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� For arbitrary irles, the number of inidenes is at mostO(m2=3n2=3+m6=11n9=11�(m3=n)+m + n), where �(n) = (log n)O(�2(n)), and where �(n) is the inverse Akermann fun-tion [1,5℄. This improves an older bound of O(m3=5n4=5+m+n), due to Clarkson et al. [9℄.In a reent study [1℄, the new bound is extended to ertain lasses of pseudo-irles, i.e.,losed Jordan urves, any two of whih interset at most twie, and of pseudo-parabolas,i.e., graphs of ontinuous totally de�ned funtions, any two of whih interset at mosttwie. In partiular, this inludes the ases of parabolas and of homotheti opies of any�xed onvex urve of onstant desription omplexity.� Finally, in one of the most general situations onsidered in the plane, for urves with `ddegrees of freedom' (as de�ned in [12℄; lines have d = 2 and irles d = 3), the numberof inidenes is at most O(md=(2d�1)n(2d�2)=(2d�1) +m + n) [12℄. This has been reentlyimproved for the speial ase of graphs of polynomials of maximum degree d� 1 [5, 7℄.Among the tehniques developed so far for obtaining upper bounds on inidene problems, thesimplest and most elegant is due to Sz�ekely [15℄, and is based on rossing numbers of graphsdrawn in the plane (see [11℄ for details). It yields diretly the bounds for lines, pseudolines, andunit irles, and is also used in a less diret manner in the derivation of the bounds for arbitraryirles, for pseudo-irles, and for urves with d degrees of freedom; see [1, 5, 12℄.Only reently, the study of inidenes between points and urves has extended to threedimensions [4, 13℄. In general, we onjeture that the number of inidenes in three dimensionsis never larger than the orresponding bound in the plane: If the urves are plane urves andall lie in a ommon plane, then one ahieves the planar bound. However, if the urves are notoplanar (in a sense that needs to be made more preise) then one expets that the number ofinidenes be smaller than in the planar ase.This has been substantiated by Sharir and Welzl [13℄, who have studied inidenes betweenpoints and lines in three dimensions. By projeting the on�guration onto some generi plane,they obtain a planar on�guration of points and lines with the same number of inidenes, sothe planar bound always serves as an upper bound for the three-dimensional ase as well. Sharirand Welzl have shown that, if all the lines form the same angle with the z-diretion, then oneobtains a smaller upper bound on the number of inidenes. Without the above ondition onthe angles, improved bounds an also be obtained, e.g., when eah point is inident to at leastthree non-oplanar lines; see [13℄ for details.The ase of irles is quite di�erent, beause a projetion of the irles onto a generi planeyields a olletion of ellipses, whih an interset at four points per pair. The reent bound of [5℄,and its extension in [1℄, rely on the fat that any two urves under onsideration interset atmost twie. Hene, the best known planar bound does not extend trivially to higher dimensions.In a previous version of this paper [4℄, we obtained a weaker bound of O(m4=7n17=21 +m2=3n2=3+m+n) for the number of inidenes between m points and n irles in any dimensiond � 3. Moreover, this bound also applies to inidenes between m points and n arbitrary onvexplane urves, no two of whih lie in a ommon plane, in any dimension d � 3.In this version we retain the derivation of the above bound, beause it remains the urrentlybest upper bound for inidenes involving pairwise non-oplanar onvex plane urves in anydimension d � 3. However, for the ase of irles in three and higher dimensions, we improvethe inidene bound further, and redue it to the aforementioned planar bound of [1, 5℄. Thenew bound is optimal for m � n5=4�(n), for an appropriate onstant , beause it is then equalto O(m2=3n2=3+m), whih an be attained when all irles lie in a ommon plane or sphere, as2



a variant of the known lower-bound onstrution for the ase of lines [5, 10℄.Besides being an interesting and natural extension of the analogous two-dimensional question,there are additional motivations for studying inidenes between points and irles in three andhigher dimensions:(i) The problems of bounding the number of ongruent opies of a �xed triangle in a set of npoints in 3-spae, or of a �xed tetrahedron in a set of n points in 4-spae, all for boundingthe number of inidenes between points and ongruent irles in the respetive spaes [2℄.The 3-dimensional ase is handled in a speial manner, but the 4-dimensional ase doesrely on suh an inidene bound, and urrently uses the bound O(m3=5n4=5+m+n) (whih,as noted in [2, 3℄, holds in any dimension), to derive the bound O(n9=4+") on the numberof ongruent tetrahedra in a 4-dimensional n-element point set. Our improved inidenebound yields the stronger bound of O(n20=9+").(ii) Reently, we have obtained an improved lower bound for the number of distint distanesin a set of n points in 3-spae [6℄. The analysis needs and exploits a bound on the number ofinidenes between points and irles in three dimensions. Our improved inidene boundyields stronger bounds for the 3-dimensional distint distanes problem, showing that thenumber of distint distanes in an n-element point set P in R3 is 
(n0:542), improving theprevious bound 
(n0:5408) in [6℄. We also show that there always exists a point in P thatdetermines at least 
(n0:529) distint distanes to the other points of P , improving theprevious bound of 
(n0:526) in [6℄.2 Cirles in Three Dimensions2.1 An initial boundLet C be a set of n irles and P a set of m points in 3-spae. Let I(P;C) denote the numberof inidenes between P and C; that is, the number of pairs (p; ) 2 P � C with p 2 .We �rst apply an inversion of R3 about a point o, whih does not lie on any irle of C oron any sphere or plane that ontains more than one irle of C. Spei�ally, we take o to be theorigin, and identify a point with its radius-vetor x from the origin. Then the inversion is themapping x 7! x= jxj2. It maps o to the \sphere at in�nity," all points at the \sphere at in�nity"to o, a sphere avoiding o to another suh sphere, a plane missing o to a sphere through o andvie versa, and a plane through o to itself. Consequently, the inversion maps a irle missing oto another suh irle. After the transformation, we obtain a new set of m points and n irles,where no two resulting irles are oplanar. Indeed, any suh oplanar pair would have had tolie, before the transformation, on a ommon sphere or plane that passes through o, ontrary tothe hoie of o. Hene, throughout the remainder of this setion, we assume that no two irlesof C are oplanar.We may also assume that eah irle of C ontains at least three points of P , sine theremaining irles ontribute at most 2n to the inidene ount. After making this assumption,the notion of the ar of a irle delimited by a pair of onseutive points of P on the irle isunambiguous. We will all suh an ar elementary.We represent the inidene struture by a multigraph G embedded in 3-spae as follows:verties of G are the points of P themselves and any two points of P onseutive along a irle3



 2 C are onneted by an ar of G, drawn as the orresponding elementary ar along . Inthis manner a pair of points might be onneted by multiple ars|abstratly we think of it asa single multi-edge (i.e., an edge with multipliity) in G. Note that we reserve the term \ar(of G)" for a geometri objet|an (elementary) ar of some irle onneting two onseutivepoints of P , while the term \edge (of G)" will mean the abstrat (multi)edge of G, i.e., a pairof points with one or more elementary ars between them. The number of edges in G, ountedwith multipliity, is exatly the number of ars in G, whih is preisely I(P; C).An edge fp; qg of G is alled light if it has multipliity one, i.e., p and q are onseutivealong a single irle; otherwise we all it heavy. The orresponding elementary ar or ars arealso referred to as light or heavy, respetively.The number of light ars is easy to bound. Indeed, projet C and P onto some generi plane�. Consider the olletion G0 of the projetions of all the light ars of G onto �. G0 is a simplegraph drawn in the plane, with m verties and at most 4�n2� = O(n2) edge rossings (any suhrossing is an intersetion between the projetions of the two respetive irles; these projetionsare ellipses, whih may interset eah other in at most four points per pair). Applying Sz�ekely'stehnique [15℄, we onlude that the total number of light ars is O(m2=3n2=3 +m+ n). It thusremains to bound the number of heavy ars.Fix a threshold parameter k. We apply the following iterative pruning proess to the irlesof C. Suppose that there exists a irle 0 2 C with at least k other irles meeting it at twopoints eah (irles that touh 0 at only one point do not form elementary ars along it). LetK(0) denote the set of these irles, and let � � k denote its ardinality.Consider the set of all spheres that ontain 0 and at least one additional irle of C. Let�1; �2; : : : ; �s denote the sequene of these spheres, enumerated in the order of their entersalong the axis of 0, whih is the line orthogonal to the plane ontaining 0 and passing throughits enter; learly, s � �. For eah i = 1; : : : ; s, let C(�i) denote the set of irles that lie on�i; one of them is 0, and some of them might not interset 0 at all. Put �i = jC(�i)j, and�0 = Psi=1 �i. Note that �0 � � + 1 > k. Put K 0(0) = Ssi=1 C(�i); this set ontains 0, theirles in K(0), and also possibly some irles that happen to lie on some sphere �i, withoutinterseting 0.Within eah �i, onsider the set C(�i), whih, by an appropriate stereographi projetion,is mapped to a set of oplanar irles. The results of [1, 5℄ imply that the number of heavyelementary ars inA(C(�i)) is O(�3=2i �(�i)). Indeed, a multi-edge ofG that has j > 1 elementaryars along �i indues bj=2 pairwise non-overlapping lenses (in the terminology of [1,5℄), and themaximum size of a family of pairwise non-overlapping lenses in a planar arrangement of �i irlesis O(�3=2i �(�i)) (see [1, Theorem 5.1℄). The number of elementary ars under onsideration isat most three times the number of these lenses. Note however that this only ounts elementaryars on irles of C(�i), whose endpoints are shared by at least one additional irle from C(�i),where they also delimit an elementary ar. Any other heavy elementary ar on a irle in C(�i)has a ompanion elementary ar, with the same endpoints, on a irle  that is transversal to�i (that is,  intersets �i at two points, whih are the endpoints of the elementary ar beingonsidered). Elementary ars of this latter kind will be ounted momentarily.Suppose that ; 0 6= 0 are two irles that lie on di�erent respetive spheres �i; �j , andmeet eah other at two points p; q, so that p and q delimit elementary ars along both  and0. This interation between  and 0 is not reorded in the bounds just mentioned, but we anbound the number of these ars as follows: Note that p and q must lie on 0. This implies that4



; 0 2 K(0), and there an be at most one suh ar along eah irle  2 K(0). Hene, thenumber of these ars is at most �.Let  be a irle that is not ospherial with 0. Then meets eah of the spheres �i in at mosttwo points. We wish to bound the number of heavy elementary ars along  whose endpointslie on some irle 0 2 K 0(0) (where they also delimit an elementary ar). We laim that thenumber of suh ars is at most two. Indeed, suppose 0; 00; 000 are three irles, lying on threedistint respetive spheres �0; �00; �000 through 0, so that eah of them meets  at two points,denoted respetively as fp0; q0g; fp00; q00g; fp000; q000g. What is the order of these six points along ?If  forms a link with 0, i.e., the disk bounded by  intersets 0, then, up to relabeling 0; 00; 000and interhanging the p's and q's, the order must be p0; p00; p000; q0; q00; q000 (see Figure 1(a)), andotherwise it must be p0; p00; p000; q000; q00; q0 (see Figure 1(b)). However, neither order is onsistentwith the requirement that p0q0; p00q00; p000q000 be distint elementary ars on ; spei�ally, they arenot disjoint: they must partially overlap in ase (a), and nest in ase (b). This establishes thelaim.Hene, any irle  not in K 0(0) ontains at most two elementary ars of the type underonsideration, for a total of at most 2n additional ars. It is possible that suh an elementaryar  along  has only one ompanion elementary ar 0 with ommon endpoints on just oneirle 0 2 K 0(0). Ars 0 of this type have not yet been ounted, but there an be at most twosuh ompanion ars for eah transversal irle , for a total of at most 2n additional ars, givinga total of at most 4n additional heavy elementary ars that an be formed by these transversalirles.

(b)(a)   p0p00q000q0q000p0p00 q0 q00p000 p000q000�0 �0�00 �000 �00 �000 0

Figure 1: Elementary ars along a irle  that is not ospherial with 0; the ross setion ofthe sene by the plane ontaining  is shown. The dash-dotted segment is the intersetion of theplane with the disk bounded by 0.Note that, at this point, any heavy multi-edge of G that has at least one elementary ar ona irle in K 0(0) has been ounted with its multipliity. Combining the bounds obtained abovefor the several possible types of heavy elementary ars that we ount while analyzing 0, we
5



onlude that the number of suh ars is at mostO�n+ sXi=1 �3=2i �(�i)� = O�n+� sXi=1 �i� � (�0)1=2�(�0)�= O �(�0)3=2�(�0) + n� : (1)We now remove 0 and all the irles in K 0(0) from C. Note that the number � of irlesthat are removed may be smaller than �0. Spei�ally, we have � = �0 � s + 1, beause 0 ismultiply ounted in �0. However, sine eah sphere �i ontains at least one irle other than 0,and all these irles are distint, it follows that �0 � 2�.We then pik a new irle 1 from the remaining irles, suh that 1 has at least k irlesmeeting it at two points eah. If there is no suh irle, our pruning proess terminates. Oth-erwise, we repeat the above onsiderations with respet to 1, remove the olletion K 0(1) ofirles, and proeed to the next iteration of the proess.Let r be the overall number of iterations, and let �1; : : : ; �r denote the number of irlesremoved at eah iteration. We have Prj=1 �j � n, and �j > k for eah j. Thus r � n=k.Arguing as above, the total number of heavy ars ounted by our proedure is thusrXj=1O �n+ �3=2j �(�j)� = O(n3=2�(n) + nr) = O�n3=2�(n) + n2k � :We are left with a olletion C 0 of irles, so that eah  2 C 0 meets at most k other irles attwo points eah, and thus has at most k elementary ars, for a total of at most O(nk) additionalars. The grand total number of heavy elementary ars is thusO�n3=2�(n) + n2k + nk� :Choosing k = n1=2, and adding the number of light elementary ars, we onlude:Theorem 2.1. The number of inidenes between m points and n irles in R3 isO �m2=3n2=3 + n3=2�(n) +m� : (2)2.2 Strengthening the boundThe bound in Theorem 2.1 is worst-ase optimal when m � n5=4�3=2(n). For smaller values ofm, we apply the following problem deomposition in dual spae. As in the preeding subsetion,we assume that no pair of irles in C are oplanar.Let � denote the set of n planes ontaining the irles of C. Apply a standard dualitytransform that maps eah point p 2 P to a plane p� and eah plane � 2 � to a point ��, so thatinidenes between points and planes are preserved. In the dual spae, we have a set P � of mplanes, and a set �� of n points, where eah point �� 2 �� is assoiated with the unique irlethat lies in the primal plane �. Clearly, if a point p is inident to a irle  ontained in a plane�, then �� 2 p�.Fix a parameter 1 � r � m, to be determined below, and onstrut a (1=r)-utting of thedual spae into O(r3) simplies, so that the interior of eah simplex is interseted by at most6



m=r planes of P �. The utting is obtained in two stages, as in Chazelle and Friedman [8℄. Inthe �rst stage, we hoose a random sample R of r dual planes, onstrut the arrangement A(R)of R, and triangulate eah ell, using bottom-vertex triangulation. Simplies that are rossedby at most m=r planes are part of the �nal output. Simplies � that are rossed by a set P ��of m�=r planes, for � > 1, are further re�ned into subells, by hoosing a random sample R� of� log � planes from P �� , for some absolute onstant , onstruting a triangulation of A(R� ), asabove, and lipping its ells to within � . As shown in [8℄, there exist hoies for the sets R, R� ,that result in a (1=r)-utting of A(P �) onsisting of O(r3) ells.Consider �rst dual points in �� that lie in ell interiors. We an further subdivide the ellsof the utting into subells, say, by a set of parallel planes in some �xed generi orientation, sothat eah subell ontains at most n=r3 points, and so that the number of new ells is still O(r3).For eah ell � , apply Theorem 2.1 to bound the number of inidenes between the irles whosedual points lie in the interior of � , and the points whose dual planes ross � . The total numberof suh indies, over all ells � , isO X� ��mr �2=3 � nr3�2=3 + mr + � nr3�3=2 �� nr3��!= O r3 �mr �2=3 � nr3�2=3 +mr2 + n3=2r3=2 �� nr3�!= O m2=3n2=3r1=3 +mr2 + n3=2r3=2 �� nr3�! :We next bound the number of inidenes involving points �� that lie on ell boundaries. If apoint �� lies in the relative interior of a 2-dimensional fae f of a ell � , we assign it to � (therean be at most two suh ells � , and we assign �� to just one of them). Any dual plane inidentto ��, other than the one ontaining f , if any suh plane exists, will interset the interior of � ,so the inidenes between the unique irle ontained in � and the points dual to the planesinident to ��, will then be ounted within � . In addition, we may miss at most one inidenefor eah of these irles (with the point whose dual plane ontains f). Summed over all faes f ,these missed inidenes number at most n.Consider next points �� that lie in the interior of an edge e of some ell � (and not in theinterior of any two-dimensional fae of another ell). Any plane that is inident to suh a point�� 2 e and that does not ontain e meets the interior of � , so by assigning �� to � , we willapture in the preeding analysis eah inidene of this type involving �� (here the number ofells � may be large, but, as above, we assign �� to only one of them, hosen arbitrarily). Theplanes that ontain e onstitute, in primal spae, a set of ollinear points, and no irle anbe inident to more than two of them. Hene, the number of inidenes between the irlesrepresented by points �� 2 e and the points dual to the planes ontaining e is at most twie thenumber of these irles. Summed over all edges e, we obtain a total of at most 2n inidenes ofthis type.Finally, onsider points �� that are verties of the ells (and do not lie in the relative interiorof any fae or edge of another ell). Any vertex �� is either a vertex of the �rst deompositionstage, or a vertex of the seond stage, onstruted within a ell of the �rst stage.In the former ase, �� is the intersetion point of three planes of R that do not pass througha ommon line. Fix one suh plane p�0. Then �� is a vertex of the planar ross-setion of the7



arrangement A(R) within p�0. Any dual plane p� that is inident to �� intersets p�0 in a line` that passes through ��. The number of suh inidenes within p�0 is at most r, sine ` mustross one of the planes of R at ��. In total, this yields a bound of O(mr2) on the number ofinidenes under onsideration.In the latter ase, �� is an intersetion point of a triple of planes of R� [ �� that do notshare a line, for some simplex � of the �rst deomposition stage, whih is rossed by m��=r dualplanes, for some �� > 1; here �� is the set of four planes bounding � . At least one of the planesof the triple belongs to R� , or else �� would be a vertex of the �rst deomposition stage. Letp�0 be suh a plane. Applying and adapting the analysis used in the former ase, we obtain atotal of O �(m��=r) � (�� log �� )2� inidenes, involving all verties �� of the utting in � , and allplanes p� 2 P �� . Summing this bound over all ells � with �� > 1, we obtain a total ofO X� mr �3� log2 ��! :It has been shown in [8℄ that the expeted number of ells � of the initial triangulation of A(R),for whih �� > t, is O(r3 � 2�t). This implies that, with an appropriate hoie of R and R� , thesum just obtained is at most O(mr2).We sum up the bounds obtained so far, to onlude thatI(P;C) = O m2=3n2=3r1=3 + n3=2r3=2 �� nr3�+mr2 + n! :We now hoose r = n5=11�6=11(m3=n)=m4=11, and note that 1 � r � m when n1=3 � m �n5=4�3=2(n). If m > n5=4�3=2(n), we use the bound O(m2=3n2=3+m), yielded by Theorem 2.1. Ifm < n1=3 then I(P; C) = O(n), whih follows, e.g., from the general weaker bound O(m3=5n4=5+m+ n) observed in [2, 3℄. We thus obtainI(P; C) = O �m6=11n9=11�2=11(m3=n) +m2=3n2=3 +m3=7n6=7 +m+ n� :(We have used the fat that n=r3 = O((m3=n)4=11), whih implies that �(n=r3) = O(�(m3=n)).)The �rst term dominates the third one when m � n1=3. For the sake of notational simpliity, werewrite �2=11(�) as �(�), sine both of these funtions have the same asymptoti expression, witha di�erent onstant of proportionality in the exponent. Hene, we obtain the �rst main resultof the paper:Theorem 2.2. The number of inidenes between m points and n irles in R3 isO(m6=11n9=11�(m3=n) +m2=3n2=3 +m+ n);where �(n) = (log n)O(�2(n)).3 Cirles in Higher DimensionsInterestingly, Theorem 2.2 an be extended to any dimension d � 4, employing a variant of thetehnique used in the preeding setion. Spei�ally, we �rst extend Theorem 2.1.8



3.1 An initial boundTheorem 3.1. The number of inidenes between m points and n irles in Rd, for any d � 4,is O �m2=3n2=3 + n3=2�(n) +m� : (3)Proof. Let P be a set of m points, and let C be a set of n irles in Rd.By applying an appropriate inversion to Rd, in omplete analogy to the 3-dimensional ase,we may assume that no two irles of C lie in a ommon 2-plane.The notions of elementary ars, of the multigraph G, and of light and heavy edges and ars,arry over to higher dimensions verbatim. In partiular, the number of light ars is O(m2=3n2=3+m+n), whih is shown exatly as in the 3-dimensional ase, by projeting the olletions C andP onto a generi 2-plane.The analysis of the number of heavy ars proeeds by indution on d. Spei�ally, we show:Lemma 3.2. The number of heavy elementary ars in an arrangement of n irles in Rd isO(n3=2�(n)).Proof. The proof proeeds by indution on d � 3. The base ase d = 3 follows from the proofof Theorem 2.1. Let d � 4. Suppose the lemma holds in all dimensions d0 < d.Fix a threshold parameter k. We again apply an iterative pruning proess to the irles ofC. Suppose that there exists a irle 0 2 C with at least k other irles meeting it at two pointseah. Let K(0) denote the set of these irles, and let � � k denote its ardinality.Let �0 be the 2-plane that ontains 0. Choose some (d � 2)-at g0 that ontains �0, sothat g0 n �0 does not ontain any enter of a irle of C or any intersetion point of two suhirles. Consider the set H of all ((d� 1)-dimensional) hyperplanes that ontain g0 and at leastone irle of C besides 0. Note that suh a hyperplane ontains a irle in K(0) if and onlyif it ontains its enter. All the hyperplanes that ontain g0 form a 1-dimensional family|theirnormals trae the irle 0 of vetors perpendiular to g0 on the ((d�1)-dimensional) unit sphereof diretions. Let h1; h2; : : : ; hs denote the (irular) sequene of the hyperplanes in H, orderedin the order of their normals along 0; learly, s � �. For eah i = 1; : : : ; s, let C(hi) denote theset of irles that lie on hi; one of them is 0, and some of them might not interset 0 at all.Put �i = jC(hi)j, and �0 =Psi=1 �i. Note that �0 � �+ 1 > k. Put K 0(0) = Ssi=1 C(hi); thisset ontains 0, the irles in K(0), and also possibly some irles that happen to lie on somehyperplane hi, without interseting 0. (Note that, sine no two irles of C are oplanar, noirle in K(0) an have its enter on �0, beause any suh irle has to be oplanar with 0.)Fix a hyperplane hi, onsider the set C(hi), and assoiate with it the multigraph G(hi)that is formed by all elementary ars on the irles in C(hi). The indution hypothesis impliesthat the number of heavy elementary ars in G(hi) is O(�3=2i �(�i)). (Note that, similar to thesituation for d = 3, this only ounts elementary ars on irles of C(hi), whose endpoints areshared by at least one additional irle from C(hi), where they also delimit an elementary ar.)Suppose that ; 0 6= 0 are two irles that lie on di�erent respetive hyperplanes hi; hj , andmeet eah other at two points p; q, so that p and q delimit elementary ars along both  and0. This interation between  and 0 is not reorded in the bounds just mentioned, but we anbound the number of these ars, exatly as in the 3-dimensional ase, as follows: Note that pand q must lie on �0 (they lie in g0, and the hoie of g0 ensures that they annot lie in g0 n �0).9



Sine any irle in C n f0g intersets �0 in at most two points, it follows that there an be atmost one suh elementary ar along eah irle  2 K 0(0). Hene, the number of these ars isat most �0.
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Figure 2: Elementary ars along a irle  that does not lie in any hyperplane hi (as seen whenprojeted onto a 2-plane orthogonal to g0).Let  be a irle that does not lie in any of the hyperplanes hi. Then  meets eah of thehyperplanes hi in at most two points. We wish to bound the number of heavy elementary arsalong  that have ommon endpoints with some irle 0 2 K 0(0) (where they also delimit anelementary ar). We laim that the number of suh ars is at most two; the proof is idential tothe analogous proof in three dimensions. Spei�ally, suppose 0; 00; 000 are three irles, lying onthree distint respetive hyperplanes h0; h00; h000 through g0, so that eah of them meets  at twopoints, denoted respetively as fp0; q0g; fp00; q00g; fp000; q000g. To determine the order of these sixpoints along , we projet the set of irles orthogonally onto a 2-plane orthogonal to g0. If thedisk bounded by  meets g0 then, up to relabeling 0; 00; 000 and interhanging the p's and q's, theorder must be p0; p00; p000; q0; q00; q000 (see Figure 2(a)); otherwise, it must be p0; p00; p000; q000; q00; q0 (seeFigure 2(b)). However, neither order is onsistent with the requirement that p0q0; p00q00; p000q000 bedistint elementary ars on ; spei�ally, they are not disjoint, as they partially overlap in ase(a), and are nested in ase (b). This establishes the laim. Hene, any irle  not in K 0(0)ontains at most two elementary ars of the type under onsideration, for a total of at most2n additional ars. Adding the ompanion elementary ars along irles in K 0(0), if needed,as in the 3-dimensional ase, we obtain at most 2n more ars. The overall number of heavyelementary ars that we ount while analyzing 0 is thus at mostO� sXi=1 �3=2i �(�i) + n� = O�� sXi=1 �i� � (�0)1=2�(�0) + n� = O�(�0)3=2�(�0) + n�:We now remove 0 and all the irles in K 0(0) from C. Clearly, any heavy multi-edge of G thathas at least one elementary ar on a irle in K 0(0), is ounted, with its multipliity, in thebound just given.The desribed iterative proess is repeated until no irle 00 2 C has k or more other irlesmeeting it in two points eah. Let �1; : : : ; �r denote the number of irles removed at eah step10



in the proess. We have Prj=1 �j � n, and �j > k for eah j. Therefore r � n=k. Arguing asabove, the total number of heavy ars in G is thusrXj=1O ��3=2j �(�j) + n� = O(n3=2�(n) + nr) = O�n3=2�(n) + n2k � :We are left with a olletion C 0 of irles, so that eah  2 C 0 meets at most k other irles attwo points eah, and thus has at most k elementary ars, for a total of at most O(nk) ars. Thegrand total number of heavy elementary ars is thusO�n3=2�(n) + n2k + nk� :Choosing k = n1=2 yields the bound asserted in the lemma. This ompletes the indution step,and thus also the proof of the lemma.We return to the estimation of I(P; C). Using the bound of Lemma 3.2 on the number ofheavy elementary ars, and adding the number of light elementary ars noted above, we obtain:I(P;C) = O �m2=3n2=3 + n3=2�(n)� ;thus ompleting the proof of the theorem.3.2 Strengthening the boundTo improve the bound of Theorem 3.1, we projet P and C onto some generi 3-spae. Theirles of C are mapped to ellipses, and inidenes between points of P and irles of C aremapped to inidenes between the orresponding projeted points and ellipses. Let P̂ and Ĉdenote, respetively, the projeted sets of points and irles. By using a generi projetion, wemay assume that no two ellipses in Ĉ are oplanar.We pass to the dual 3-spae, and map the points of P̂ to planes and the ellipses of Ĉ topoints, dual to the planes ontaining the ellipses. From this point on, we an repeat the analysisof Setion 2.2 almost verbatim, exept for the following items: (i) Within eah ell of the uttingwe apply Theorem 3.1 to bound the number of inidenes between the orresponding originalpoints and irles in d-spae. (ii) When we onsider dual points �� that lie on an edge e of theutting, we note that, sine the projetion onto 3-spae is generi, the primal points p whoseduals ontain e must be ollinear not only in the projeted 3-spae but also in the original Rd,so the analysis of this ase arries over easily to d dimensions as well. Omitting further easydetails we obtain the improved bound, whih is asymptotially idential to the bound in threedimensions:Theorem 3.3. The number of inidenes between m points and n irles in Rd isO(m6=11n9=11�(m3=n) +m2=3n2=3 +m+ n):
11



4 Convex Non-oplanar Plane Curves4.1 The three-dimensional ase4.1.1 An initial boundLet C be a set of n arbitrary onvex plane urves, no two in a ommon plane, and let P be aset of m points in 3-spae. Let I(P; C) denote the number of inidenes between P and C.As above, we also assume that eah urve of C ontains at least three points of P , sinethe remaining urves only ontribute at most 2n to the inidene ount. The notions of anelementary ar, of light and heavy ars, and of the multigraph G that represents the inidenestruture, are de�ned in omplete analogy to the ase of irles. Our analysis also allows (someof) the given urves to be unbounded. In this ase, jGj � I(P; C) � n. Thus, bounding jGjsuÆes in this ase too.As in the ase of irles, the number of light ars is O(m2=3n2=3 +m + n). It thus remainsto bound the overall number of heavy ars.We start with some de�nitions. A on�guration onsists of four urves ; 1; 2; 3 2 C andthree pairs fp1; q1g, fp2; q2g, and fp3; q3g of points from P , suh that (refer to Figure 3):
 2q1 q3p1

p2 q2 p31 3
Figure 3: A on�guration.(i) The urves i and  interset at the two points pi; qi, for i = 1; 2; 3.(ii) The six points p1; q1; p2; q2; p3; q3 of P are distint (making the three urves 1; 2; 3 distintas well).(iii) For i = 1; 2; 3, pi and qi are onseutive points of P both along i and along ; thus allthree edges fpi; qig are heavy edges of G.We do not distinguish on�gurations that di�er only by a permutation of the indies 1; 2; 3. Sinea on�guration, when it exists, is ompletely determined by its four urves, we will sometimesrefer to it as (; 1; 2; 3), instead of the somewhat more awkward, even if more aurate notation(; 1; 2; 3; p1; q1; p2; q2; p3; q3). The main tehnial tool used in our analysis is the followinglemma.Lemma 4.1. Let 1; 2; 3 be three distint urves in C. There are at most 128 urves  2 Cforming a on�guration with 1; 2; 3, for any hoie of points p1; q1; p2; q2; p3; q3.12



Proof. Let 1; 2; 3 be a �xed triple of urves in C. By our non-oplanarity assumption, theurves 1; 2; 3 lie in three distint respetive planes �1; �2; �3, and no urve  that forms aon�guration with this triple is oplanar with any of them. Let A denote the arrangement ofthese three planes. A has a single vertex o, unless the three planes are parallel to a ommonline. Consider �rst the ase where the vertex o exists. In this ase, A has eight 3-dimensionalells, eah being an in�nite trihedral wedge with its apex at o.Suppose to the ontrary that there are at least 129 urves  2 C that form a on�gu-ration with 1; 2; 3, as above. Let  be a urve that forms a on�guration of the form(; 1; 2; 3; p1; q1; p2; q2; p3; q3) with 1; 2; 3. Consider the elementary ar p1q1 along . Itsendpoints lie on �1, and it annot meet any of the planes �2; �3, beause any suh intersetionmust be a point of P where  meets 2 or 3. Hene, p1 and q1 lie in the same 2-fae of A, andsimilarly for p2; q2, and for p3; q3.This is easily seen to imply that, if we remove from  the three (losed) elementary ars piqi,for i = 1; 2; 3, the remainder of , whih we denote by �, is fully ontained in a single (open)3-dimensional ell of A. See Figure 4. Sine there are eight suh ells, at least one of them, all�1
�32 ��o

�2 1
3Figure 4: A 3-dimensional ell � , bounded by the planes �1; �2; �3 ontaining 1; 2; 3, respe-tively. A `lipped' urve � within � is shown.it � , must ontain the trunations � of at least 17 of the urves .Consider one suh urve . The plane � ontaining  meets eah i, for i = 1; 2; 3, at thetwo respetive points pi; qi. We say that i lies on the near side (resp., the far side) of � if theelementary ar piqi along i lies on the side of � that does not ontain (resp., ontains) o. (Notethat � annot pass through o.) There are 8 = 23 possible ombinations of sides for any plane� ontaining suh a urve  (one of two sides for eah of 1; 2; 3), so there exists at least onesuh ombination that arises for at least three out of the 17 urves  as above. We denote theseurves by ; 0; 00, and their ontaining planes by �; �0; �00. We onsider the following ases:(i) All three sides are of the same kind, say all are far sides. For eah i = 1; 2; 3, remove from ithe three elementary ars that it forms with ; 0; 00. Denote the portion of the remainder of ithat lies on �� by �i. Note that eah �i is nonempty, beause i meets eah of ; 0; 00 at a pairof points that lie on �� . Then �1, �2, �3 are all ontained in the intersetion of the three losedhalfspaes that are bounded by �; �0; �00 and do not ontain o, and of the three losed halfspaesthat are bounded by �1; �2; �3 and interset in � . Let K be the onvex polyhedron formed bythe intersetion of these six halfspaes. Then K has six faets, and eah of the three (losed)faets that lie on the planes �; �0; �00 meets eah of the three (losed) faets that lie on the planes�1; �2; �3. To see this, onsider, for example, the two points p1; q1 of intersetion of  and 1.13



Then: (a) Sine p1 and q1 lie on �� , they lie in the appropriate halfspaes that are bounded by�1; �2; �3. (b) Both points lie on �. () The halfspae under onsideration h0 that is boundedby �0 ontains all of 1, exept for the elementary ar of 1 delimited by its intersetions with0. Sine p1 and q1 do not lie in this ar, they lie in h0, and, similarly, also in the appropriatehalfspae bounded by �00. This implies that p1; q1 lie on an edge of K where � and �1 meet, andsimilarly for all other relevant pairs of urves (nine pairs in total). In other words, �K yieldsan impossible plane drawing of K3;3 ontained in its dual graph. That is, we �x a point insideeah of the six faets, and onnet, say, the point on the faet of �1 to the point on the faetof � by an appropriate path, onsisting of two segments, within the union of the two faets,and similarly for all other relevant pairs of faets. This ontradition rules out this ase. (Thesituation where all sides are near is argued in exatly the same manner.)(ii) Two sides are of the same kind, and the third is of the opposite kind. Without loss ofgenerality, assume that 1 and 2 lie on the far side of �; �0; �00, and that 3 lies on the near sideof �; �0; �00. Denote by �+ (resp., ��) the halfspae bounded by � and ontaining o (resp., notontaining o), and de�ne similarly the halfspaes �0+, �0�, �00+, and �00�. Assume that �; �0; �00meet at a single point q. Then Q+ = �+ \ �0+ \ �00+ and Q� = �� \ �0� \ �00� are omplementarytrihedral wedges with a ommon apex q. De�ne the trunated urves �1, �2, �3 as above; againthey must be non-empty. Note that � must meet both Q+ and Q�, beause �1; �2 � Q�, and�3 � Q+. Note that this implies that the point q does exist. Indeed, if it does not exist then�; �0; �00 are all parallel to some diretion, whih implies that at least one of Q+; Q� is a dihedralwedge, bounded by only two of these planes. However, this wedge ontains at least one of thetrunated irles �1; �2; �3, whih meets eah of �; �0; �00 at two distint points, a ontraditionthat shows �; �0; �00 must meet in single point q.There are two subases to onsider:(ii.a) � ontains q. See Figure 5(a). Consider the onvex polyhedron K� = Q� \ � . Arguingas in ase (i), K� has (at least) �ve faets, bounded by the planes �1; �2; �; �0; �00, and three ofthem, those lying on the planes �; �0; �00, meet at the ommon vertex q. In this ase, we alsoobtain an impossible plane drawing of K3;3 along �K�, in whih the nodes of one vertex setare (points within) the faets that lie on �; �0; �00, and the nodes of the seond vertex set arethe vertex q and (points within) the faets that lie on �1; �2. The edges onneting the pointson the faets of �; �0; �00 to the points on the faets of �1; �2 are drawn as in ase (i); the edgesinident to q are trivial to draw. This ontradition rules out this subase.(ii.b) � does not ontain q. Draw through q a plane � that misses � ; � must ross both Q+ andQ�, or else � ould not meet both of them; see Figure 5(b). Consider the three lines `1 = �\�0,`2 = � \ �00, `3 = �0 \ �00. Eah line `j is split at q into two rays, one of whih, denoted `+j , isan edge of Q+, and the other, denoted `�j , is an edge of Q�. Consider the halfspae h boundedby � and ontaining � . Then either h ontains two of the rays `+j and one of the rays `�j , or theother way around. Suppose, say, that h ontains `+1 , `+2 , `�3 . Then the faet ' of Q� delimitedby `�1 and `�2 (this is the faet lying on �) is fully disjoint from h and thus also from � . However, and 1, say, must meet eah other within � \Q� (sine 1 lies in the far side of �; �0; �00), or,rather, within � \ '. Sine this intersetion is empty, we obtain a ontradition that rules outthis subase too.Sine the planes �; �0; �00 play fully symmetri roles in the preeding argument, it applies alsoto any other ase where h ontains two `positive' rays and one `negative' ray. The ases where hontains two negative rays (say, `�1 ; `�2 ) and one positive ray (`+3 ) is handled by onsidering 3,whih has to meet  within � \Q+, whih is impossible, sine the faet of Q+ that is bounded14
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Figure 5: Case (ii) of the proof: (a) q 2 � , (b) q 62 � .by � is disjoint from � .If the planes �1; �2; �3 do not meet at a single point and do not share a ommon line, anear-idential argument applies, the only di�erene being that A has no verties, so � is a three-sided prism rather than a trihedral wedge. (The notions of near and far sides need now to berede�ned in a onsistent, though obvious, manner.) Finally, we need to onsider the ase where�1; �2; �3 share a ommon line. If there existed a urve  that formed a on�guration with1; 2; 3, arguing as in the preeding analysis, we would onlude that the trunated portion �of  would have to lie fully within a single open ell of A. However, any suh ell is bounded byonly two of the planes �1; �2; �3, so  annot form an elementary ar with the urve that lies inthe remaining plane. Hene �1; �2; �3 annot share a line.This ompletes the proof of the lemma.Continuing with our main argument, let Q denote the set of all on�gurations. Lemma 4.1implies that jQj = O(n3). A lower bound for jQj is obtained as follows. Fix a urve  2 C thatontains M � 3 heavy ars that do not share endpoints. Any other urve ontributes at mostsix inidenes involving heavy ars, for a total of O(n). (The maximum number six is attainedwhen  ontains two pairs of heavy ars, eah sharing a ommon endpoint. Together, these fourars have six endpoints.) Eah of the �M3 � triples of those heavy ars on  generates a distinton�guration in Q (in general, it may generate more than one on�guration). Hene, we havejQj � X2CM�3�M3 �:15



In other words, the total number of heavy ars is at mostO(n) +O�XM�3M� = O(n) +O�X (M � 2)�= O(n) +O��X �M3 ��1=3 � n2=3�= O(n5=3):The seond equation follows from H�older's inequality. We have thus shown:Theorem 4.2. Let C be a family of n arbitrary onvex plane urves in R3, no two in the sameplane. Let P be a set of m points in R3. Then I(P; C) = O(m2=3n2=3 +m+ n5=3).4.1.2 Strengthening the boundThe bound in Theorem 4.2 is worst-ase optimal when m � n3=2. For smaller values of m, weapply an essentially idential analysis to the one given in Setion 2.2, whih onsiders the pointsof P and the (distint) planes ontaining the urves of C in dual spae. The main di�erenesare: (i) Within eah ell of the utting we apply Theorem 4.2 to bound the number of inidenesbetween the orresponding original points and urves. (ii) When we onsider dual points �� thatlie on an edge e of the utting, we note that, as above, the primal points p whose duals ontaine are ollinear, and any onvex plane urve an be inident to at most two of them. Thus theanalysis of this ase arries over easily to the situation at hand.Thus the number of inidenes involving dual points �� that lie in the interiors of the ellsof the utting isO X� ��mr �2=3 � nr3�2=3 + mr + � nr3�5=3�! = O m2=3n2=3r1=3 +mr2 + n5=3r2 ! :As desribed above, dual points that lie on ell boundaries are handled as in Setion 2.2. Thatis, they are assigned to neighboring ells and/or ontribute O(n+mr2) additional inidenes.In total, we thus obtainI(P; C) = O m2=3n2=3r1=3 + n5=3r2 +mr2 + n! :We now hoose r = n3=7=m2=7, and note that 1 � r � m when n1=3 � m � n3=2. If m > n3=2,we use the bound O(m2=3n2=3 +m), yielded by Theorem 4.2. If m < n1=3 then I(P; C) = O(n).This follows sine the bipartite inidene graph f(p; ) 2 P � C j p 2 g does not ontain K3;2,so, by extremal graph theory [11℄, the number of inidenes is O(mn2=3 + n) = O(n). We thusobtain I(P; C) = O �m4=7n17=21 +m2=3n2=3 +m3=7n6=7 +m+ n� :The �rst term dominates the third one when m � n1=3. Hene we obtain the main result of thissetion:Theorem 4.3. The number of inidenes between m points and n arbitrary onvex plane urvesin R3, no two in the same plane, is O(m4=7n17=21 +m2=3n2=3 +m+ n).16



4.2 Extension to higher dimensionsTheorem 4.4. Let C be a olletion of n onvex plane urves, no two of whih lie in a ommon2-plane, and let P be a set of m points in Rd, for any d � 4. Then I(P;C) = O(m4=7n17=21 +m2=3n2=3 +m+ n).Proof. We projet the urves and points onto some generi 3-spae. In the projetion, the urvesof C remain onvex and planar, and no two of them are oplanar, so we an apply Theorem 4.3to obtain the bound.5 AppliationsAs already mentioned in the Introdution, Theorems 2.2 and 3.3 an be applied to improve thebound, obtained in [2℄, for the number of ongruent tetrahedra in a point set in four dimen-sions, and the bound, obtained in [6℄, for the number of distint distanes in three dimensions.Spei�ally, we have:Theorem 5.1. Let P be a set of n points in R4, and let � be a given tetrahedron. The numberof ongruent opies of � that are spanned by the points of P is O(n20=9+"), for any " > 0.Theorem 5.2. Let P be a set of n points in R3. Then (a) the number of distint distanesdetermined by P is 
(n0:542), and (b) there always exists a point of P that determines 
(n0:529)distint distanes to the other points of P .The proofs are immediate adaptations of the proofs in [2,6℄, where the bounds on the numberof point-irle inidenes in 4-spae or 3-spae, are replaed, respetively, by the bounds inTheorems 2.2, 3.3.AknowledgmentsThe authors would like to thank Sariel Har-Peled and Emo Welzl for helpful disussions onern-ing this problem. Initial work on this paper was arried out at the Elbe Sandstones GeometryWorkshop, held in Rynartie, Czeh Republi, in July 2001, and we are grateful to Pavel Valtrand Jirka Matou�sek, the organizers of the workshop, for their hospitality and support.Referenes[1℄ P.K. Agarwal, E. Nevo, J. Pah, R. Pinhasi, M. Sharir and S. Smorodinsky, Lenses inarrangements of pseudoirles and their appliations, manusript, 2002.[2℄ P. Agarwal and M. Sharir, On the number of ongruent simplies in a point set, Pro. 17thACM Symp. on Computational Geometry (2001), pp. 1{10. Also in Disrete Comput. Geom.(in press).[3℄ T. Akutsu, H. Tamaki and T. Tokuyama, Distribution of distanes and triangles in a pointset and algorithms for omputing the largest ommon point set, Disrete Comput. Geom.20 (1998), 307{331. 17
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