
51 ALGORITHMIC MOTION PLANNING

Dan Halperin, Oren Salzman and Micha Sharir

INTRODUCTION

Motion planning is a fundamental problem in robotics. It comes in a variety of
forms, but the simplest version is as follows. We are given a robot system B, which
may consist of several rigid objects attached to each other through various joints,
hinges, and links, or moving independently, and a 2D or 3D environment V clut-
tered with obstacles. We assume that the shape and location of the obstacles and
the shape of B are known to the planning system. Given an initial placement Z1 and
a final placement Z2 of B, we wish to determine whether there exists a collision-
avoiding motion of B from Z1 to Z2, and, if so, to plan such a motion. In this
simplified and purely geometric setup, we ignore issues such as incomplete infor-
mation, nonholonomic constraints, control issues related to inaccuracies in sensing
and motion, nonstationary obstacles, optimality of the planned motion, and so on.

Since the early 1980s, motion planning has been an intensive area of study in
robotics and computational geometry. In this chapter we will focus on algorithmic
motion planning, emphasizing theoretical algorithmic analysis of the problem and
seeking worst-case asymptotic bounds, and only mention briefly practical heuristic
approaches to the problem. The majority of this chapter is devoted to the simplified
version of motion planning, as stated above. Section 51.1 presents general tech-
niques and lower bounds. Section 51.2 considers efficient solutions to a variety of
specific moving systems with a small number of degrees of freedom. These efficient
solutions exploit various sophisticated methods in computational and combinatorial
geometry related to arrangements of curves and surfaces (Chapter 30). Section 51.3
then briefly discusses various extensions of the motion planning problem such as
computing optimal paths with respect to various quality measures, computing the
path of a tethered robot, incorporating uncertainty, moving obstacles, and more.

51.1 GENERAL TECHNIQUES AND LOWER BOUNDS

GLOSSARY

Some of the terms defined here are also defined in Chapter 52.

Robot B: A mechanical system consisting of one or more rigid bodies, possibly
connected by various joints and hinges.

Physical space (workspace): The 2D or 3D environment in which the robot
moves.
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Placement: The portion of physical space occupied by the robot at some instant.

Degrees of freedom k: The number of real parameters that determine the robot
B’s placements. Each placement can be represented as a point in Rk.

Free placement: A placement at which the robot is disjoint from the obstacles.

Semifree placement: A placement at which the robot does not meet the interior
of any obstacle (but may be in contact with some obstacles).

Configuration space C: A portion of k-space (where k is the number of degrees
of freedom of B) that represents all possible robot placements; the coordinates
of any point in this space specify the corresponding placement.

Expanded obstacle / C-obstacle / forbidden region: For an obstacle O, this
is the portion O∗ of configuration space consisting of placements at which the
robot intersects (collides with) O.

Free configuration space F: The subset of configuration space consisting of
free placements of the robot: F = C \

⋃
O O

∗. (In the literature, this usually also
includes semifree placements. In that case, F is the complement of the union of
the interiors of the expanded obstacles.)

Contact surface: For an obstacle feature a (corner, edge, face, etc.) and for a
feature b of the robot, this is the locus in C of placements at which a and b are in
contact with each other. In most applications, these surfaces are semialgebraic
sets of constant description complexity (see definitions below).

Collision-free motion of B: A path contained in F . Any two placements of B
that can be reached from each other via a collision-free path must lie in the same
(arcwise-)connected component of F .

Arrangement A(Σ): The decomposition of k-space into cells of various dimen-
sions, induced by a collection Σ of surfaces in Rk. Each cell is a maximal con-
nected portion of the intersection of some fixed subcollection of surfaces that
does not meet any other surface. See Chapter 30. Since a collision-free motion
should not cross any contact surface, F is the union of some of the cells of A(Σ),
where Σ is the collection of contact surfaces.

Semialgebraic set: A subset of Rk defined by a Boolean combination of poly-
nomial equalities and inequalities in the k coordinates. See Chapter 38.

Constant description complexity: Said of a semialgebraic set if it is defined
by a constant number of polynomial equalities and inequalities of constant max-
imum degree (where the number of variables is also assumed to be constant).

Example. Let B be a rigid polygon with k edges, moving in a planar polygonal
environment V with n edges. The system has three degrees of freedom, (x, y, θ),
where (x, y) are the coordinates of some reference point on B, and θ is the orien-
tation of B. Each contact surface is the locus of placements where some vertex
of B touches some edge of V , or some edge of B touches some vertex of V . There
are 2kn contact surfaces, and if we replace θ by tan θ

2 , then each contact surface
becomes a portion of some algebraic surface of degree at most 4, bounded by a
constant number of algebraic arcs, each of degree at most 2.



Chapter 51: Algorithmic motion planning 3

51.1.1 GENERAL SOLUTIONS

GLOSSARY

Cylindrical algebraic decomposition of F : A recursive decomposition of C
into cylindrical-like cells originally proposed by Collins [Col75]. Over each cell
of the decomposition, each of the polynomials involved in the definition of F has
a fixed sign (positive, negative, or zero), implying that F is the union of some
of the cells of this decomposition. See Chapter 38 for further details.

Connectivity graph: A graph whose nodes are the (free) cells of a decomposition
of F and whose arcs connect pairs of adjacent cells.

Roadmap R: A network of one-dimensional curves within F , having the prop-
erties that (i) it preserves the connectivity of F , in the sense that the portion
of R within each connected component of F is (nonempty and) connected; and
(ii) it is reachable, in the sense that there is a simple procedure to move from
any free placement of the robot to a placement on R; we denote the mapping
resulting from this procedure by φR.

Retraction of F onto R: A continuous mapping of F ontoR that is the identity
on R. The roadmap mapping φR is usually a retraction. When this is the case,
we note that for any path ψ within F , represented as a continuous mapping
ψ : [0, 1] 7→ F , φR ◦ψ is a path within R, and, concatenating to it the motions
from ψ(0) and ψ(1) toR, we see that there is a collision-free motion of B between
two placements Z1, Z2 iff there is a path within R between φR(Z1) and φR(Z2).

Silhouette: The set of critical points of a mapping; see Chapter 38.

CELL DECOMPOSITION

F is a semialgebraic set in Rk. Applying Collins’s cylindrical algebraic decompo-

sition results in a collection of cells whose total complexity is O((nd)3
k

), where d
is the maximum algebraic degree of the polynomials defining the contact surfaces;
the decomposition can be constructed within a similar time bound. If the coor-
dinate axes are generic, then we can also compute all pairs of cells of F that are
adjacent to each other (i.e., cells whose closures (within F) overlap), and store
this information in the form of a connectivity graph. It is then easy to search for
a collision-free path through this graph, if one exists, between the (cell containing
the) initial robot placement and the (cell containing the) final placement. This
leads to a doubly-exponential general solution for the motion planning problem:

THEOREM 51.1.1 Cylindrical Cell Decomposition [SS83]

Any motion planning problem, with k degrees of freedom, for which the contact
surfaces are defined by a total of n polynomials of maximum degree d, can be
solved by Collins’s cylindrical algebraic decomposition, in randomized expected time

O((nd)3
k

).

Remakrs. (1) The randomization is needed only to choose a generic direction for
the coordinate axes. (2) Here and throughout the chapter we adhere to the real
RAM model of computation, which is standard in computational geometry [PS85].
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ROADMAPS

An improved solution is given in [Can87, BPR00] based on the notion of a roadmap
R, a network of one-dimensional curves within (the closure of) F , having properties
defined in the glossary above. Once such a roadmap R has been constructed, any
motion planning instance reduces to path searching within R, which is easy to
do. R is constructed recursively, as follows. One projects F onto some generic
2-plane, and computes the silhouette of F under this projection. Next, the critical
values of the projection of the silhouette on some line are found, and a roadmap
is constructed recursively within each slice of F at each of these critical values.
The resulting “sub-roadmaps” are then merged with the silhouette, to obtain the
desired R.

The original algorithm of Canny [Can87] relies heavily on the polynomials
defining F being in general position, and on the availability of a generic plane
of projection. This algorithm runs in nk(log n)dO(k4) deterministic time, and in

nk(log n)dO(k2) expected randomized time. Later work [BPR00] addresses and over-
comes the general position issue, and produces a roadmap for any semialgebraic set;
the running time of this solution is nk+1dO(k2).

If we ignore the dependence on the degree d, the algorithm of Canny is close
to optimal in the worst case, assuming that some representation of the entire F
has to be output, since there are easy examples where the free configuration space
consists of Ω(nk) connected components.

THEOREM 51.1.2 Roadmap Algorithm [Can87, BPR00]

Any motion planning problem, as in the preceding theorem, in general position can
be solved by the roadmap technique in nk(log n)dO(k4) deterministic time, and in

nk(log n)dO(k2) expected randomized time.

51.1.2 LOWER BOUNDS

The upper bounds for both general solutions are (at least) exponential in k (but
are polynomial in the other parameters when k is fixed). This raises the issue of
calibrating the complexity of the problem when k can be arbitrarily large.

THEOREM 51.1.3 Lower Bounds

The motion planning problem, with arbitrarily many degrees of freedom, is PSPACE-
hard for the instances of: (a) coordinated motion of many rectangular boxes along a
rectangular floor [HSS84]; the problem remains PSPACE-hard even if only two types
of rectangles are used [HD05] or if only unit squares are used [SH15] (b) motion
planning of a planar mechanical linkage with many links [HJW84]; and (c) motion
planning for a multi-arm robot in a 3-dimensional polyhedral environment [Rei87].

All early results can also be found in the collection [HSS87]. There are NP-
hardness results for other systems; see, e.g., [HJW85] and [SY84]. Hearn and
Demaine [HD09] introduced a general tool called the nondeterministic constraint
logic (NCL) model of computation that facilitates derivation of hardness results (in
particular, the results in [HD05] and [SH15]). Using the NCL model, Hearn and
Demaine also derive the PSPACE-hardness of a variety of motion-related puzzle-
like problems that consist of sliding game pieces. In particular, they applied their
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technique to the SOKOBAN puzzle, where multiple “crates” need to be pushed
to target locations, and the Rush Hour game, where a parking attendant has to
evacuate a car from a parking lot, by clearing a route blocked by other cars.

Facing the aforementioned hardness results, we consider specific problems with
small values of k, with the goal of obtaining solutions better than those yielded by
the general techniques. Alternatively, we can approach the general problem with
heuristic or approximate schemes. We will mostly survey here the former approach,
which allows for efficient computation for a restricted set of problems. However, as
the general motion-planning problem is of practical interest, considerable research
effort has been devoted to practical solutions to this problem. Noteworthy is the
sampling-based approach in which F is approximated via a roadmap constructed by
randomly sampling the configuration space. We will review this practical approach
(as well as some alternative approaches) briefly and refer the reader to Chapter 52
for an in-depth discussion of sampling-based algorithms.

51.2 MOTION PLANNING WITH A SMALL NUMBER OF
DEGREES OF FREEDOM

In this main section of the chapter, we review solutions to a variety of specific
motion-planning problems, most of which have 2 or 3 degrees of freedom. Exploiting
the special structure of these problems leads to solutions that are more efficient than
the general methods described above.

GLOSSARY

Jordan arc/curve: The image of the closed unit interval under a continuous
bijective mapping into the plane. A closed Jordan curve is the image of the unit
circle under a similar mapping, and an unbounded Jordan curve is an image of
the open unit interval (or of the entire real line) that separates the plane.

Randomized algorithm: An algorithm that applies internal randomization
(“coin-flips”). We consider here “Las Vegas” algorithms that always terminate,
and produce the correct output, but whose running time is a random variable
that depends on the internal coin-flips. We will state upper bounds on the ex-
pectation of the running time (the randomized expected time) of such an
algorithm, which hold for any input. See Chapter 45.

General position: The input to a geometric problem is said to be in general
position if no nontrivial algebraic identity with integer coefficients holds among
the parameters that specify the input (assuming the input is not overspecified).
For example: no three input points should be collinear, no four points cocircular,
no three lines concurrent, etc. (In general, this requirement is too restrictive and
many instances explicitly specify which identities are not supposed to hold.)

Minkowski sum: For two planar (or spatial) sets A and B, their Minkowski
sum, or pointwise vector addition, is the set A⊕B = {x+ y | x ∈ A, y ∈ B}.

Convex distance function: A convex region B that contains the origin in its
interior induces a convex distance function dB defined by

dB(p, q) = min {λ | q ∈ p⊕ λB} .
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If B is centrally symmetric with respect to the origin then dB is a metric whose
unit ball is B.

B-Voronoi diagram: For a set S of sites, and a convex region B as above, the
B-Voronoi diagram VorB(S) of S is a decomposition of space into Voronoi cells
V (s), for s ∈ S, such that

V (s) = {p | dB(p, s) ≤ dB(p, s′) for all s′ ∈ S } .

Here dB(p, s) = minq∈s dB(p, q).

α(n): The extremely slowly-growing inverse Ackermann function; see Chapter 30.

Contact segment: The locus of (not necessarily free) placements of a polygon B
translating in a planar polygonal workspace, at each of which either some specific
vertex ofB touches some specific obstacle edge, or some specific edge ofB touches
some specific obstacle vertex.

Contact curve: A generalization of “contact segment” to the locus of (not nec-
essarily free) placements of a more general robot system B, assuming that B
has only two degrees of freedom, where some specific feature of B makes contact
with some specific obstacle feature.

51.2.1 TWO DEGREES OF FREEDOM

A TRANSLATING POLYGON IN 2D

This is a system with two degrees of freedom (translations in the x and y directions).

A CONVEX POLYGON

Suppose first the translating polygon B is a convex k-gon, and there are m convex
polygonal obstacles, A1, . . . , Am, with pairwise disjoint interiors, having a total of n
edges. The region of configuration space where B collides with Ai is the Minkowski
sum

Ki = Ai ⊕ (−B) = {x− y | x ∈ Ai, y ∈ B} .
The free configuration space is the complement of

⋃m
i=1Ki. Assuming general

position, one can show:

THEOREM 51.2.1 [KLPS86]

(a) Each Ki is a convex polygon, with ni + k edges, where ni is the number of
edges of Ai.

(b) For each i 6= j, the boundaries of Ki and Kj intersect in at most two points.
(This also holds when the Ai’s and B are not polygons but are still convex.)

(c) Given a collection of planar regions K1, . . . ,Km, each enclosed by a closed
Jordan curve, such that any pair of the bounding curves intersects at most
twice, then the boundary of the union

⋃m
i=1Ki consists of at most 6m − 12

maximal connected portions of the boundaries of the Ki’s, provided m ≥ 3,
and this bound is tight in the worst case.
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Such a collection K1, . . . ,Km is called a collection of pseudo-disks. Now,
these properties, combined with several algorithmic techniques [KLPS86, MMP+91,
BDS95], imply:

THEOREM 51.2.2

(a) The free configuration space for a translating convex polygon, as above, is a
polygonal region with at most 6m−12 convex vertices and N =

∑m
i=1(ni+k) =

n+ km nonconvex vertices.

(b) F can be computed in deterministic time O(N log n logm) or in randomized
expected time O(N log n).

If the robot is translating in a convex room with n walls, then the complexity
of the free space is O(n) and it can be computed in O(n+ k) time.

AN ARBITRARY POLYGON

Suppose next that B is an arbitrary polygonal region with k edges. Let A be the
union of all obstacles, which is another polygonal region with n edges. As above,
the free configuration space is the complement of the Minkowski sum

K = A⊕ (−B) = {x− y | x ∈ A, y ∈ B} .

K is again a polygonal region, but, in this case, its maximum possible complexity is
Θ(k2n2) (see, e.g., [AFH02]), so computing it might be considerably more expensive
than in the convex case. Efficient practical algorithms for the exact computation
of Minkowski sums in this case (together with their implementation) are described
in [AFH02, Wei06, BFH+15].

A single face suffices. If the initial placement Z of B is given, then we do not
have to compute the entire (complement of) K; it suffices to compute the connected
component f of the complement of K that contains Z, because no other placement
is reachable from Z via a collision-free motion.

Let Σ be the collection of all contact segments; there are 2kn such segments.
The desired component f is the face of A(Σ) that contains Z. Using the theory
of Davenport-Schinzel sequences (Chapter 30), one can show that the maximum
possible combinatorial complexity of a single face in a two-dimensional arrangement
of N segments is Θ(Nα(N)). A more careful analysis [HCA+95], combined with
the algorithmic techniques of [CEG+93, GSS89], shows:

THEOREM 51.2.3

(a) The maximum combinatorial complexity of a single face in the arrangement of
contact segments for the case of an arbitrary translating polygon is Θ(knα(k))
(this improvement is significant only when k � n).

(b) Such a face can be computed in deterministic time O(knα(k) log2 n) [GSS89],
or in randomized expected time O(knα(k) log n) [CEG+93].

VORONOI DIAGRAMS

Another approach to motion planning for a translating convex object B is via gen-
eralized Voronoi diagrams (see Chapter 29), based on the convex distance function
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dB(p, q). This function effectively places B centered at p and expands it until it
hits q. The scaling factor at this moment is the dB-distance from p to q (if B is a
unit disk, dB is the Euclidean distance). dB satisfies the triangle inequality, and is
thus “almost” a metric, except that it is not symmetric in general; it is symmetric
iff B is centrally symmetric with respect to the point of reference.

Using this distance function dB , a B-Voronoi diagram VorB(S) of S may be
defined for a set S of m pairwise disjoint obstacles. See [LS87a, Yap87a].

THEOREM 51.2.4

Assuming that each of B and the obstacles in S has constant-description complexity,
and that they are in general position, the B-Voronoi diagram has O(m) complexity,
and can be computed in O(m logm) time. If B and the obstacles are convex poly-
gons, as above, then the complexity of VorB(S) is O(N) and it can be computed in
time O(N logm), where N = n+ km.

One can show that if Z1 and Z2 are two free placements of B, then there
exists a collision-free motion from Z1 to Z2 if and only if there exists a collision-
free motion of B where its center moves only along the edges of VorB(S), between
two corresponding placements W1,W2, where Wi, for i = 1, 2, is the placement
obtained by pushing B from the placement Zi away from its dB-nearest obstacle,
until it becomes equally nearest to two or more obstacles (so that its center lies on
an edge of VorB(S)).

Thus motion planning of B reduces to path-searching in the one-dimensional
network of edges of VorB(S). This technique is called the retraction technique ,
and can be regarded as a special case of the general roadmap algorithm. The
resulting motions have “high clearance,” and so are safer than arbitrary motions,
because they stay equally nearest to at least two obstacles.

THEOREM 51.2.5

The motion-planning problem for a convex object B translating amidst m convex
and pairwise disjoint obstacles can be solved in O(m logm) time, by constructing
and searching in the B-Voronoi diagram of the obstacles, assuming that B and
the obstacles have constant description complexity each. If B and the obstacles
are convex polygons, then the same technique yields an O(N logm) solution, where
N = n+ km is as above.

THE GENERAL MOTION-PLANNING PROBLEM WITH TWO
DEGREES OF FREEDOM

If B is any system with two degrees of freedom, its configuration space is 2D, and,
for simplicity, let us think of it as the plane (spaces that are topologically more
complex can be decomposed into a constant number of “planar” patches). We
construct a collection Σ of contact curves, which, under reasonable assumptions
concerning B and the obstacles, are each an algebraic Jordan arc or curve of some
fixed maximum degree b. In particular, each pair of contact curves will intersect in
at most some constant number, s ≤ b2, of points.

As above, it suffices to compute the single face of A(Σ) that contains the
initial placement of B. The theory of Davenport-Schinzel sequences implies that
the complexity of such a face is O(λs+2(n)), where λs+2(n) is the maximum length
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of an (n, s+ 2)-Davenport-Schinzel sequence (Chapter 30), which is slightly super-
linear in n when s is fixed.

The face in question can be computed in deterministic time O(λs+2(n) log2 n),
using a fairly involved divide-and-conquer technique based on line-sweeping; see
[GSS89] and Chapter 30. (Some slight improvements in the running time have sub-
sequently been obtained.) Using randomized incremental (or divide-and-conquer)
techniques, the face can be computed in randomized expected O(λs+2(n) log n) time
[CEG+93, SA95].

THEOREM 51.2.6 [GSS89, CEG+93, BDS95]

Under the above assumptions, the general motion-planning problem for systems with
two degrees of freedom can be solved in deterministic time O(λs+2(n) log2 n), or in
O(λs+2(n) log n) randomized expected time.

51.2.2 THREE DEGREES OF FREEDOM

A ROD IN A PLANAR POLYGONAL ENVIRONMENT

We next pass to systems with three degrees of freedom. Perhaps the simplest in-
stance of such a system is the case of a line segment B (“rod,” “ladder,” “pipe”)
moving (translating and rotating) in a planar polygonal environment with n edges.
The maximum combinatorial complexity of the free configuration space F of B is
Θ(n2) (recall that the naive bound for systems with three degrees of freedom is
O(n3)). A cell-decomposition representation of F can be constructed in (deter-
ministic) O(n2 log n) time [LS87b]. Several alternative near-quadratic algorithms
have also been developed, including one based on constructing a Voronoi diagram
in F [OSY87]. A worst-case optimal algorithm, with running time O(n2), has been
given in [Veg90].

An Ω(n2) lower bound for this problem has been established in [KO88]. It
exhibits a polygonal environment with n edges and two free placements of B that
are reachable from each other. However, any free motion between them requires
Ω(n2) “elementary moves,” that is, the specification of any such motion requires
Ω(n2) complexity. This is a fairly strong lower bound, since it does not rely on lower
bounding the complexity of the free configuration space (or of a single connected
component thereof); after all, it is not clear why a motion planning algorithm
should have to produce a full description of the whole free space (or of a single
component).

THEOREM 51.2.7

Motion planning for a rod moving in a polygonal environment bounded by n edges
can be performed in O(n2) time. There are instances where any collision-free motion
of the rod between two specified placements requires Ω(n2) “elementary moves.”

A CONVEX POLYGON IN A PLANAR POLYGONAL ENVIRONMENT

Here B is a convex k-gon, free to move (translate and rotate) in an arbitrary polyg-
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onal environment bounded by n edges. The free configuration space is 3D, and
there are at most 2kn contact surfaces, of maximum degree 4. The naive bound on
the complexity of F is O((kn)3) (attained if B is nonconvex), but, using Davenport-
Schinzel sequences, one can show that the complexity of F is only O(knλ6(kn)).
Geometrically, a vertex of F is a semifree placement of B at which it makes simul-
taneously three obstacle contacts. The above bound implies that the number of
such critical placements is only slightly super-quadratic (and not cubic) in kn.

Computing F in time close to this bound has proven more difficult, and only
in the late 1990’s has a complete solution, running in O(knλ6(kn) log kn) time
and constructing the entire F , been attained [AAS99]. Previous solutions, that
were either incomplete with the same time bound, or complete and somewhat more
expensive, are given in [KS90, HS96, KST97].

Another approach was given in [CK93]. It computes the Delaunay triangulation
of the obstacles under the distance function dB , when the orientation of B is fixed,
and then traces the discrete combinatorial changes in the diagram as the orientation
varies. The number of changes was shown to be O(k4nλ3(n)). Using this structure,
the algorithm of [CK93] produces a high-clearance motion of B between any two
specified placements, in time O(k4nλ3(n) log n).

Since all these algorithms are fairly complicated, one might consider in practice
an alternative approximate scheme, proposed in [AFK+92]. This scheme, originally
formulated for a rectangle, discretizes the orientation of B, solves the translational
motion planning for B at each of the discrete orientations, and finds those place-
ments of B at which it can rotate (without translating) between two successive
orientations. This scheme works very well in practice.

THEOREM 51.2.8

Motion planning for a k-sided convex polygon, translating and rotating in a planar
polygonal environment bounded by n edges, can be performed in O(knλ6(kn) log kn)
or O(k4nλ3(n) log n) time.

EXTREMAL PLACEMENTS

A related problem is to find the free placement of the largest scaled copy of B in
the given polygonal environment. This has applications in manufacturing, where
one wants to cut out copies of B that are as large as possible from a sheet of some
material.

If only translations are allowed, the B-Voronoi diagram can be used to find the
largest free homothetic copy ofB. If general rigid motions are allowed, the technique
of [CK93] computes the largest free similar copy of B in time O(k4nλ3(n) log n).
An alternative technique is given in [AAS98], with randomized expected running
time O(knλ6(kn) log4 kn). Both bounds are nearly quadratic in n. See also earlier
work on this problem in [ST94].

Finally, we mention the special case where the polygonal environment is the
interior of a convex n-gon. This is simpler to analyze. The number of free critical
placements of (similar copies of) B, at which B makes simultaneously four obstacle
contacts, is O(kn2) [AAS98], and they can all be computed in O(kn2 log n) time.
If only translations are allowed, this problem can easily be expressed as a linear
program, and can be solved in O(n+ k) time [ST94].
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THEOREM 51.2.9

The largest similar placement of a k-sided convex polygon in a planar polygonal
environment bounded by n edges can be computed in randomized expected time
O(knλ6(kn) log4 kn) or in deterministic time O(k4nλ3(n) log n). When the en-
vironment is the interior of an n-sided convex polygon, the running time improves
to O(kn2 log n), and to O(n+ k) if only translations are allowed.

A NONCONVEX POLYGON

Next we consider the case where B is an arbitrary polygonal region (not necessarily
connected), translating and rotating in a polygonal environment bounded by n
edges, as above. Here one can show that the maximum complexity of F is Θ((kn)3).
Using standard techniques, F can be constructed in Θ((kn)3 log kn) time, and
algorithms with this running time bound have been implemented; see, e.g., [ABF89].
However, as in the purely translational case, it usually suffices to construct the
connected component of F containing the initial placement of B. The general
result, stated below, for systems with three degrees of freedom, implies that the
complexity of such a component is only near-quadratic in kn. A special-purpose
algorithm that computes the component in time O((kn)2+ε) is given in [HS96],
where the constant of proportionality depends on ε. A more general algorithm
with a similar running time bound is reported below. An earlier work considered
the case where B is an L-shaped object moving amid n point obstacles [HOS92].
Motion planning can be performed in this case in time O(n2 log2 n).

THEOREM 51.2.10

Motion planning for an arbitrary k-sided polygon, translating and rotating in a pla-
nar polygonal environment bounded by n edges, can be performed in time O((kn)2+ε),
for any ε > 0. If the polygon is L-shaped and the obstacles are points, the running
time improves to O(n2 log2 n).

A TRANSLATING POLYTOPE IN A 3D POLYHEDRAL ENVIRONMENT

Another interesting motion planning problem with three degrees of freedom involves
a polytope B, with a total of k vertices, edges, and facets, translating amidst
polyhedral obstacles in R3, with a total of n vertices, edges, and faces. The contact
surfaces in this case are planar polygons, composed of a total of O(kn) triangles in 3-
space. Without additional assumptions, the complexity of F can be Θ((kn)3) in the
worst case. However, the complexity of a single component is only O((kn)2 log kn).
Such a component can be constructed in O((kn)2+ε) time, for any ε > 0 [AS94].

If B is a convex polytope, and the obstacles consist of m convex polyhedra, with
pairwise disjoint interiors and with a total of n faces, the complexity of the entire
F is O(kmn logm) and it can be constructed in O(kmn log2m) time [AS97]. (Note
that, in analogy with the two-dimensional case, F is the complement of the union of
the Minkowski sums Ai⊕ (−B), where Ai are the given obstacles. The above-cited
bound is about the complexity and construction of such a union.) An earlier study
[HY98] considered the case where B is a box, and obtained an O(n2α(n)) bound
for the complexity of F . Efficient practical algorithms for the exact computation
of Minkowski sums for convex polyhedra are described in [FH07], and for general
polyhedra in [Hac09].
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THEOREM 51.2.11

Translational motion planning for an arbitrary polytope with k facets, in an ar-
bitrary 3D polyhedral environment bounded by n facets, can be performed in time
O((kn)2+ε), for any ε > 0. If B is a convex polytope, and there are m convex
pairwise disjoint obstacles with a total of n facets, then the motion planning can be
performed in O(kmn log2m) time.

A BALL IN A 3D POLYHEDRAL ENVIRONMENT

Let B be a ball moving in 3D amidst polyhedral obstacles with a total of n ver-
tices, edges, and faces. The complexity of the entire F is O(n2+ε), for any ε > 0
[AS00a]. Note that, for the special case of line obstacles, the expanded obstacles
are congruent (infinite) cylinders, and F is the complement of their union.

THEOREM 51.2.12

Motion planning for a ball in an arbitrary 3D polyhedral environment bounded by
n facets can be performed in time O(n2+ε), for any ε > 0.

It is worth mentioning that the combinatorial complexity of the union of n
infinite cylinders in R3, having arbitrary radii, is O(n2 + ε), for any ε > 0 where
the bound is almost tight in the worst case [Ezr11].

3D B-VORONOI DIAGRAMS

A more powerful approach to translational motion planning in three dimensions
is via B-Voronoi diagrams, defined in three dimensions in full analogy to the
two-dimensional case mentioned above. The goal is to establish a near-quadratic
bound for the complexity of such a diagram. This would yield near-quadratic
algorithms for planning the motion of the moving body B, for planning a high-
clearance motion, and for finding largest homothetic free placements of B. The
analysis of B-Voronoi diagrams is considerably more difficult in 3-space, and there
are only a few instances where a near-quadratic complexity bound is known. One
instance is for the case where B is a translating convex polytope with O(1) facets
in a 3D polyhedral environment [KS04]; the complexity of the diagram in this
case is O(n2+ε). If the obstacles are lines or line segments, the complexity is
O(n2α(n) log n) [CKS+98, KS04].

The case where B is a ball appears to be more challenging. Even for the special
case where the obstacles are lines, no near-quadratic bounds are known. However,
if the obstacles are n lines with a constant number of orientations, the B-diagram
has complexity O(n2+ε) [KS03].

THE GENERAL MOTION PLANNING PROBLEM WITH
THREE DEGREES OF FREEDOM

The last several instances were special cases of the general motion planning problem
with three degrees of freedom. In abstract terms, we have a collection Σ of N con-
tact surfaces in R3, where these surfaces are assumed to be (semi-algebraic patches
of) algebraic surfaces of constant maximum degree. The free configuration space
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consists of some cells of the arrangement A(Σ), and a single connected component
of F is just a single cell in that arrangement.

Inspecting the preceding cases, a unifying observation is that while the maxi-
mum complexity of the entire F can be Θ(N3), the complexity of a single compo-
nent is invariably only near-quadratic in N . This was shown in [HS95a] to hold in
general: the combinatorial complexity of a single cell of A(Σ) is O(N2+ε), for any
ε > 0, where the constant of proportionality depends on ε and on the maximum
degree of the surfaces; see Chapter 30.

A general-purpose algorithm for computing a single cell in such an arrangement
was given in [SS97]. It runs in randomized expected time O(N2+ε), for any ε > 0,
and is based on vertical decompositions in such arrangements (see Chapter 30).

THEOREM 51.2.13

An arbitrary motion planning problem with three degrees of freedom, involving N
contact surface patches, each of constant description complexity, can be solved in
time O(N2+ε), for any ε > 0.

51.2.3 OTHER PROBLEMS WITH FEW DEGREES OF FREEDOM

MORE DEGREES OF FREEDOM

The general motion planning problem for systems with d degrees of freedom, for
d ≥ 4, calls for estimating the complexity of a single cell in the d-dimensional
arrangement of the appropriate contact surfaces, and for efficient algorithms for
constructing such a cell. Basu [Bas03] shows that the complexity of such a cell
in a d-dimensional arrangement of n surfaces of constant description complexity is
O(nd−1+ε), for any ε > 0, where the constant of proportionality depends on d, ε,
and the maximum degree of the polynomials defining the surfaces.

In contrast, computing such a cell within a comparable time bound remains an
open problem.

COORDINATED MOTION PLANNING

Another class of motion-planning problems involves coordinated motion planning of
several independently moving systems. Conceptually, this situation can be handled
as just another special case of the general problem: Consider all the moving objects
as a single system, with k =

∑t
i=1 ki degrees of freedom, where t is the number

of moving objects, and ki is the number of degrees of freedom of the ith object.
However, k will generally be too large, and the problem then will be more difficult
to tackle (see, e.g., Section 51.1.2).

A better approach is as follows [SS91]. Let B1, . . . , Bt be the given independent
objects. For each i = 1, . . . , t, construct the free configuration space F (i) for Bi
alone (ignoring the presence of all other moving objects). The actual free configu-
ration space F is a subset of

∏t
i=1 F (i). Suppose we have managed to decompose

each F (i) into subcells of constant description complexity. Then F is a subset of
the union of Cartesian products of the form c1 × c2 × · · · × ct, where ci is a subcell
of F (i).
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We next compute the portion of F within each such product. Each such sub-
problem can be intuitively interpreted as the coordinated motion planning of our
objects, where each moves within a small portion of space, amidst only a constant
number of nearby obstacles; so these subproblems are much easier to solve. More-
over, in typical cases, for most products P = c1×c2×· · ·×ct the problem is trivial,
because P represents situations where the moving objects are far from one another,
and so cannot interact at all, meaning that F∩P = P . The number of subproblems
that really need to be solved will be relatively small.

The connectivity graph that represents F is also relatively easy to construct.
Its nodes are the connected components of the intersections of F with each of
the above cell products P , and two nodes are connected to each other if they are
adjacent in the overall F . In many typical cases, determining this adjacency is easy.

As an example, one can apply this technique to the coordinated motion plan-
ning of k disks moving in a planar polygonal environment bounded by n edges, to
get a solution with O(nk) running time [SS91]. Since this problem has 2k degrees
of freedom, this is a significant improvement over the bound O(n2k log n) yielded
by Canny’s general algorithm.

See [ABS+99] for another treatment of coordinated motion planning, for two
or three general independently moving robots, where algorithms that are also faster
than Canny’s general technique are developed.

UNLABELED MOTION PLANNING

A recent variant of the coordinated motion-planning problem considers a collection
of m identical and indistinguishable moving objects. Given a set of m initial and m
final placements for the objects, the goal is to find a collision-free path for the
objects. In contrast to the standard (labeled) formulation of the problem, here we
are not interested in a specific assignment between robots and final placements as
long as each final placement is occupied by some robot at the end of the motion.

In general, the unlabeled problem is PSPACE-hard [SH15] (as well as several
simplified variants of the problem) for the case of unit squares. In contrast, the set-
ting with unit disks can be solved efficiently, if one makes simplifying assumptions
regarding the separation among the initial and final placements of the robots, and
sometimes also between these placements and the obstacles. Adler et al. [AB+15]
give an O(m2 +mn)-time algorithm that solves the problem for the case of simple
polygonal environments. Turpin et al. [TuMK14] present an O(m4 + m2n2)-time
algorithm (with some additional poly-logarithmic factors), which also guarantees
to return a solution that minimizes the length of the longest path of an individual
robot. More recently, Solovey et al. [SYZH15] devised an algorithm with similar
running time, which minimizes the sum of lengths of the individual paths. In partic-
ular, their algorithm returns a near-optimal solution whose additive approximation
factor is O(m).

A ROD IN A 3D POLYHEDRAL ENVIRONMENT

This problem has five degrees of freedom (three of translation and two of rotation).
The complexity of F can be Ω(n4) [KO87] in such a setting. This bound has almost
been matched by Koltun [Kol05] who gave an O(n4+ε)-time algorithm to solve this
problem.
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MOTION PLANNING AND ARRANGEMENTS

As can be seen from the preceding subsections, motion planning is closely related
to the study of arrangements of surfaces in higher dimensions. Motion planning
has motivated many problems in arrangements, such as the problem of bounding
the complexity of, and designing efficient algorithms for, computing a single cell
in an arrangement of n low-degree algebraic surface patches in d dimensions, the
problem of computing the union of geometric objects (the expanded obstacles),
and the problem of decomposing higher-dimensional arrangements into subcells
of constant description complexity. These problems are only partially solved and
present major challenges in the study of arrangements. See Chapter 30 and [SA95]
for further details.

IMPLEMENTATION OF COMPLETE SOLUTIONS

Previously, complete solutions have rarely been implemented, mainly due to lack
of the nontrivial infrastructure that is needed for such tasks. With the recent
advancement in the laying out of such infrastructure, and in particular with tools
now available in the software libraries LEDA [MN99] and CGAL [CGAL] (cf. Chap-
ter 70), implementing complete solutions to motion planing has become feasible. A
summary of progress and prospects in this domain can be found in [Hal02, FHW12].

SUMMARY

Some of the above results are summarized in Table 51.2.1. For each specific system,
only one or two algorithms are listed.

TABLE 51.2.1 Summary of motion planning algorithms.

SYSTEM MOTION ENVIRONMENT df RUNNING TIME

Convex k-gon translation planar polygonal 2 O(N logm)

Arbitrary k-gon translation planar polygonal 2 O(kn log2 n)

General 2 O(λs+2(n) log
2 n)

Line segment trans & rot planar polygonal 3 O(n2 logn)

Convex k-gon trans & rot planar polygonal 3 O(k4nλ3(n) logn)

O(knλ6(kn) logn)

Arbitrary k-gon trans & rot planar polygonal 3 O((kn)2+ε)

Convex polytope translation 3D polyhedral 3 O(kmn log2m)

Arbitrary polytope translation 3D polyhedral 3 O((kn)2+ε)

Ball 3D polyhedral 3 O(n2+ε)

General 3 D.O.F. 3 O(N2+ε)

51.2.4 PRACTICAL APPROACHES TO MOTION PLANNING

When the number of degrees of freedom is even moderately large, exact and com-
plete solutions of the motion planning problem are very inefficient in practice, so one
seeks heuristic or other incomplete but practical solutions. Several such techniques
have been developed.
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Potential field. The first heuristic regards the robot as moving in a potential
field [Kha86] induced by the obstacles and by the target placement, where the
obstacles act as repulsive barriers, and the target as a strongly attracting source.
By letting the robot follow the gradient of such a potential field, we obtain a motion
that avoids the obstacles and that can be expected to reach the goal. An attractive
feature of this technique is that planning and executing the desired motion are done
in a single stage. Another important feature is the generality of the approach; it
can easily be applied to systems with many degrees of freedom.

This technique, however, may lead to a motion where the robot gets stuck
at a local minimum of the potential field, leaving no guarantee that the goal will
be reached (see [KB91] and references within). To overcome this problem, several
solutions have been proposed. One is to try to escape from such a “potential
well” by making a few small random moves, in the hope that one of them will put
the robot in a position from which the field leads it away from this well. Another
approach is to use the potential field only for subproblems where the initial and final
placements are close to each other, so the chance to get stuck at a local minimum
is small.

Probabilistic roadmaps. Over the past two decades, this method has picked
up momentum, and has become the method of choice in many practical motion-
planning systems [BKL+97, KSLO96, Lat91, CBH+05, Lav06, KLa08, MLL08].

The general approach is to generate many random free placements throughout
the workspace, and to apply any “local” simple-minded planner to plan a mo-
tion between pairs of these placements; one may use for this purpose the potential
field approach, or simply attempt to connect the two placements by a straight line
segment in configuration space. If the configuration space is sufficiently densely
sampled, enough local free paths will be generated, and they will form a roadmap,
in the sense of Section 51.1.1, which can then be used to perform motion plan-
ning between any pair of input placements. These algorithms are categorized as
single-query algorithms such as the Rapidly Exploring Random Tree (RRT) [LK99],
or multi-query algorithms such as the Probabilistic Roadmap Method [KSLO96].
Many of these algorithms are probabilistically complete. Namely, the probability
that they will return a solution (if one exists) approaches one as the number of
samples tends to infinity. By now, both asymptotically optimal and asymptotically
near-optimal variants were devised (see e.g., [KF11, JSCP15, SH14, DB14] for a
partial list). We say that an algorithm is asymptotically (near)-optimal if the cost of
the solution returned by the algorithm (nearly) approaches the cost of the optimal
solution as the number of samples tends to infinity.

Interestingly, sampling-based motion-planning algorithms have been applied
to molecular simulations. Specifically, these algorithms have been used for the
analysis of conformational transitions, protein folding and unfolding, and protein-
ligand interactions [ASC12].

A significant problem that arises is how to sample well the free configuration
space; informally, the goal is to detect all “tight” passages within F , which will be
missed unless some placements are generated near them. See [ABD+98, BKL+97,
HLM99, KSLO96, KL01] and Chapter 52 for more details concerning this technique,
its extensions and variants.

The geometric methods for exact and complete analysis of low-dimensional
configuration spaces as described so far in this chapter are combined in [SHRH13,
SHH15] with the practical, considerably simpler sampling-based approaches that
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are appropriate for higher dimensions. This is done by taking samples that are
entire low-dimensional manifolds of the configuration space and that capture the
connectivity of the configuration space much better than isolated point samples.
To do so, on each low-dimensional manifold an arrangement is computed, which
subdivides the manifold into free and forbidden regions. Subsequently, geometric
algorithms for analysis of low-dimensional manifolds provide powerful primitive
operations to construct a roadmap-like data structure. Experiments show that
although this hybrid approach uses heavy machinery of exact algebraic computing,
it significantly outperforms the sampling-based algorithms in tight settings, where
the robots need to move in densely cluttered environments.

Fat obstacles. Another technique exploits the fact that, in typical layouts, the
obstacles can be expected to be “fat” (this has several definitions; intuitively, they
do not have long and skinny parts). Also, the obstacles tend not to be too clustered,
in the sense that each placement of the robot can interact with only a constant
number of obstacles. These facts tend to make the problem easier to solve in such
so-called realistic input scenes. See [SHO93] for the case of fat obstacles, [SOBV98]
for the case of environments with low obstacle density, and [BKO+02] for two other
models of realistic input scenes.

51.3 VARIANTS OF THE MOTION PLANNING PROBLEM

We now briefly review several variants of the basic motion planning problem, in
which additional constraints are imposed on the problem. Further material on
many of these problems can be found in Chapter 52.

OPTIMAL MOTION PLANNING

The preceding section described techniques for determining the existence of a
collision-free motion between two given placements of some moving system. It
paid no attention to the optimality of the motion, which is an important consider-
ation in practice. There are several problems involved in optimal motion planning.
First, optimality is a notion that can be defined in many ways, each of which leads
to different algorithmic considerations. Second, optimal motion planning is usually
much harder than motion planning per se.

SHORTEST PATHS

The simplest case is when the moving system B is a single point. In this case the
cost of the motion is simply the length of the path traversed by the point (normally,
we use the Euclidean distance, but other metrics have been considered as well). We
thus face the problem of computing shortest paths amidst obstacles in a 2D or
3D environment.

The planar case. Let V be a closed planar polygonal environment bounded by n
edges, and let s (the “source”) be a point in V . For any other point t ∈ V , let
π(s, t) denote the (Euclidean) shortest path from s to t within V . Finding π(s, t)
for any t is facilitated by construction of the shortest path map SPM(s, V ) from s
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in V , a decomposition of V into regions detailed in Chapter 33. Computing the
map can be done in optimal O(n log n) time [HS99].

The same problem may be considered in other metrics. For example, it is easier
to give an O(n log n) algorithm for the shortest path problem under the L1 or L∞
metric. See Chapter 33. Another issue that arrises in this context is the clearance
of the path (namely, the minimal distance to the closest obstacle). The Euclidean
shortest path may touch obstacle boundaries and therefore its clearance at certain
points may be zero. Conversely, if maximizing the distance from the obstacles is the
main optimization criterion, then the path can be computed by constructing a min-
imum spanning tree in the Voronoi diagram of the obstacles [OY85] in O(n log n)
time. Wein et al. [WBH07] considered the problem of computing shortest paths
that have a minimal given clearance. Specifically, they precompute a data structure
called the visibility Voronoi complex in time O(n2 log n) which allows to compute
shortest paths that have clearance at least δ, for any specified parameter δ. An
alternative measure to quantify the tradeoff between the length and the clearance
was suggested by Wein et al. [WBH08] where the optimization criterion is minimiz-
ing the reciprocal of the clearance, integrated over the length of the path. While it
is still not known whether the problem of computing the optimal path in this mea-
sure is NP-hard, only recently, the first polynomial-time approximation algorithm
for this problem was proposed [AFS16]; it produces a (1+ ε)-approximation in time

O(n
2

ε2 log n
ε ).

The three-dimensional case. Let V be a closed polyhedral environment bounded
by a total of n faces, edges, and vertices. Again, given two points s, t ∈ V , we wish
to compute the shortest path π(s, t) within V from s to t. Here π(s, t) is a polygonal
path, bending at edges (sometimes also at vertices) of V . To compute π(s, t), we
need to solve two subproblems: to find the sequence of edges (and vertices) of V
visited by π(s, t) (the shortest-path sequence from s to t), and to compute the actual
points of contact of π(s, t) with these edges. These points obey the rule that the
incoming angle of π(s, t) with an edge is equal to the outgoing angle. Hence, given
the shortest-path sequence of length m, we need to solve a system of m polynomial
equations in m variables in order to find the contact points; each equation turns
out to be quadratic. This can be solved either approximately, using an iterative
scheme, or exactly, using techniques of computational real algebraic geometry; the
latter method requires exponential time. Even the first, more “combinatorial,”
problem of computing the shortest-path sequence is NP-hard [CR87], so the general
shortest-path problem is certainly much harder in three dimensions.

Many special cases of this problem, with more efficient solutions, have been
studied. The simplest instance is the problem of computing shortest paths on
a convex polytope. Schreiber and Sharir [SS08] present an optimal O(n log n)
algorithm, following earlier near-quadratic solutions [MMP87, CH96] and a simple
linear-time approximation [AHSV97]. A related problem involves shortest paths on
a polyhedral terrain, where near-quadratic exact algorithms, as well as more efficient
approximation algorithms are known [MMP87, VA01, LMS97]. Approximation
algorithms were also developed for computing shortest paths in weighted polyhedral
surfaces [ADG+10] and in polyhedral domains [ADMS13]. See also Chapter 33.

VARIOUS OPTIMAL MOTION PLANNING PROBLEMS

Suppose next that the moving system B is a rigid body free only to translate in
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two or three dimensions. Then the notion of optimality is still well defined—it
is the total distance traveled by (any reference point attached to) B. One can
then apply the same techniques as above, after replacing the obstacles by their
expanded versions. For example, if B is a convex polygon in the plane, and the
obstacles are m pairwise openly-disjoint convex polygons A1, . . . , Am, then we form
the Minkowski sums Ki = Ai ⊕ (−B), for i = 1, . . . ,m, and compute a shortest
path in the complement of their union. Since the Ki’s may overlap, we first need
to compute the complement of their union, as above. A similar approach can be
used for planning shortest motion of a polyhedron translating amidst polyhedra in
3-space, etc.

If B admits more complex motions, then the notion of optimality begins to
be fuzzy. For example, consider the case of a line segment (“rod”) translating
and rotating in a planar polygonal environment. One could measure the cost of a
motion by the total distance traveled by a designated endpoint (or the centerpoint)
of B, or by a weighted average between such a distance and the total turning angle
of B, etc. A version of this problem has been shown to be NP-hard [AKY96]. See
Chapter 33.

The notion of optimality gets even more complicated when one introduces kine-
matic constraints on the motion of B (for example, bounds on the radius of the
curvature of the path [AW01, ABL+02]). It is then often challenging even without
obstacles; see Chapter 52.

MOTION PLANNING FOR A TETHERED ROBOT

An interesting family of motion-planning problems occurs when the robot is an-
chored to a fixed base point by a finite tether. In the basic form of this problem,
the tether is not an obstacle (the robot may drive over it), and the additional con-
straint is to ensure that the robot does not get too far from the base. The objective
is to compute the shortest path of the robot between any two given points while
satisfying the constraint that the distance between the base and the robot following
the tether does not exceed the tether’s length. Xu et al. [XBV15] study the problem
in the plane and give an algorithm that runs in time O(kn2 log n) where n is the
number of obstacle vertices and k is the number of segments in the polyline defin-
ing the initial tether configuration. Salzman and Halperin [SH15] considered the
problem of preprocessing a planar workspace to efficiently answer multiple queries.
Their work relies on an extension of the visibility graph which encodes for each
vertex of the graph, all homotopy classes that can be used to reach that vertex
using a tether of predefined length.

A different variant was considered by Hert and Lumelsky [HL99] who study the
motion of multiple tethered point robots in a workspace with no obstacles. This
problem focuses on allowing each robot to reach a goal without undue tangling.
They devised algorithms which take start and goal configurations for the robots
and produce an ordering of the robots. In the planar case [HL96], the tethers
are tangled, but in a prespecified way, and the problem is to find an ordering
for the robots’ motions such that the goal is reached with the specified tether
locations. This is done in O(n3 log n) time where n is the number of robots. In the
spatial case [HL99] (applicable to multiple underwater vehicles), the tethers remain
untangled, and the problem is to find an ordering in which to move the robots such
that tangling does not occur. This algorithm runs in O(n4) time.
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EXPLORATORY MOTION PLANNING

If the environment in which the robot moves is not known to the system a priori,
but the system is equipped with sensory devices, motion planning assumes a more
“exploratory” character. If only tactile (or proximity) sensing is available, then a
plausible strategy might be to move along a straight line (in physical or configu-
ration space) directly to the target position, and when an obstacle is reached, to
follow its boundary until the original straight line of motion is reached again. This
technique has been developed and refined for arbitrary systems with two degrees
of freedom (see, e.g., [LS87]). It can be shown that this strategy provably reaches
the goal, if at all possible, with a reasonable bound on the length of the motion.
This technique has been implemented on several real and simulated systems, and
has applications to maze-searching problems.

One attempt to extend this technique to a system with three degrees of freedom
is given in [CY91]. This technique computes within F a certain one-dimensional
skeleton (roadmap) R which captures the connectivity of F . The twist here is
that F is not known in advance, so the construction of R has to be done in an
incremental, exploratory manner. This exploration can be implemented in a con-
trolled manner that does not require too many “probing” steps, and which enables
the system to recognize when the construction of R has been completed (if the goal
has not been reached beforehand).

If vision is also available, then other possibilities need to be considered, e.g.,
the system can obtain partial information about its environment by viewing it from
the present placement, and then “explore” it to gain progressively more information
until the desired motion can be fully planned. Results that involve such model-
building tasks can be found in [GMR97, ZF96]. Online algorithms for mobile robots
that use vision for searching a target and for exploring a region in the plane are
surveyed in [GK10]. Variants of this basic problem have been introduced which
include the use of only a discrete number of visibility queries [FS10, FMS12] or
minimizing the number of turns that the robot performs while exploring [DFG06].

This problem is closely related to the problem of coverage in which the robot
is equipped with the task of determining a path that passes over all points of an
area or volume of interest while avoiding obstacles. For surveys on the subject
see [Cho01, GC13].

This problem becomes substantially harder when errors in localization and in
mapping exist. However, by combining localization and mapping into one process,
the error converges. This paradigm, called Simultaneous Localization and Mapping,
or SLAM, is the computational problem of constructing or updating a map of an
unknown environment while simultaneously keeping track of the robot’s location
within it. Pioneering work in this field include the work by Smith et al. [SC86] on
representing and estimating spatial uncertainty. This has become a thriving area
of research; see, e.g., the surveys [DB06a, DB06b] and Chapter 35.

TIME-VARYING ENVIRONMENTS

Interesting generalizations of the motion planning problem arise when some of the
obstacles in the robot’s environment are assumed to be moving along known trajec-
tories. In this case the robot’s goal will be to “dodge” the moving obstacles while
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moving to its target placement. In this “kinetic” motion planning problem, it is
reasonable to assume some limit on the robot’s velocity and/or acceleration. Two
studies of this problem are [SM88, RS94]. They show that the problem of avoiding
moving obstacles is substantially harder than the corresponding static problem.
By using time-related configuration changes to encode Turing machine states, they
show that the problem is PSPACE-hard even for systems with a small and fixed
number of degrees of freedom. However, polynomial-time algorithms are available
in a few particularly simple special cases. Another variant of this problem involves
movable obstacles, which the robot B can, say, push aside to clear its passage.
Again, it can be shown that the general problem of this kind is PSPACE-hard,
some special instances are NP-hard, and polynomial-time algorithms are available
in certain other special cases [Wil91, DZ99]. There exist sampling-based planners
(see., e.g., [NSO06]) that solve this problem successfully using heuristics to provide
efficient solutions in time-varying environments encountered in practical situations.

COMPLIANT MOTION PLANNING

In realistic situations, the moving system has only approximate knowledge of the
geometry of the obstacles and/or of its current position and velocity, and it has
an inherent amount of error in controlling its motion. The objective is to devise a
strategy that will guarantee that the system reaches its goal, where such a strat-
egy usually proceeds through a sequence of free motions (until an obstacle is hit)
intermixed with compliant motions (sliding along surfaces of contacted obstacles)
until it can be ascertained that the goal has been reached.

A standard approach to this problem is through the construction of pre-images
(or back projections) [LPMT84]. Specific algorithms that solve various special cases
of the problem can be found in [Bri89, Don90, FHS96]. See Chapter 52.

NONHOLONOMIC MOTION PLANNING

Another realistic constraint on the possible motions of a given system is kinematic
(or kinodynamic). For example, the moving object B might be constrained not
to exceed certain velocity or acceleration thresholds, or has only limited steering
capability. Even without any obstacles, such problems are usually quite hard, and
the presence of (stationary or moving) obstacles makes them extremely complicated
to solve. These so-called nonholonomic motion planning problems are usually han-
dled using tools from control theory. A relatively simple special case is that of a
car-like robot in a planar workspace, with a bound on the radius of curvature of its
motion. Issues like reachability between two given placements (even in the absence
of obstacles) raise interesting geometric considerations, where one of the goals is to
identify canonical motions that always suffice to get to any reachable placement.
See [Lat91, LC92, Lau98] for several books that cover this topic, and Chapter 52.
Kinodynamic motion planning is treated in [CDRX88, CRR91]. The problem of
finding a shortest curvature-constrained path in a polygonal domain with holes was
recently shown to be NP-Hard [KKP11]. Simplified cases of this problem as well as
approximation algorithms are treated in [AW01, RW98, ABL+02, ACMV12, BK05,
BB07, KC13].
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GENERAL TASK AND ASSEMBLY PLANNING

In task planning problems, the system is given a complex task to perform, such as
assembling a part from several components or restructuring its workcell into a new
layout, but the precise sequence of substeps needed to attain the final goal is not
specified and must be inferred by the system.

Suppose we want to manufacture a product consisting of several parts. Let S
be the set of parts in their final assembled form. The first question is whether
the product can be disassembled by translating in some fixed direction one part
after the other, so that no collision occurs. An order of the parts that satisfies this
property is called a depth order . It need not always exist, but when it does, the
product can be assembled by translating the constituent parts one after another,
in the reverse of the depth order, to their target positions. Products that can be
assembled in this manner are called stack products [WL94]. The simplicity of the
assembly process makes stack products attractive to manufacture. Computing a
depth order in a given direction (or deciding that no such order exists) can be done
in O(m4/3+ε) time, for any ε > 0, for a set of polygons in 3-space with m vertices
in total [BOS94]. Faster algorithms are known for the special cases of axis-parallel
polygons, c-oriented polygons, and “fat” objects.

Many products, however, are not stack products, that is, a single direction
in which the parts must be moved is not sufficient to (dis)assemble the product.
One solution is to search for an assembly sequence that allows a subcollection of
parts to be moved as a rigid body in some direction. This can be accomplished in
polynomial time, though the running time is rather high in the worst case: it may
require Ω(m4) time for a collection of m tetrahedra in 3-space [WL94]. A more
modest, but considerably more efficient, solution allows each disassembly step to
proceed in one of a few given directions [ABHS96]. It has running time O(m4/3+ε),
for any ε > 0.

A general approach to assembly planning, based on the concept of a nondirec-
tional blocking graph [WL94], is proposed in [HLW00]. It is called the motion space
approach, where the motion space plays a role parallel to configuration space in mo-
tion planning. Every point in the motion space represents a possible (dis)assembly
sequence motion, all having the same number of degrees of freedom. The motion
space is decomposed into an arrangement of cells where in each cell the blocking
relations among the parts are invariant, namely, for a every pair of parts P,Q, P
will either hit Q for all the possible motions of a cell, or avoid it. It thus suffices
to check one specific motion sequence from each cell, leading to a finite complete
solution.

Often we restrict ourselves to two-handed partitioning steps, meaning that we
partition the given assembly into two complementing subsets each treated as a
rigid body. Even for two-handed partitioning, if we allow arbitrary translational
motions the problem becomes NP-hard [KK95]. When we restrict ourselves to infi-
nite translations, efficient algorithms together with exact implementations [FH13]
exist. For a recent survey on assembly planning, see [Jim13]. Sampling-based
motion-planning algorithms (see Section 51.2.4) have been used to (heuristically)
overcome the hardness of assembly planning (see, e.g., [CJS08, SHH15]).

See Chapter 52 and [HML91] for further details on assembly sequencing, and
Chapter 59 for related problems.
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ON-LINE MOTION PLANNING

Consider the problem of a point robot moving through a planar environment filled
with polygonal obstacles, where the robot has no a priori information about the
obstacles that lie ahead. One models this situation by assuming that the robot
knows the location of the target position and of its own absolute position, but that
it only acquires knowledge about the obstacles as it contacts them. The goal is to
minimize the distance that the robot travels. See also the discussion on exploratory
motion planning above.

Because the robot must make decisions without knowing what lies ahead, it is
natural to use the competitive ratio to evaluate the performance of a strategy. In
particular, one would like to minimize the ratio between the distance traveled by the
robot and the length of the shortest start-to-target path in that scene. The competi-
tive ratio is the worst-case ratio achieved over all scenes having a given source-target
distance. A special case of interest is when all obstacles are axis-parallel rectangles
of width at least 1 located in Euclidean plane. Natural greedy strategies yield a
competitive ratio of Θ(n), where n is the Euclidean source-target distance. More
sophisticated algorithms obtain competitive ratios of Θ(

√
n) [BRS97]. Randomized

algorithms can do much better [BBF+96]. Through the use of randomization, one
can transform the case of arbitrary convex obstacles [BRS97] to rectilinearly-aligned
rectangles, at the cost of some increase in the competitive ratio. If the scene is not
on an infinite plane but rather within some finite rectangular “warehouse,” and
the start location is one of the warehouse corners, then the competitive ratio drops
to log n [BBFY94].

COLLISION DETECTION

Although not a motion planning problem per se, collision detection is a closely re-
lated problem in robotics [LG98]. It arises, for example, when one tries to use some
heuristic approach to motion planning, where the planned path is not guaranteed
apriori to be collision-free. In such cases, one wishes to test whether collisions occur
during the proposed motion. Collision detection is also used as a primitive oper-
ation in sampling-based algorithms (see Section 51.2.4 and Chapter 52). Several
methods have been developed, including: (a) Keeping track of the closest pair of
features between two objects, at least one of which is moving, and updating the clos-
est pair, either at discrete time steps, or using kinetic data structures (Chapter 54).
(b) Using a hierarchical representation of more complex moving systems, by means
of bounding boxes or spheres, and testing for collision recursively through the hier-
archical representation (see, e.g., [LGLM00, TaMK14] and references therein). See
Chapter 40 for more details.

51.4 SOURCES AND RELATED MATERIAL

SURVEYS

The results not given an explicit reference above, and additional material on motion
planning and related problems may be traced in these surveys:
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[Lat91, CBH+05, Lav06, KLa08, MLL08]: Books or chapters of books devoted to
robot motion planning.

[HSS87]: A collection of early papers on motion planning.

[SA95]: A book on Davenport-Schinzel sequences and their geometric applications;
contains a section on motion planning.

[HS95b]: A review on arrangements and their applications to motion planning.

[SS88, SS90, Sha89, Sha95, AY90]: Several survey papers on algorithmic motion
planning.

[AS00b, AS00c]: Surveys on Davenport-Schinzel sequences and on higher-dimensional
arrangements.

RELATED CHAPTERS

Chapter 29: Voronoi diagrams and Delaunay triangulations
Chapter 30: Arrangements
Chapter 33: Shortest paths and networks
Chapter 38: Computational and quantitative real algebraic geometry
Chapter 40: Collision and proximity queries
Chapter 52: Robotics
Chapter 54: Modeling motion
Chapter 70: Two computation geometry libraries: LEDA and CGAL
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[ACMV12] H.-K. Ahn, O. Cheong, J. Matoušek, and A. Vigneron. Reachability by paths of

bounded curvature in a convex polygon. Comput. Geom., 45(1-2): 21–32, 2012.
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