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Abstract

In a randomized incremental construction of the minimization diagram of a collection of n
hyperplanes in R

d, the hyperplanes are inserted one by one, in a random order, and the min-
imization diagram is updated after each insertion. We show that if we retain all the versions
of the diagram, without removing any old feature that is now replaced by new features, the
expected combinatorial complexity of the resulting overlay does not grow significantly. Specif-
ically, this complexity is O(n⌊d/2⌋ log n), for d odd, and O(n⌊d/2⌋), for d even. The bound is
asymptotically tight in the worst case for d even, and we show that this is also the case for
d = 3. Several implications of this bound, mainly its relation to approximate halfspace range
counting, are also discussed.
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1 Introduction

The overlay of minimization diagrams. Let H be a set of n non-vertical hyperplanes in R
d.

The lower envelope EH of H is the boundary of the intersection of the lower halfspaces bounded by
the hyperplanes of H. Alternatively, regarding each hyperplane as the graph of a linear function
of x1, . . . , xd−1, EH is the graph of the pointwise minimum of these functions. EH is the boundary
of a convex polyhedron with at most n facets, so, by the Upper Bound Theorem (see [18]), its
overall combinatorial complexity (the number of its faces of all dimensions) is O(n⌊d/2⌋), where the
constant of proportionality depends on d. This bound is asymptotically tight in the worst case.

The minimization diagram MH of H is the projection of EH onto the hyperplane xd = 0. It
is a convex subdivision of this space, consisting of at most n full-dimensional cells, with a total of
O(n⌊d/2⌋) faces of all dimensions.

EH and MH can be constructed using a standard randomized incremental algorithm [9]. In
this approach, we draw a random permutation of H, and insert the hyperplanes of H one by one
in this order. During the process, we maintain the lower envelope and the minimization diagram
of the set of hyperplanes inserted so far, and update these structures after each insertion. It is well
known [9] that the expected number of faces, of all dimensions, of all the versions of the envelope,
during the entire randomized process, is only O(n⌊d/2⌋) (where expectation is with respect to the
drawn random permutation). The algorithm itself is implemented using conflict lists, which store,
for certain features f of the arrangement, the list of all hyperplanes not yet inserted, which lie (at
least partially) below f , so the insertion of any of them “destroys” f . The expected running time
of the algorithm is proportional to the expected overall size of these lists, which is shown to be
O(n⌊d/2⌋), for d ≥ 4, and O(n log n), for d = 3. See [9] for details.

Suppose now that we do not discard any transient face of the envelope, and retain all these faces,
even though they are (partially or fully) eliminated by further insertions of hyperplanes. When
projected onto the hyperplane xd = 0, we obtain an overlay of all versions of the minimization
diagram of H. For a bad insertion order, the complexity of such an overlay can be quite large (as a
matter of fact, even without overlaying the incremental versions, the overall number of faces created
during the insertion process can be quite large in a bad insertion order). However, as we show in
this paper, the expected complexity of the overlay is quite small for a random insertion order.
Specifically, we show that this expected complexity is O(n⌊d/2⌋ log n), for d odd, and O(n⌊d/2⌋),
for d even. Furthermore, we show that this bound is worst-case tight for d = 3 (it is clearly also
worst-case tight for every even d ≥ 4). We believe that the bound is tight for every odd d, but so
far this remains only a conjecture.

In an earlier version of this paper [16], we have obtained this bound (namely, the bound
O(n log n)) only for d = 3, using a more involved proof. The present version extends the result to
all dimensions, and simplifies the proof.

Using duality, we obtain that the same bounds hold for the expected complexity of the overlay
of all the faces of the normal (or Gaussian) diagram that are generated on the unit sphere S

d−1

during a randomized incremental construction of the d-dimensional convex hull of a set of n points
in R

d.
Moreover, we recall that the Voronoi diagram of a set P of n points in R

d is the minimization
diagram of a collection of n hyperplanes in R

d+1 (all tangent to the reflection of the standard
paraboloid); see [11]. It follows that the expected complexity of the overlay of all the Voronoi faces
that are generated during a randomized incremental construction of the Voronoi diagram of P is
O(n⌈d/2⌉ log n), for d even, and O(n⌈d/2⌉), for d odd.
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Motivation and background. The overlay of the minimization diagrams, as defined above, has
the following useful property. Denote by π = (h1, h2, . . . , hn) the random insertion permutation,
and let f be a face of the overlay. Then there is a fixed subsequence πf = (hi1 , hi2 , . . . , hik)
of π, so that, for every x ∈ f , the hyperplanes in πf are the prefix minima of the sequence
(h1(x), h2(x), . . . , hn(x)); that is, πf consists of exactly those hyperplanes hj for which hj(x) ≤ hi(x)
for each i < j and for each x ∈ f . Since π is a random permutation, the expected size of πf is only
O(log n). Hence, for any query point x ∈ R

d−1, locating the face f of the overlay which contains x
gives us the sequence of prefix minima of π at x. This allows us, in additional expected O(log n)
time, to answer queries of the following form: Given a point w ∈ R

d, find the first hyperplane of
H (according to the order of π) that passes below w.

Answering queries of this form is needed when applying Cohen’s technique [10] for approximate
halfspace range counting. That is, given a set P of n points in R

d, and a parameter ε > 0, we
want to preprocess P into a data structure, so that, given a query halfspace H, we can compute
an approximate count M that satisfies

(1 − ε)|P ∩ H| ≤ M ≤ (1 + ε)|P ∩ H|.

Cohen’s technique is a general method which estimates the number of data objects in a given
range H as follows. One assigns to each data object, independently, a random weight, drawn from
an exponential distribution with density e−x, sorts the objects by their weights into a random
permutation, and then finds the minimum rank in that permutation of the objects in the query
range H. One then repeats this experiment O

(

1
ε2 log n

)

times, computes the average µ of the
weights of the minimum elements, and approximates |P ∩ H| by 1/µ. (Cohen [10] also proposes
several other estimators that have similar properties.) As shown in [10], this approximate count
lies, with high probability, within relative error ε of |P ∩ H|, in the above sense. See [10] for more
details.

To apply this machinery for approximate halfspace range counting in R
d, we need to solve the

following problem: Given a set P of n points in R
d in general position,1 and a random permutation

π of P (it is easily verified that the sorted order of the points of P according to their randomly
drawn weights is indeed a random permutation; see [10]), construct a data structure that can
answer efficiently halfspace minimum range queries of the form: Given a query halfspace H, find
the point of p ∈ P ∩ H of minimum rank in π (i.e., with the minimum value of π(p)). This can
be solved by dualizing the problem, turning P into a collection of n non-vertical hyperplanes, and
mapping each query halfspace H to a point (dual to the hyperplane bounding the range), so that
we want to find the minimum-rank hyperplane passing, say, below the query point. As explained
above, this can be done by locating the projection w∗ of the query point w onto xd = 0 in the
overlay of the minimization diagrams, thereby obtaining the sequence of prefix minima of π at w∗,
which can then be searched to find the desired minimum-rank hyperplane below w.

In an earlier version of the paper [16], which has catered only to the 3-dimensional case, we have
presented an algorithm that implements Cohen’s technique by constructing the overlay along the
lines described above. For the halfspace minimum range searching problem, the algorithm requires
O(n log n) expected storage and preprocessing, and answers a query in O(log n) expected time; the
storage and preprocessing bounds derive from our bound on the overlay complexity, as stated above.
While attempting to extend this technique to higher dimensions, we discovered that constructing the
overlay is (a) somewhat inefficient, and (b) not really required. In a companion paper [15], we show
how to answer halfspace range minimum queries using standard range searching techniques (that

1To simplify the presentation, we assume throughout the paper that the data objects (points or hyperplanes) are
in general position, in the sense discussed, e.g., in [8].
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is, cuttings). These techniques yield data structures with expected storage O(n⌊d/2⌋ log1−⌊d/2⌋ n),
while a query still takes O(log n) expected time.

We also note that recently Afshani and Chan [1] have applied our overlay bound, in three
dimensions, to obtain an optimal solution for the approximate halfspace range counting problem,
for the 3-dimensional case, which requires (ignoring the dependence on the approximation factor
ε) O(n) expected storage, O(n log n) expected preprocessing time, and answers an approximate
halfspace counting query in O(log(n/k)) expected time, where k is the actual count. Unlike the
approach based on Cohen’s technique, the algorithm of [1] uses a variety of random sources, not
just a random permutation of the input.

Finally, approximate halfspace range counting has by now several competing solutions, which
have been developed during the past several years, due to Aronov and Har-Peled [4, 5], Aronov and
Sharir [7] (see also [6]), Afshani and Chan [1] (only in three dimensions), and, as noted above, to
Kaplan et al. [15].

Our new bound on the complexity of the overlay of diagrams of these kinds is related to the
work of Guibas et al. [13] on randomized incremental construction of planar Voronoi diagrams.
They build a data structure storing the Voronoi regions that are generated during a randomized
incremental construction of the diagram, such that one can efficiently obtain the entire sequence
of Voronoi regions that contain a query point; that is, the sequence of nearest neighbors to the
query point, during the incremental construction. The time it takes to answer a query, using their
structure, is O(log2 n). Guibas et al. [13] pose it as an open problem to improve the query time
to O(log n). Our overlay bound in three dimensions provides a partial solution to this problem.
Namely, it leads to an alternative structure that can answer a point location query of this kind
in O(log n) time, at the cost of increasing its expected storage size to O(n log n); see the earlier
version [16] for details. In [15] we show how to answer queries of these form without using the
overlay, so that only linear space is required.

Another result related to our complexity bound for the overlay of minimization diagrams is due
to Agarwal et al. [3], who have developed a kinetic binary space partitioning (BSP) technique for a
set of moving interior-disjoint segments in the plane. To obtain this result, they consider the overlay
of the vertical decompositions of prefixes of a random insertion sequence of the segments, and give
a very simple proof that the expected complexity of this overlay is O(n log n). Let σ1, . . . , σk be
the segments that intersect the vertical ray ρ emanating upwards from an endpoint of a segment
s, in increasing order of their y-coordinates. Then σi crosses (a portion of) ρ in the overlay if and
only if s is inserted before σ1, . . . , σi. Since we add the segments in random order, the probability
that ρ crosses σi is 1/(i + 1). Therefore the expected number of segments crossing ρ is at most
∑n

i=1 1/(i + 1) = O(log n), and repeating it for each segment endpoint and each incident vertical
ray yields the asserted bound.

However, in our case, a crossing in the overlay of, say, Voronoi regions in R
2, is determined by

four of the inserted points, whereas a crossing of the kind studied by [3] is determined by only two

segments. This tends to make the analysis in our case more intricate, and even more so in higher
dimensions.

Agarwal, Ericksen, and Guibas [2], still in the context of developing kinetic BSP structures,
extend the result of Agarwal et al. [3] to intersecting segments. In this case the bound on the
complexity of the overlay of the vertical decomposition of the segments is O(n log n + k), where k
is the number of segment intersections. In three dimensions, they prove a bound of O(n log2 n + k)
on the complexity of the overlay of the vertical decomposition of n triangles, where k is the number
of intersections between the projections of the edges of the triangles onto the xy-plane.

Finally, we mention the work of Har-Peled [14], who has studied the randomized incremental
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construction of a (1/r)-cutting of an arrangement of n lines in the plane, using an approach that
does not delete old features of the cutting as new lines are inserted. Har-Peled shows that this does
not affect the asymptotic complexity of the resulting cutting, which remains O(r2).

2 Overlaying Incremental Minimization Diagrams

Before presenting our bounds, let us illustrate the scenario in the 3-dimensional case. We thus have
a set H of n non-vertical planes in R

3, and a random permutation π thereof. Let Hi denote the
subset of the first i elements in π, for i = 1, 2, . . . , n. Let EHi

and MHi
denote respectively the

lower envelope and the minimization diagram of Hi. We insert the planes of H one at a time, in
their π-order. After inserting the i-th plane, we construct EHi

and MHi
from EHi−1

and MHi−1
.

During the incremental construction, we collect the edges of the newly generated faces of all the
versions MHi

of the minimization diagram into a “global” set G. The overlay of the minimization
diagrams is thus the final arrangement A(G); clearly, each face f of A(G) is contained in a single
face of each of the minimization diagrams MHi

, so, knowing the face of A(G) that contains a query
point q gives us the sequence of the prefix minima of π at q.

An illustration of the process is given in Figures 1 and 2, for the special case of Voronoi
diagrams. (Recall that the Voronoi diagram of a set P of n points in the plane can be interpreted
as the minimization diagram of n planes in 3-space.) Figure 1 illustrates the evolution of the
Voronoi diagram as each of the original points (equivalently, dual planes) is inserted. The figure
also depicts a query disk D, which, in dual 3-space, becomes a point D∗. Each time the center of
the disk “moves” to a new Voronoi face, its nearest neighbor in the prefix set changes (and gets
closer), until this neighbor enters the disk. In dual 3-space, the sequence of nearest neighbors map
to the sequence of prefix minima at the xy-projection of D∗ (which is the center of the disk), and
the first nearest neighbor to enter the disk corresponds to the first plane to pass below D∗. The
first point to enter D is point 7 in the figure, and the prefix minima sequence at (the sequence of
nearest neighbors to) the center of the disk is (1, 4, 6, 7, 9).

The overlay of the minimization diagrams is depicted in Figure 2.

3 The Complexity of the Overlay of Minimization Diagrams

In this section we analyze the complexity of the overlay of incrementally constructed minimization
diagrams of a set of n hyperplanes in R

d. Our main result is:

Theorem 3.1 The expected combinatorial complexity of the overlay of the minimization diagrams

that arises during a randomized incremental construction of the lower envelope of n hyperplanes in

R
d, for d ≥ 2, is O(n⌊d/2⌋), for d even, and O(n⌊d/2⌋ log n), for d odd. The bounds for d even and

for d = 3 are tight in the worst case.

Proof: For d ≥ 2 and n ≥ 1, define Fd(n) as follows:

Fd(n) =

{

Cdn
⌊d/2⌋, d is even,

Cdn
⌊d/2⌋ log n, d is odd,

with appropriate constants of proportionality Cd that depend on d. We prove, by induction on d,
that Fd(n) is an upper bound on the complexity of the overlay of the minimization diagrams that
arise during a randomized incremental construction of the lower envelope of n hyperplanes in R

d.
(The choice of the constants Cd will follow from the inductive proof.)
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Figure 1: Randomized incremental construction of the Voronoi diagram of 10 points in the plane.
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Figure 2: The overlay arrangement A(G) for the special case of the Voronoi diagram of the point
set in Figure 1. As above, the sites are drawn as empty circles and are labeled by their ranks in π.
The query disk from the preceding figure is also shown. For the face f of the overlay containing its
center, the sequence of prefix minima at f is (1, 4, 6, 7, 9).

The basis of the induction is d = 2. In this case, the overlay is a subdivision of the line, and all
its vertices are projections of the vertices of the envelopes E(Hi). Since each newly inserted line
creates at most two new envelope vertices, the overall number of vertices is at most 2n = 2n⌊d/2⌋,
and the claim follows (with C2 = 2).

Let d ≥ 3 and suppose that the bound holds for any dimension d′ < d. It is easily seen that,
assuming general position of the input hyperplanes, the complexity of the overlay is proportional to
the number of its vertices. A vertex v of the overlay is the intersection of several faces f∗

1 , . . . , f∗
k of

various dimensions of different minimization diagrams, whose sum of co-dimensions in R
d−1 is d−1,

and each co-dimension is at least 1. Let fi denote the face of the corresponding lower envelope,
whose orthogonal projection onto R

d−1 is f∗
i , for i = 1, . . . , k. We assume, without loss of generality,

that the faces f1, . . . , fk are generated in this order during the incremental construction. We ignore
the case k = 1, since then v is a vertex of a single minimization diagram, and the expected overall
number of such vertices, over the entire incremental process, is O(n⌊d/2⌋), as follows, e.g., from [9].

Note that a fixed vertex v of the overlay can be generated by different insertion orders and by
different sequences of faces f1, . . . , fk. Each such face fi depends, in addition to the hyperplanes
that contain it, on the hyperplanes that delimit it (and pass above it). When we change the
insertion order of the hyperplanes, faces with the same containing hyperplanes, but with different
delimiting hyperplanes may form, so that their vertical projections still intersect at v.

In what follows we assume that each face of dimension up to d− 2 of the lower envelope E(H),
of any subset H of the hyperplanes, is triangulated into simplices, using, e.g., the bottom-vertex
triangulation technique (see, e.g., [17]). Any such simplex is determined in terms of at most some
constant number c = c(d) of hyperplanes. (For example, in d = 4 dimensions, we need up to
7 hyperplanes to define a triangle ∆: two hyperplanes define the 2-plane containing ∆, three
additional ones define a “real” edge of ∆ (an original edge of the 2-face containing ∆), and two
more hyperplanes define the bottom vertex of that 2-face.) Let g be a simplex in the triangulation
of a face f of E(H), for some subset H. Let W (g) be the vertical prism consisting of all the points
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in R
d that lie vertically below g in the xd-direction. Let C(g) denote the conflict list of g; it is the

subset of hyperplanes h that cross W (g); that is, each of them passes, at least partially, below g.
Let now v be a vertex of the overlay, formed by the intersection of k ≥ 2 faces of the evolving

minimization diagram. Then v lies in the projection of some simplex g in the bottom-vertex
triangulation of the highest face f1. As discussed above, v does not uniquely determines f1, and,
for similar reasons, g is also not necessarily uniquely defined.

For v to appear in the overlay, there must exist such a simplex g, of dimension d(g), that arises
in the bottom-vertex triangulation of some version of the envelope, such that v appears in the
overlay of E(C(g)) in the (d(g) + 1)-dimensional affine hull of W (g). (Indeed, since the face f1 is
the highest among the faces whose vertical projection contains v, all the hyperplanes which contain

the other faces f2, . . . , fk must belong to C(g).)
We fix a simplex g, as above, and condition the probability of the event that v appears in the

overlay, on the event that g shows up in the bottom-vertex triangulation of the envelope during
the construction. It follows from the preceding discussion that this conditional probability is equal
to the probability that v arises during a randomized incremental construction of E(C(g)), in the
(d(g)+1)-dimensional affine hull of W (g). (It is important to realize that restricting the problem to
C(g) may affect the other faces whose projections meet at v, because their delimiting hyperplanes
need not belong to C(g). Nevertheless, the hyperplanes containing these faces are all in C(g); using
this fact, the equality between the probabilities follows.) By the induction hypothesis, the expected
number of such vertices (conditioned on g appearing on the envelope) is at most Fd(g)+1(w(g)). (For
this to work, we need the following easy but crucial property: Conditioned on g being created, the
order in which the elements of C(g) are inserted is a random permutation.) Therefore the expected
complexity of the overlay of the minimization diagrams is at most

∑

g

Prob[g is generated] · Fd(g)+1(w(g)) , (1)

where the sum is over all possible simplices g that can show up in the bottom-vertex triangulation
of the lower envelope of up to c hyperplanes of H.

For simplicity of exposition, we bound the sum in Equation (1), assuming that all simplices g
are determined by exactly c hyperplanes. (For the complete analysis, we consider each possible
number c′ ≤ c of hyperplanes that determine g, repeat the argument given below for each c′, and
add up the bounds, all of which will have the same asymptotic form.) The simplex g is generated
if all c hyperplanes defining it appear in the permutation before any of the w(g) hyperplanes in its
conflict list. Thus the probability that g is generated is

c!w(g)!

(c + w(g))!
= O

(

1

(w(g) + 1)c

)

.

Let Nw denote the number of simplices g of dimension at most d − 2 and weight w = w(g) (which
are defined by c hyperplanes). Then, since Fd(g)+1(w(g)) ≤ Fd−1(w(g)), the expected number of
vertices in question (given in Equation (1)), is

O





∑

w≥0

NwFd−1(w)

(w + 1)c



 .

Let N≤w denote the number of simplices, as above, of weight at most w. Then the sum can be
rearranged as

O

(

n−c−1
∑

w=0

N≤w

[

Fd−1(w)

(w + 1)c
−

Fd−1(w + 1)

(w + 2)c

]

+
N≤n−cFd−1(n − c)

(n − c + 1)c

)

, (2)
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The Clarkson-Shor bound [9] implies that

N≤w = O ((w + 1)cN0(n/(w + 1))) = O
(

(w + 1)c−⌊d/2⌋n⌊d/2⌋
)

;

By definition, we have

Fd−1(w)

(w + 1)c
−

Fd−1(w + 1)

(w + 2)c
=

{

O
(

(w + 1)⌊(d−1)/2⌋−c−1
)

, for d odd,

O
(

(w + 1)⌊(d−1)/2⌋−c−1 log(w + 1)
)

, for d even.

(We assume here that c ≥ ⌊(d − 1)/2⌋; otherwise the sum is negative, and only the last term is
positive.) We substitute this in (2), observe that the last term of that equation is O(Fd−1(n)), and
consequently get that, for even d, the expected number of vertices of the overlay is

O





∑

w≥0

(w + 1)c−⌊d/2⌋n⌊d/2⌋ · (w + 1)⌊(d−1)/2⌋−c−1 log(w + 1)





= O
(

n⌊d/2⌋
)

·
∑

w≥0

(w + 1)⌊(d−1)/2⌋−⌊d/2⌋−1 log(w + 1) . (3)

For even d, the latter sum equals to
∑

w≥0(w+1)−2 log(w+1) = O(1). If d is odd then the expected
number of vertices of the overlay is bounded by a similar expression as in (3), except that the factor
log(w+1) does not appear, and the sum is then

∑

w≥0(w+1)−1 = O(log(w+1)) = O(log n). Recall
that we have ignored overlay vertices that are the projections of vertices of the envelope (although
such vertices did show up in the inductive bounds). The expected number of these vertices is
O

(

n⌊d/2⌋
)

, so including them in the overall count does not affect the asymptotic bounds. This
establishes the induction step, with an appropriate choice of the constants of proportionality Cd,
and thus completes the proof of the upper bound in the theorem.

A lower bound for the overlay complexity in R
3. The upper bound is clearly worst-case tight

for d even, since it (asymptotically) coincides with the tight worst-case bound for the complexity
of just the final version of the envelope. To complete the proof of Theorem 3.1, we next provide a
construction where the expected complexity of the overlay is Θ(n log n) in R

3.
Consider a set H of 2(n + 1) planes, partitioned into two sets U and L. The set U consists of

n+1 planes {u1, . . . un+1}, all tangent from above to a sufficiently small cylinder around the x-axis,
so that the directions of their normals span a sufficiently small angle near the positive z-direction.
The set U has the property that, for any subset U ′ ⊆ U , all the planes in U ′ appear on the lower
envelope of U ′, which consists of |U ′| strips parallel to the x-axis, separated by |U ′|−1 lines parallel
and very close to the x-axis.

The set L consists of n + 1 planes {q1, . . . qn+1}, all parallel to the y-axis. It is simpler to
present the construction of L by describing the cross-section of their arrangement within the xz-
plane, which is depicted in Figure 3. The line representing q1 emanates from the origin and has a
slightly negative slope. Suppose that the lines representing q1, . . . , qi have already been constructed.
We then construct the line representing qi+1 so that it emanates from a point on the x-axis that
lies to the right of the intersection point of qi−1 and qi (or of the origin, for i = 1), and its slope is
slightly smaller (more negative) than that of qi.

Let ξk, for k = 1, . . . , n, denote the intersection line of qk and qk+1. Clearly, ξk partially appears
on the lower envelope of any subset U ′ ∪ L′, with U ′ ⊆ U , L′ ⊆ L, such that L′ contains both qk

and qk+1. Let ξ∗k denote the xy-projection of ξk.
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Figure 3: The lower bound construction in R
3: a side view.

Let Xk be a random variable that is equal to the number of intersections of ξ∗k in the overlay
of the minimization diagrams that are constructed during a randomized incremental construction
of EH , at the step when ξk first appears on the lower envelope. That is, let (h1, . . . , h2(n+1)) be
a random permutation of H. Let i be the index such that either hi = qk and qk+1 = hj for some
j < i, or hi = qk+1 and qk = hj for some j < i. Then, when hi is added, ξk first appears as an edge
sk of the lower envelope of EHi

, and Xk counts the number of intersections of the projection s∗k of
sk with edges of the minimization diagrams MHj

, for j < i.
Clearly s∗k can intersect only projections of intersections between planes in U . Moreover, s∗k

intersects the projection of the intersection between ui and uj , for i < j, if and only if (i) ui and
uj are inserted before any of the planes ui+1, . . . , uj−1, and (ii) the first inserted plane among
q1, . . . , qk+1 is inserted after both ui and uj .

Let Aj , for j = 1, . . . , n, be the event that exactly j + 1 of the planes in U have been inserted
before the first plane among q1, . . . , qk+1 has been inserted. As just argued, if Aj happens then s∗k
intersects at least j lines in the overlay of the minimization diagrams.

The event Aj happens if and only if the planes of U and the planes q1, . . . , qk+1 appear in the
permutation in the following order. First appear j + 1 of the planes of U , then any single one of
the planes q1, . . . , qk+1, and then all other planes in U ∪ {q1, . . . , qk+1} in an arbitrary order. Let
pj be the probability that Aj happens. We thus have

pj =

(

n+1
j+1

)

(j + 1)!(k + 1)(n + k − j)!

(n + k + 2)!
,

9



and we have the following lower bound on the expectation E(Xk):

E(Xk) ≥
n

∑

j=1

jpj

=
n

∑

j=1

j

(

n+1
j+1

)

(j + 1)!(k + 1)(n + k − j)!

(n + k + 2)!

=
n

∑

j=1

j
(n + 1)!(k + 1)(n + k − j)!

(n − j)!(n + k + 2)!

=
(n + 1)!(k + 1)

(n + k + 2)!

n
∑

j=1

j
(n + k − j)!

(n − j)!

=
(n + 1)!(k + 1)!

(n + k + 2)!

n
∑

j=1

j

(

n + k − j

k

)

=
1

(

n+k+2
k+1

)

n
∑

j=1

j

(

n + k − j

k

)

=

(

n+k+1
k+2

)

(

n+k+2
k+1

) (4)

=
(n + 1)n

(k + 2)(n + k + 2)

≥
n

2(k + 2)
.

The equality (4) follows as a special case of the binomial identity (5.26) in [12].2 Now clearly

n
∑

k=1

E(Xk) ≥
n

∑

k=1

n

2(k + 2)
= Ω(n log n)

is a lower bound on the total expected number of intersections in the overlay of the minimization
digrams. This completes the proof of Theorem 3.1. 2

Remark: We conjecture, and leave it as an open problem to show, that the upper bounds of
Theorem 3.1 are worst-case tight for every (odd) dimension d.
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