


): (4)

This yields our fastest LTASs in theory for d = 4; 5 as shown in Table 1, sin
e we 
an bound

minfn

4=3

; t

4

(n;E

3=2

)g by O

�

(

p

En), and we 
an bound minfn

3=2

; t

5

(n;E

2

)g by O

�

(E

4=5

n).

Algorithm 3 (Algorithm 1 + Algorithm 2). Re
all that Algorithm 1 redu
es the problem to

one involving O(E

d�1

) grid points. Instead of applying a brute-for
e quadrati
 algorithm to these

grid points, we 
an apply Algorithm 2. (The underlying prin
iple: a (1+ ")-fa
tor approximation of

a (1+")-fa
tor approximation is a (1+O("))-fa
tor approximation.) We thus obtain a more eÆ
ient

strong LTAS, with a time bound of O(n+E

3(d�1)=2

).

Remark: With advan
ed data stru
tures, the time bound is O(n+t

d

(E

d�1

; E

(d�1)=2

)) and 
an be

redu
ed slightly to O(n+E

d�1

+ t

d

(E

d�3=2

; E

(d�1)=2

)) by the �rst remark. Alternatively, we 
an


onsider the following idea (whi
h is better in low dimensions). After rounding, our point set 
an

be de
omposed intoO(E

d�3

) subsets, ea
h lying in a grid 3-
at. An RS query 
an be a

omplished

by querying ea
h of these 3-dimensional subsets separately. The time bound 
an therefore be

rewritten as O(

P

O(E

d�3

)

i=1

t

3

(n

i

; E

(d�1)=2

)), where

P

i

n

i

= n. This is O

�

(n+E

(3d�7)=2

).

Algorithm 4 (Grid + Cones + Dimension Redu
tion). A more eÆ
ient strong LTAS is

based on the following idea: �rst apply the grid s
heme of Algorithm 1 to redu
e the size of the point

set to O(E

d�1

); but instead of using d-dimensional 
ones to solve this redu
ed problem dire
tly, use

2-dimensional 
ones to redu
e the problem to a number of (d�1)-dimensional subproblems and solve

these subproblems re
ursively. The subproblems are formed by proje
tions to O(E

1=2

) hyperplanes


orresponding to the 2-dimensional 
one dire
tions.
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To be pre
ise, given a point x, let x

i

denote its i-th 
oordinate. Now, (1) in IR

2

tells us that

(x

2

1

+ x

2

2

)=(1 + ")

2

� max

a2V

2

(a

1

x

1

+ a

2

x

2

)

2

� x

2

1

+ x

2

2

:

De�ne the proje
tion �

a

: IR

d

! IR

d�1

: �

a

(x) = (a

1

x

1

+a

2

x

2

; x

3

; : : : ; x

d

) 2 IR

d�1

. The above implies

that for every x 2 IR

d

,

kxk

2

=(1 + ")

2

� max

a2V

2

k�

a

(x)k

2

� kxk

2

:

Consequently, to �nd a (1+O("))-fa
tor approximation to the diameter of P � IR

d

, it suÆ
es to �nd

a (1+O("))-fa
tor approximation to the maximum of k�

a

(p�q)k = k�

a

(p)��

a

(q)k over all p; q 2 P

and a 2 V

2

. In other words, it suÆ
es to approximate re
ursively the diameter of the proje
ted point

set �

a

(P ) � IR

d�1

over ea
h of the ve
tors a 2 V

2

.

Let T

d

(n) be the running time in d dimensions. Sin
e the grid s
heme redu
es n to O(E

d�1

) and

O(1=�

"

) = O(E

1=2

) subproblems in d� 1 dimensions are generated, we have a re
urren
e

T

d

(n) = O(n+ E

1=2

T

d�1

(O(E

d�1

)));

whi
h solves to T

d

(n) = O(n+E

d�1=2

). We therefore obtain a strong LTAS of order d� 1=2.

Remark: As Har-Peled informed the author, by the �rst remark, the re
urren
e 
an be rewritten

as T

d

(n) = O(n + E

d�1

+ E

1=2

T

d�1

(O(E

d�3=2

))), whi
h solves to T

d

(n) = O(n + E

d�1

). As we

will see, a di�erent approa
h also enables a similar small improvement.

Algorithm 5 (Grid + Cones + Dimension Redu
tion). We point out another 
ombination

of grid, 
ones, and indu
tion that lead basi
ally to the same result. The idea is a more re�ned way

to qui
kly redu
e the number of points. We �rst introdu
e a de�nition: given d-dimensional subset

P

0

� P , we say that P

0

(1 + ")-simpli�es P if for any q 2 IR

d

,

max

p

0

2P

0

kp

0

� qk � max

p2P

kp� qk=(1 + "):

Initially, we form the set P of grid points from Algorithm 1. Next, we �nd a subset P

0

of size

O(E

(d�1)=2

) that (1 + O("))-simpli�es P , as des
ribed by a re
ursive pro
edure below. Then by

Algorithm 2 in O(E

(d�1)=2

jP

0

j) = O(E

d�1

) time, we return a (1+O("))-fa
tor approximation to the

diameter of P

0

, whi
h is easily seen to be a (1 +O("))-fa
tor approximation to the diameter of P .

To 
onstru
t P

0

, we �rst de
ompose the grid point set P into O(E) subsets P

i

ea
h lying in a grid

hyperplane. We then re
ursively �nd a subset P

0

i

of size O(E

(d�2)=2

) that (1+O("))-simpli�es P

i

. A

simple argument shows that

S

i

P

0

i

(1 +O("))-simpli�es P : given q 2 IR

d

, say its farthest neighbor p

in P lies in the grid hyperplane h 
ontaining P

i

, and let q

0

be the proje
tion of q to h; then

kp� qk

2

= kp� q

0

k

2

+ kq

0

� qk

2

� (1 +O("))

2

max

p

0

2P

0

i

kp

0

� q

0

k

2

+ kq

0

� qk

2

� (1 +O("))

2

max

p

0

2P

0

i

kp

0

� qk

2

:

Now,

S

i

P

0

i

has size O(E

d=2

), whi
h is still too large, so we employ 
ones to 
onstru
t a smaller

simplifying subset P

0

from this set: for ea
h a 2 V

d

, �nd the point p

a

2

S

i

P

0

i

that maximizes a � p

a

7



and form P

0

= fp

a

j a 2 V

d

g of size O(E

(d�1)=2

), 
omputable by RS in time O(E

(d�1)=2

j

S

i

P

0

i

j) =

O(E

d�1=2

). It is easy to see from (1) that P

0

(1 + ")-simpli�es

S

i

P

0

i

: for any q 2 IR

d

and p 2

S

i

P

0

i

,

kp� qk � (1 + ")max

a2V

d

a � (p� q) � (1 + ")max

a2V

d

a � (p

a

� q)

� (1 + ")max

a2V

d

kp

a

� qk:

By transitivity, P

0

(1 + O("))-simpli�es P , as desired.

Let T

d

(n) be the running time of the above re
ursive pro
edure on an n-point set in a d-

dimensional grid. We have the re
urren
e

T

d

(n) =

O(E)

X

i=1

T

d�1

(n

i

) + O(E

d�1=2

);

where

P

i

n

i

= n. The overall running time is therefore O(n+ E

d�1=2

).

Remark: With advan
ed data stru
tures, the re
urren
e lowers to T

d

(n) =

P

O(E)

i=1

T

d�1

(n

i

) +

O(t

d

(E

d=2

; E

(d�1)=2

)). We 
an easily 
he
k from (2) that t

d

(E

d=2

; E

(d�1)=2

) is at mostO

�

(E

d�5=3

)

for d � 4, so our best strong LTAS has an O

�

(n+ E

d�5=3

) time bound, as shown in Table 1.

3 Width

For the width problem, we will not give a new approximation algorithm but rather present a qui
k

reinterpretion of the previous algorithm by Dun
an et al. [20℄ so as to set up the basi
 approa
h for

the subsequent problems.

We �rst formulate the optimization problem by using d + 2 variables x 2 IR

d

and y; z 2 IR to

parametrize the two parallel hyperplanes that bound the desired slab: f� 2 IR

d

j x � � = yg and

f� 2 IR

d

j x � � = zg. (Note that one variable 
an be be eliminated, e.g., by setting z = y + 1.) The

width of the slab is jz � yj=kxk. Thus, we want to

minimize (z � y)=kxk

subje
t to y � x � p � z (8p 2 P )

x 2 IR

d

; y; z 2 IR:

Although the 
onstraints are all linear, this is not an instan
e of linear or 
onvex programming,

be
ause of the obje
tive fun
tion. The obvious way to �nd the exa
t optimum is to 
onstru
t the

entire feasible region (a (d + 1)-dimensional 
onvex polytope, after eliminating a variable), whi
h

require O(n

dd=2e

) time in the worst 
ase (probably less in pra
ti
e, though). The region 
an then be

triangulated, and the obje
tive fun
tion 
an be optimized within ea
h simplex in 
onstant time.

Algorithm 1 (Cones + LP). If we just want an approximation, a faster algorithm 
an be ob-

tained by repla
ing this optimization problem with a number of linear programming problems. The

idea is one that we have seen before, namely 
ones. By (1), the following yields a (1 + ")-fa
tor

approximation:

minimize (z � y)=ja � xj

subje
t to y � x � p � z (8p 2 P )

x 2 IR

d

; y; z 2 IR; a 2 V

d

:

8



Changing variables, X = x=(z�y) and Y = y=(z�y), we see that this redu
es to a (d+1)-dimensional

linear program (LP) for ea
h of the O(E

(d�1)=2

) ve
tors a 2 V

d

:

maximize ja �X j

subje
t to Y � p �X � Y + 1 (8p 2 P )

X 2 IR

d

; Y 2 IR; a 2 V

d

:

Several linear-time algorithms [16, 17, 21, 32, 38, 39℄ are known for �xed-dimensional LP. Conse-

quently, the approximate width problem 
an be solved by an LTAS in O(E

(d�1)=2

n) time [20℄.

Remark: While this result is known, new theoreti
al results 
an be obtained by using advan
ed

data stru
tures. We are solving a number of related LPs here, all with the same set of 
onstraints

in d+1 dimensions. Known results on LP queries tell us that a time bound of O(t

d+1

(n;E

(d�1)=2

))

is a
hievable for a fun
tion t

d+1

of the same form as (2). The idea is to redu
e LP queries to

membership queries (spe
ial 
ases of RS) in a 
onvex polytope, via parametri
 sear
h [29℄ or

Clarkson's randomized LP algorithm [12℄.

In fa
t, in our appli
ation, the membership queries redu
e to membership queries in two separate

d-dimensional polytopes f� 2 IR

d

j p � � � 1 (8p 2 P )g and f� 2 IR

d

j p � � � 1 (8p 2 P )g. This

observation allows us to lower the time bound to O(t

d

(n;E

(d�1)=2

)), yielding many of the entries

in Table 1. For example, a

ording to (3) and (4), for d = 3, minfn

3=2+o(1)

; t

3

(n;E)g 
an be

bounded by O(E

1=3+o(1)

n) or O

�

(n + E), and for d = 4, minfn

2

; t

4

(n;E

3=2

)g 
an be bounded

by O

�

(E

3=4

n). By (4), this also proves the existen
e of a strong LTAS in any dimension (with

running time O

�

(n+ E

bd=2
(d�1)=2

)).

Algorithm 2 (Algorithm 1 + Grid). After reading a perliminary draft of this paper, Har-Peled

(in personal 
ommuni
ation) noted that the grid idea 
an be adapted for the approximate width

problem. Spe
i�
ally, Barequet and Har-Peled [8℄ proved the existen
e of a box B (of arbitrary

orientation) 
ontaining P su
h that 
B 
an be translated to �t inside 
onv(P ) for some 
onstant 


depending on d (their paper only stated this lemma in the d = 3 
ase, but a

ording to Har-Peled,

it extends to any �xed dimension). Su
h a box 
an be 
omputed in linear time.

Now, build a grid where ea
h 
ell is a translation of 
"B, and repla
e ea
h point by the verti
es

of the 
ell it is in to get a set P

0

of grid points. If P is 
ontained in a slab S

�

of width w

�

, then P

0

is 
ontained in a slab of width (1+ 2")w

�

sin
e P

0


an be translated to �t in P � 
"B, whi
h in turn


an be translated to �t inside P � "
onv(P ) � S

�

� "S

�

.

Therefore, it suÆ
es to approximate the width of P

0

. The size of P

0

is 
learly O(E

d

), whi
h 
an

be further redu
ed to O(E

d�1

) by keeping only the topmost and bottommost points on ea
h grid

line. Applying Algorithm 1 to P

0

yields a strong LTAS running in time O(n+E

3(d�1)=2

).

Remark: The third remark in Se
tion 2 applies here as well. For example, by de
omposing

the grid points into O(E

d�3

) 3-dimensional subsets, we 
an answer the desired LP queries after

rounding in total time O

�

(n+E

(3d�7)=2

). This yields our best strong LTAS for d = 4, as indi
ated

in Table 1.

4 Smallest En
losing Cylinder

We give two new approximation algorithms for the smallest en
losing 
ylinder in this se
tion.
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"

Figure 1: The plane 
ontaining the line `

�

and the point p.

First we formulate the problem by parametrizing the 
enter line of the 
ylinder by 2d variables

x 2 IR

d

and y 2 IR

d

(two of whi
h 
an be eliminated): ` = fx+ ty j t 2 IRg. The radius is represented

by an additional variable z 2 IR. Sin
e the 
losest point on ` to a given point p 2 P is given by the

expression x+

�

y�(p�x)

y�y

�

y, the optimization problem is:

minimize z

subje
t to









x+

�

y�(p�x)

y�y

�

y � p









� z (8p 2 P )

x 2 IR

d

; y 2 IR

d

; z 2 IR:

(5)

Let (x

�

; y

�

; z

�

) be the optimal solution.

Algorithm 1 (Cones + CP). As in Se
tion 3, the idea is to repla
e this non
onvex optimization

problem with an easier problem through 
ones. We will repla
e the Eu
lidean point-line distan
e

fun
tion with a more managable distan
e fun
tion based on a \skewed" proje
tion of the point to

the line that depends on the 
one dire
tion a 2 V

d

. As explained geometri
ally below, the following

turns out to give a (1 + ")-fa
tor approximation:

minimize z

subje
t to









x+

�

a�(p�x)

a�y

�

y � p









� z (8p 2 P )

x 2 IR

d

; y 2 IR

d

; z 2 IR; a 2 V

d

:

(6)

Lemma 4.1 If (x; y; z; a) is the optimal solution for (6), then (x; y; z) is feasible for (5) and z �

(1 + ")z

�

.

Proof: The �rst part is easy. For the se
ond part, 
hoose a

�

2 V

d

su
h that

6

(a

�

; y

�

) � �

"

.

Take any point p 2 P . Let u = x

�

+

�

y

�

�(p�x

�

)

y

�

�y

�

�

y

�

, and v = x

�

+

�

a

�

�(p�x

�

)

a

�

�y

�

�

y

�

. As noted earlier,

u is the 
losest point on the line `

�

= fx

�

+ ty

�

j t 2 IRg to p. (Simply 
he
k that u� p and y

�

have

zero dot produ
t and are thus orthogonal.) On the other hand, v is the point on `

�

that lies in the

hyperplane 
ontaining p and perpendi
ular to the dire
tion a

�

. (Simply 
he
k that v�p and a

�

have

zero dot produ
t.) Now, by the triangle inequality for angles,

6

(p� v; y

�

) �

6

(p� v; a

�

) +

6

(a

�

; y

�

) � �=2 + �

"

:

From Figure 1, we see that � :=

6

(u�p; v�p) � �

"

, and thus kv�pk = ku�pk= 
os� � (1+")ku�pk.

We 
on
lude that (x

�

; y

�

; (1 + ")z

�

; a

�

) is feasible for (6), hen
e, z � (1 + ")z

�

. 2
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Now, a 
hange of variables, X = x�

�

a�x

a�y

�

y, Y =

y

a�y

, and Z = z

2

, reveals that (6) is a
tually a

set of O(E

(d�1)=2

) 
onvex programs (CPs), one for ea
h a 2 V

d

:

minimize Z

subje
t to kX + (a � p)Y � pk

2

� Z (8p 2 P )

a �X = 0; a � Y = 1

X 2 IR

d

; Y 2 IR

d

; Z 2 IR; a 2 V

d

:

(Note: the squared norm of a linear fun
tion is 
onvex.) Several linear-time algorithms [16, 17, 39℄ are

known for �xed-dimensional CP. Consequently, we obtain a simple LTAS that runs in O(E

(d�1)=2

n)

time.

Remark: With advan
ed data stru
tures and the te
hnique of linearization, it is possible to

answer m membership queries for the above in a time bound O(t




(n;m)) of the form in (2) for

some 
onstant 
 (depending on d). Known redu
tion of CP queries to membership queries [12℄

then yields a running time O(t




(n;E

(d�1)=2

)). This allows us to improve the order of our LTAS

to a number slightly less than (d�1)=2, as indi
ated in Table 1 (although the improvement would

probably not be pra
ti
al).

Algorithm 2 (Algorithm 1 + Grid). We next give a strong LTAS using the simple grid idea.

First 
ompute a 
ylinder en
losing P with radius z

0

� 
z

�

in O(n) time for a 
onstant 
 by Algo-

rithm 1 (alternatively, as one referee suggested, take the en
losing 
ylinder with 
enter line through

the approximate diametral pair). By rotation, assume that the 
enter line is verti
al.

Our algorithm is similar to one in Se
tion 2: build a uniform grid of side length "z

0

, round ea
h

point to the nearest grid point, keeping only the topmost and bottommost grid point along ea
h

verti
al line, and �nally 
ompute a (1 + ")-approximation to the smallest en
losing 
ylinder of the

redu
ed set of grid points. Rounding in
urs an additive error of O("z

0

) = O("z

�

), and points between

the topmost and bottommost on a line 
an be pruned by 
onvexity of 
ylinders. So, the result is

indeed a (1 + O("))-approximation to z

�

.

For the analysis, observe that sin
e the points lie within a distan
e of z

0

from a verti
al line,

there are only O(E

d�1

) grid verti
al lines (and thus, grid points) to 
onsider. Applying Algorithm 1

to the grid points, we get a total running time of O(n+ E

3(d�1)=2

).

Algorithm 3 (Algorithm 1 + Grid). Another grid algorithm with the same time bound 
an

be obtained by following the se
ond width algorithm, using Barequet and Har-Peled's lemma. Our

Algorithm 2 is 
learly simpler.

Remark: Minor speedups are possible with this approa
h, however. Har-Peled's 
omment from

the �rst remark of Se
tion 2 is now appli
able to redu
e the number of grid points to O(E

d�3=2

).

The running time with this enhan
ement is O(n+E

(3d�4)=2

) (or marginally better by the previous

remark), as shown in Table 1.
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5 Minimum-Width Annulus

Our last problem, minimum-width annulus, 
an be formulated as follows, using d variables x 2 IR

d

to represent the 
enter point, and variables y 2 IR and z 2 IR to represent the inner and outer radii:

minimize z � y

subje
t to y � kx� pk � z (8p 2 P )

x 2 IR

d

; y 2 IR; z 2 IR:

(7)

By translation, assume that one of the points in P is the origin, so that y � kxk � z.

Let (x

�

; y

�

; z

�

) denote the optimal solution and let w

�

= z

�

� y

�

. Although we 
an linearize

the 
onstraints by a 
hange of variables (see below) to transform the feasible region into a (d+ 2)-

dimensional 
onvex polytope, the resulting obje
tive fun
tion is neither linear nor 
onvex. So, the

trivial strategy would give a worst-
ase time bound of O(n

bd=2
+1

). An alternative obje
tive fun
tion

z

2

�y

2

is known to be linear after the transformation, but unfortunately, does not always approximate

z � y well.

Our idea is to divide the problem into two 
ases. The �rst 
ase is when the optimal annulus

is narrow , in the sense that z

�

� (1 + ")y

�

. This is the 
ase that is not 
overed by the previous

algorithms (sin
e the annulus may approa
h a slab or the annulus-width may approa
h 0). The key

is to observe that here, w

�

= (z

�2

� y

�2

)=(z

�

+ y

�

) would be near (z

�2

� y

�2

)=(2kx

�

k). We thus


onsider approximating the obje
tive fun
tion (z

2

� y

2

)=kxk, using 
ones and (1), as in Se
tion 3 for

the width problem.

The se
ond 
ase is when the annulus is wide, i.e., z

�

> (1+ ")y

�

. This 
ase turns out to be easy;

in fa
t, we point out at least three approximation algorithms (the �rst is a simple self-
ontained grid

method, the se
ond is the algorithm by Agarwal et al. [1℄, and the third is a hybrid). Running both

a narrow-
ase and a wide-
ase algorithm would guarantee that a valid solution is found.

As a warm-up exer
ise though, we �rst give a 
onstant-fa
tor approximation algorithm, to il-

lustrate the main elements of this approa
h. In 
ontrast to the two-dimensional fa
tor-2 algorithm

by Agarwal et al. [1℄ (whi
h runs in O(n logn) time instead of O(n)), our 
orre
tness proof is quite

simple and nongeometri
. In the appendix, we also prove that a known heuristi
 yields another

simple linear-time 
onstant-fa
tor algorithm.

Constant-Fa
tor Approximation (Cones + LP). Consider the following optimization prob-

lem:

minimize (z

2

� y

2

)=ja � xj

subje
t to y � kx� pk � z (8p 2 P )

x 2 IR

d

; y 2 IR; z 2 IR; a 2 V

d

:

(8)

We prove that this yields a 
onstant-fa
tor approximation.

Lemma 5.1 If (x; y; z; a) is the optimal solution for (8), then z � y � 
w

�

for some 
onstant 
.

Proof: Choose a

�

2 V

d

so that a

�

� x

�

� kx

�

k=(1 + "). Then

z

2

� y

2

z

�

z

2

� y

2

kxk

�

z

2

� y

2

ja � xj

�

z

�2

� y

�2

ja

�

� x

�

j

� (1 + ")

z

�2

� y

�2

kx

�

k

� (1 + ")

z

�2

� y

�2

y

�

;
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implying that

(1 + y=z)(z � y) � (1 + ")(1 + z

�

=y

�

)(z

�

� y

�

): (9)

Case 1: z

�

� 2y

�

. Then (9) tells us that z � y � (3 +O("))w

�

.

Case 2: z

�

> 2y

�

. Then w

�

> z

�

=2 � �

�

=4, where �

�

denotes the diameter of P . But any annulus

with both its inner and outer spheres tou
hing P has width upper-bounded by �

�

. 2

Now, (8) redu
es to O(E

(d�1)=2

) number of linear programs through the following 
hange of

variables: X = x=(z

2

� y

2

), Y = (y

2

� kxk

2

)=(z

2

� y

2

), and Z = 1=(z

2

� y

2

).

maximize ja �X j

subje
t to Y � �2p �X + (p � p)Z � Y + 1 (8p 2 P )

X 2 IR

d

; Y 2 IR; Z 2 IR; a 2 V

d

:

(10)

We 
on
lude that a 
onstant-fa
tor approximation 
an be found in O(n) time. We may thus let w

0

be a value satisfying w

0

� w

�

� 
w

0

for a 
onstant 
.

Narrow Case: Algorithm (Cones + LP). We now re�ne the pre
eding algorithm to give a

(1 +O("))-fa
tor approximation assuming that z

�

� (1 + ")y

�

.

As hinted earlier, this assumption lets us approximate 2(z

�

� y

�

) by (z

�2

� y

�2

)=kx

�

k. However,

a similar statement 
annot be made for 2(z � y) in an arbitrary feasible solution unless we impose

the 
ondition z � (1 + ")y expli
itly in (8). Unfortunately, as written, this 
onstraint is nonlinear

(and non
onvex). Nevertheless, we over
ome the diÆ
ulty by 
onsidering an alternative 
onstraint,

shown in the following, that serves the purpose:

minimize (z

2

� y

2

)=ja � xj

subje
t to y � kx� pk � z (8p 2 P )

w

0

� "(1 + ")a � x

x 2 IR

d

; y 2 IR; z 2 IR; a 2 V

d

:

(11)

The reasoning is given below.

Lemma 5.2 If (x; y; z; a) is the optimal solution for (11), then z � y � (1 + O("))w

�

.

Proof: First observe that (x

�

; y

�

; z

�

; a

�

) is feasible for (11), be
ause w

0

� w

�

� "y

�

� "kx

�

k �

"(1 + ")a

�

� x

�

. Therefore, (9) still holds. In parti
ular,

z � y � (2 + O("))w

�

� O(1)w

0

� O(")a � x � O(")kxk � O(")z:

So z � (1 + O("))y, and applying (9) a se
ond time yields

(2�O("))(z � y) � (2 +O("))w

�

:

2

In (10), the additional 
onstraint transforms to a linear one:

w

0

Z � "(1 + ")a �X:

As a result, we obtain a simple (1 +O("))-fa
tor approximation algorithm for the narrow 
ase that

runs in O(E

(d�1)=2

n) time.
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Wide Case: Algorithm 1 (Grid). We now give a simple (1 +O("))-fa
tor approximation algo-

rithm for the wide 
ase z

�

> (1 + ")y

�

. Note that w

�

> (1�

1

1+"

)z

�

= 
("z

�

).

The idea is one we have used several times before|namely, build a uniform grid of side length

"w

0

, and round ea
h point of P to the nearest grid point. This in
urs only an additive error of

O("w

0

) = O("w

�

). For the analysis, observe that sin
e the points lie in an annulus of volume

O(z

�d

� y

�d

) = O(w

�

z

�(d�1)

) = O(E

d�1

w

d

0

), the number of points redu
es to O(E

2d�1

).

We 
an also restri
t the possible 
enter points to grid points. Sin
e the 
enter lies within a radius

of kx

�

k � z

�

= O(Ew

0

) to the origin, there are only O(E

2d

) 
enter points to try. Ea
h requires

simply �nding the nearest/farthest point to P .

The wide 
ase 
an thus be solved in O(n + E

4d�1

) time. We now have a 
omplete LTAS for

minimum-width annulus, running in O(E

(d�1)=2

n+ E

4d�1

) time.

Remark: With advan
ed data stru
tures for LP queries, the time bound 
an be redu
ed to

O(t

d+2

(n;E

(d�1)=2

) + E

4d�1

), or with the �rst remark from Se
tion 3, to O(t

d+1

(n;E

(d�1)=2

) +

E

4d�1

). While there are several ways that 
an improve the E

4d�1

term further, this result is

enough to give our best strong LTAS for a suÆ
iently large d by (4), as shown in Table 1: the

running time is O

�

(n + E

maxf4d�1;dd=2e(d�1)=2g

). We thus fo
us our attention next on small

dimensions like 2 and 3.

Wide Case: Algorithm 2 (Grid + LP). We observe another method for the wide 
ase. Spe
i�-


ally, Agarwal et al. [1, Theorem 4.3℄ gave a simple algorithm that solves the minimum-width annulus

problem in O(E

d

n logU) time when z

�

� U�

�

. We will not repeat their des
ription here: basi
ally,

it involves solving an LP (under the obje
tive fun
tion z

2

� y

2

) for ea
h 
ell of a 
ertain nonuniform

grid.

In the wide 
ase, we know that z

�

= O(Ew

�

) = O(E�

�

), so we 
an set U = O(E) immedi-

ately and get an O(E

d

n logE)-time algorithm. Combined with our narrow-
ase algorithm, the total

running time is O(E

d

n logE).

Remark: With advan
ed data stru
tures, the time bound is O(t

d+1

(n;E

d

logE)). This gives the

entries in Table 1 for d = 2, as a

ording to (3) and (4), minfn

3=2+o(1)

; t

3

(n;E

2

)g 
an be bounded

by O(E

2=3+o(1)

n) or O

�

(n +E

2

). For d = 3, we also have minfn

2

; t

4

(n;E

3

)g = O

�

(E

3=2

n).

Wide Case: Algorithm 3 (Algorithm 1 + Algorithm 2). For yet another algorithm for the

wide 
ase, apply the idea in Algorithm 1 to redu
e the problem to one involving O(E

2d�1

) points

and then apply Algorithm 2. The overall running time is O(E

(d�1)=2

n +E

3d�1

logE).

Remark: With advan
ed data stru
tures, the time bound is O(t

d+1

(n;E

(d�1)=2

) +

t

d+1

(E

2d�1

; E

d

logE)). Note that the O(E

2d�1

) grid points a
tually lie in O(E

2(d�2)

) grid planes.

So, by de
omposing the point set into 2-dimensional subsets in the style of the third remark from

Se
tion 2, we 
an rewrite the time bound as O

�

(t

d+1

(n;E

(d�1)=2

)+

P

O(E

2(d�2)

)

i=1

t

3

(n

i

; E

d

)), where

P

i

n

i

= n. This is at most O

�

(n + E

maxf3d�4;dd=2e(d�1)=2g

), yielding the strong LTAS entry for

d = 3 in Table 1.
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A An Inequality for the Minimum-Width Annulus

In this appendix, we note another simple 
onstant-fa
tor approximation algorithm for the minimum-

width annulus.

As pointed out earlier and is well-known, if the obje
tive is repla
ed by the fun
tion z

2

�y

2

, then

(7) 
hanges to a linear program and thus be
omes solvable in O(n) time. (In the two-dimensional


ase, this optimal annulus is the minimum-area annulus.) Let (x

A

; y

A

; z

A

) be the new solution and

w

A

= z

A

� y

A

. Let x

�

; y

�

; z

�

; w

�

be as in Se
tion 5.

The value w

A

has been used in pra
ti
e as an approximation to w

�

. For instan
e, Ramos [36℄

noted that in many instan
es arising from metrology appli
ations, the minimum-area annulus is

surprisingly the same as the minimum-width annulus. Although in the worst 
ase the approximation


an be arbitrarily poor, we nevertheless are able to derive the following inequality relating w

�

to w

A

,

where the third parameter w

S

here denotes the minimum width over all en
losing slabs, whi
h we

know how to approximate by Se
tion 3:

Lemma A.1 1=w

�

� 1=w

A

+ 2=w

S

.

Proof: We know that z

2

A

� y

2

A

� z

�2

� y

�2

. Let Æ be the distan
e between the two 
enters x

�

and

x

A

. Note that y

�

� y

A

� Æ and z

�

� z

A

� Æ. By a 
hange of 
oordinate system, we may assume

x

�

= (Æ=2; 0; : : : ; 0) and x

A

= (�Æ=2; 0; : : : ; 0). Then for every point p = (p

1

; : : : ; p

d

) 2 P ,

y

�2

� (p

1

� Æ=2)

2

+ p

2

2

+ � � �+ p

2

d

� z

�2

y

2

A

� (p

1

+ Æ=2)

2

+ p

2

2

+ � � �+ p

2

d

� z

2

A

;

implying that y

2

A

� z

�2

� 2Æp

1

� z

2

A

� y

�2

. So, we 
an upper-bound the minimum-slab width by

w

S

�

(z

2

A

� y

�2

)� (y

2

A

� z

�2

)

2Æ

�

z

�2

� y

�2

Æ

:

On the other hand,

1

w

�

�

1

w

A

=

z

�

+ y

�

z

�2

� y

�2

�

z

A

+ y

A

z

2

A

� y

2

A

�

(z

�

+ y

�

)� (z

A

+ y

A

)

z

�2

� y

�2

�

2Æ

z

�2

� y

�2

:

2

Consequently, either w

A

or w

S

yields a 
onstant-fa
tor approximation to w

�

. (Note that a slab

may be viewed as an annulus with its 
enter at in�nity.)

Corollary A.2 minfw

A

; w

S

g � 3w

�

. 2
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The 
onstant 3 above 
annot be improved (as 
an be shown by a simple example), and unlike in

the approa
h in Se
tion 5, we are unable to modify this approa
h to obtain a (1+ ")-fa
tor method.

Still, Lemma A.1 
an yield quite an a

urate bound on w

�

in some pra
ti
al instan
es where the

given point set is almost round and \well-distributed" near its optimal 
ir
le. (For example, imagine

when w

A

= 0:01 and w

S

= 1, we have 0:0098 � w

�

� 0:01|an estimate with a 2% relative error at

most.)

After dis
overing our inequality, we learn that Devillers and Preparata [19℄ earlier have obtained

another (similar) inequality relating w

�

to w

A

. The width w

S

is not involved in the statement of

their result (but they needed to spe
ify a 
ertain no-empty-se
tor assumption), and their proof is

somewhat lengthier.
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