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Abstract

Forl <k<d-1,let f,gd) (n) be the maximum possible number/esimplices spanned
by a set ofn. points inR? that are congruent to a givénsimplex. We prove thaf2(3) (n) =
O(n5/3200@* () £ () = O(n2+<), for anye > 0, £ (n) = O(n7/3), and £ (n) =
O(n?0/9+=), for anye > 0. We also derive a recurrence to bouf)c(d) (n) for arbitrary values

of £ andd, and use it to derive the bourfg@d) (n) = O(n®/?+#), for anye > 0, ford < 7 and
k < d — 2. Following Erdés and Purdy, we conjecture that this bousldsfor larger values of
d as well, and folk < d — 2.

1 Introduction

Let P be a set ofn points inR%, and letA be a prescribed-dimensional simplex, for some
1<k<d-1. Let f,gd) (P, A) be the number ok-simplices spanned b¥ that are congruent to
A. Setf,gd) (n) = max f,gd) (P, A), where the maximum is taken over all sets:gboints inR¢ and
over allk-simplices inR?. We wish to obtain sharp bounds ff}id) (n).

The casek = 1 is the well-studied problem akpeated distanceoriginally considered by
Erd6s [17] in 1946: How many pairs of points &flie at a prescribed distance from each other.
This special case is interesting only fér= 2,3 becausefl(d) (n) = O(n?) for d > 4. Indeed,
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Figure 1: A construction fof(* (n) = Q(n?).

as observed by Lenz (see, e.g., [23], one can construBt itwo orthogonal unit circleg”; :

22+ 75 = l,z3 = x4 = 0andCy : 71 = 73 = 0,22 + 2 = 1 and placen/2 points on
each of the two circles. The distance between any two peirtsC; andq € Cs is /2, thereby
obtaining a se of n points withQ)(n?) pairs of points at distancg/2. The known upper bounds
for d = 2,3 are f? (n) = O(n*?) [15, 26, 27] andf¥) (n) = O(n/2B(n)) [15], whereB(n) =
20(e”(n) js a slowly growing function of:, defined in terms of the inverse Ackermann’s function
a(n). However, neither of these bounds is known to be tight. Ttst keown lower bounds are

f1(2> (n) = nHQ(l"gll"g“) andfl(?’) (n) = Q(n*3loglogn); see, e.g., [23].

Note that we have excluded the cages= 0 andk = d. The casek = 0 is uninteresting
because, trivially,féd> (n) = n. The casek = d is also uninteresting because one easily has
f(gd) (n) = O(fé‘?l (n)). Itis conceivable, though, th¢§d> (n) is significantly smaller thayﬁé‘?1 (n).
However, we are not aware of any instance where this has Ibe@mdo be the case. Another easy
observation is thaf,gd>(n) = O(nF*!) for anyk < |d/2] — 1. The upper bound is trivial, and
the lower bound can be proved by generalizing the constnudbtr the casé = 1, namely, by
placing the points of” on k£ + 1 mutually orthogonal unit-radius circles centered at thigior

Erdés and Purdy [19] proved thﬁf’) (n) = O(n'*/?). The bound was later improved by Akutsti
al. [5] to O(n®/) and then by Brass [10] t6(n7/4). Akutsuet al. [5] also proved thaf}" (n) =
On®/2+5) and £{" (n) = O(n%/23+¢), for anye > 0.1 By generalizing Lenz’ construction,
Abrego and Fern'andez-Merchant [2] proved tmﬁt) (n) = Q(n?) andf2(5> (n) = Q(n"/?). Erdés
and Purdy [20] conjectured th:;f}g@ (n) = O(n%?) for even values ofl > 4. There has also

been work on bounding the number of simplices spanned byra pef that are similar to a given a
simplex [1, 2, 3].

TWe follow the convention that an upper bound that involvesptarametet holds for anye > 0 and the constant of
proportionality depends ofy and generally tends to infinity agends to O.
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We prove thatf{¥(n) = On*383(n)), £\ (n) = 0m2*), f{’(n) = ©(n7/3), and
() = 0(n20/9+2). The best lower bound that we know féf* (n) is Q(n*/3). This is ob-
tained by placing one point at the origin and— 1 additional points on the unit sphere, so that
there areQ(n4/ 3) pairs of those: — 1 points at distance/2 from each other (see [18] for such a
construction). The bound off) (n) is almost tight because as mentioned abg@@,(n) = Q(n?).

We conjecture tha]‘f,g@(n) = O(min{n**!, n4/?) for even values off > 4 and f,g‘”(n) =
O(min{nFt! nd/2=1/6}) for odd values ofl > 5. The lower bound can once again be attained
by generalizing Lenz’ construction.

We also derive a recurrence fg&’ﬁd) (n) for general values of andd. The solution of this
recurrence i¥) (n¢(%“k)+¢) where( (d, k) is a rather complicated function dfandk. Although we
are currently unable to provide sharp explicit boundsfat, k), for arbitrary values of andd, we
can prove that (d, k) < d/2 ford < 7 andk < d — 2. We conjecture thaf(d, k) < d/2 for all d
andk < d — 2. (The casé = d — 1 seems harder to analyze; see below.) Proving this bound on
¢(d, k) will (almost) settle in the affirmative the above-mentioreahjecture for even values df

A novel feature of our analysis is a round-robin recurrenceeme. In each round of this
scheme some of the given points are treated as points whitgsoare treated as spheres of various
radii (equal to the lengths of appropriate edges of the ghreplexA). The recurrence then follows
from a space partitioning process, based @h/a)-cutting of these sets of spheres; see Sections 3
and 5 for details.

The problem is motivated by the problem @éfact pattern matchingWe are given a sell of
n points inR? and a “pattern setP of m < n points (in most applications: is much smaller
thann), and we wish to determine whethé&r contains a congruent copy @f, or, alternatively,
to enumerate all such copies. A commonly used approachd@tbblem is to take a simpleX
spanned by some points &f and find all congruent copies df that are spanned h¥. For each
such copyA’, take the Euclidean motion(s) that mapto A’, and check whether all the other
points of P map to points ofE under that motion. The efficiency of such an algorithm depend
on the number of congruent copies Afin E. Using this approach, de Rezende and Lee [24]
developed ai® (mn?)-time algorithm to determine wheth&r contains a congruent copy &f. For
d = 3, Brass recently developed &i{mn"/*3(n) log n)-time algorithm, which improves an earlier
result by Boxer [9]. Our improved bounds can be applied tivdanore efficient algorithms for the
corresponding variants of this problem (see, e.g., a ndteatoeffect at the end of Section 2).

2 Congruent Triangles in Three Dimensions

In this section we first bound the number of triangles spayalpoint set iR that are congruent
to a given triangle. Then we show that our proof also gives lgorishm for computing these
triangles.

Theorem 2.1 Let P be a set ofn points inR*. The number of triangles spanned Bythat are
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congruent to a fixed triangle ©(n?/3 - 20(e” (M),

Proof: Let the fixed triangle bé\ = zqy(2o, with side lengthszoyo| = &, |z020| = 71, |v020| = .
Without loss of generality, we can assume thgj, is the longest edge dk. Let £* be the distance
betweenz, and the projection of, on the edge:yo, and letp be the distance betweep and the
edgexyo. Fix a pair of pointsp, ¢ € P such thatlpg| = £. Letv* be the point on the segment
pq at distance™ from p. Any pointv such thatApquv is congruent ta\, with |pq| = &, |pv| = n,
lgv| = ¢, lies on the circley,, of radiusp centered abv* and orthogonal td,,; see Figure 2.
Repeating this analysis for each pajg at distance, we obtain a (multi)set of congruent circles,
one for each such pair of points, and the number of trianghekeiuconsideration is equal to the
number of incidences between the circle€£a&nd the points of. It is easily checked that at most
two pairs of pointg, ¢ can give rise to the same circle ) so we may assume that all circles in
€ are distinct. Since each circle this generated by a pair of points &f at distance apart, the
results in [15] imply|C| = O(rn3/23(n)), whereg(n) = 2°(@*() is as above.

Figure 2: lllustration to the upper bound.

For eachu € P, let o, denote the sphere of radiyscentered at.. Let 8 denote the resulting
collection ofn spheres. LeP, = P No, andC, = {vu | v € P, |uv| = £} (all circles inC, lie
onoy). Putm, = |P,| andc, = |C,|. We have

> mu = 0m?B(n)), (2.1)
ueP

Y e = 1€ =0n*?B(n)).

ueP

We claim that the number of incidences between the point3,@nd the circles o€, is
Om23E23 +my + cy).

This follows exactly as in the proof of a similar bound on thener of incidences between points
and unit circles in the plane (cf. [15, 27]; in fact, the praof27] translates practically verbatim to
the case of congruent circles on a sphere).
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The number of incidences between the circle€ ahd the points of? is thus (using (2.1))

O (Z(mi/?’ci/g’ + my, + cu)> = 0(n*?B(n))+0 (Z mi/?’ci/?’) .

ueP ueP

To obtain an upper bound for the second term, we need theviolipproperties.

Lemma 2.2 The number of sphere-circle containments between a sipsétspheres o8 and the
circles ofC is

O (n*1[80]*/*8(n) +n + IS0l

Proof: Let Py C P denote the set of centers of the sphere§;ofConsider a containment between
a spherer,, for u € Py, and a circley,,, of €. Thenwv is a point of P at distance from «. That
is, u lies on the sphere of radigscentered at. Conversely, any such pointgives rise to a circle
vuv € € thatis contained im,. The asserted bound is now an immediate consequence ofuhe bo
on the number of incidences between points and unit sphef®s ias given in [15]. O

Forj > 0, let P; C P be the set of points such that the sphere, contains;j circles of C.
Define P>y, = U;op Py Pk = U< Py, and8sy, = {0y, | u € P> }. For a given integek > 0,
lett-) = |P~| denote the number of spheressithat contain at least circles ofC. Animmediate
corollary of the previous lemma is the following.

Corollary 2.3

324
bk = [Por| = O (" 7w %) - (2.2)

Proof: The number of sphere-circle containments between the eploé8 . and the circles of
is at leastit> . Using Lemma 2.2, we have

ktsg = O <n3/4t;/,fﬁ(n) +n+ t2k> :
from which the asserted bound follows easily. O

We now obtain a bound on the express@&ep mf/?’c?/?’. Fix a threshold parametét whose

value will be specified later. We have

Zmi/?’c?/?’ _ Z mz/303/3+2 Z m?/?’jQ/?’

ueP u€Py j>k ueP;

2/3 Z mz/?, +2:]-2/3 Z m?/?’.

u€Py, i>k u€Pj

IN
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Using Holder’s inequality and (2.1), the first sum is at most

2/3
L2/3 Z mi/?’ L2/3 (Z mu> /3

u€Pp ueP

k2/3n1/3 ) ((n3/2l3(n))2/3>
_ O(k2/3n4/352/3(n)).

IN

Using once again Holder’s inequality, in conjunction wighl) and (2.2), the second sum can be
bounded by

2/3
ZjQ/S Z m2/3 < ij/g (Z mu> 12RE

3>k u€eP; jzk uePp;
2/3 1/3

< (ZZmu) '(ZJ'?PJ')

j<k ucP; Jj>k

2/3 1/3

< (Z m> - (k2p>k + 35+ 1)p>,.)

ueP j>k

1/3
o [ e (2]
j>k

n33%(n 1/3
= 0 (nﬁQ/?’(n)- (7@2( ) +n2> )
n?B3%(n
- ¢ (nS/Sﬁ m)+ ,fg/ﬁ, )>'

Hence, the total number of trianglesﬁé‘n?’)(P, A)is

2 32
O (k2/3n4/352/3(n) +n5/352/3(n) 4 n ]Z/gn)> _

Choosingk = n'/23(n), we obtain the asserted bound. O

We conclude this section by describing an algorithm for cotimg the triangles spanned @y
that are congruent td. The algorithm consists of the following two main steps.

() For each pointu € P, compute the set®, = {u € P | d(u,v) = n} andP,, = {u € P |
d(u,v) = ¢}, as follows. Construct the s& = {0, | v € P} of n spheres, each of radius
n, centered at the points @f. For each point, € P, we want to compute the set of spheres
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in X that containu. Since an arrangement ofspheres can be decomposed i6te-33(r))
cells of constant description complexity [15], one can ieedivide-and-conquer algorithm
described in [13], to compute the incidences betwfeand X, and thus the setB,, for all

u € P,in O(n/?*%) time. The sets”! can be computed in exactly the same way.

(i) PutC, = {vuw | v € P,}. For each poini. € P, we compute the pair&, w) € P, x C,
for which v lies on the circley,,,. For any such paifv, w), we report the triangl\uvw,
as it is congruent ta\. SinceC, is a set of congruent circles, all lying on the spherg
we can compute, by adapting the algorithm described in [1Bf& computing incidences
between points and lines, all incidences betwBgandC,, in timeO(mf/?’c?/?’ log n+(my+
cy) logn) time.

Following the above analysis, we can conclude that the totahing time of the algorithm is
O(n®/3+¢), for anye > 0. That is, we have:

Theorem 2.4 Let P be a set of: points inR? and A a triangle. The set of triangles spanned By
that are congruent ta\ can be computed i®(n°/3+¢) time, for anye > 0.

Remark 2.5 The best known lower bound fgfé?’) (n) is Q(n*/3). Erdéset al.[18] construct a set

S of points on a unit sphere & in whichQ(n*/?) pairs are at distancg2. If we add the origin to
the point set, every pair if at distance/2 now forms an isosceles triangle with the origin whose
side lengths aré, 1, /2.

As mentioned in the introduction, an immediate corollaryhaf above theorem is the following.

Corollary 2.6 Given a setF of n points inR? and a pattern point seP of m < n points, we can
determine inO(mn®/34(n) 4+ n®/3+¢) time whethet®Z contains a congruent copy &f.

This application raises the following interesting openlgleon. In the preceding algorithm,
we used an arbitrary triangle spanned Byand applied the upper bound that we derived on the
maximum number of congruent copies of this trianglegZinHowever, ifm is reasonably large?
spans many noncongruent triangles, and it is conceivahatesttime of them have considerably fewer
congruent copies iy. Formally, and more generally, we wish to obtain improvepardbounds for
mina flgd)(E, A), for a setE of n points inR?, where the minimum is taken over @Hsimplices
A spanned by a sd? of m points. We note that Akutset al. [5] study a related quantity, which
bounds the sum, over dltsimplices spanned b#, of the number of occurrences of that simplex
in I (so, for each congruence class of simplices, we sum the nunflbecurrences of the simplex
in P times the number of its occurrencesii.
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3 Congruent Triangles in Higher Dimensions

We now prove optimal or near-optimal bounds pj‘f) (n), for d > 4. Recall that the problem is

interesting only ford = 4,5 becausefQ(d)(n) = O(n?) for d > 6. Let P be a set ofn points
in R, and letA = zoyoz be the fixed triangle, with side lengthsyyo| = £, |zoz0| = 1, and
lyozo| = ¢. For a given triple of setsl, B, C of points inR?, let U(A, B, C; A) denote the set
of trianglesuvw such that(u,v,w) € A x B x C, |uv| = &, luw| = n, and|vw| = (. Set
P(A,B,C;A) = |¥(A, B,C;A)| and

D (a,b,c) = max (A, B,C; A),

where the maximum is taken over all setsB, C in R? with |A| = a, |B| = b, and|C| = ¢ and
over all trianglesA. Sety@ (n) = (@ (n,n,n). Obviously, £¥(P,A) = 4(P, P, P;A) and
£3D () < (D (n). It therefore suffices to obtain a bound o) (a, b, c).

Let A, B, C, and A be as defined above. We apply the following randomized digiui-
conquer process, which consists of three substeps: heta sufficiently large constant, depending
one, whose value will be specified later. In the first step, whighrefer to as thel-step we regard
A as a set of points but map andC' to spheres. Denote by, (z) the (d — 1)-sphere of radiug
centered at. With each poinp € B (resp.q € C), we associate the sphese(p) (resp.o,(q)).
Set¥p = {o¢(p) | p € B}, Lc = {oy(q) | ¢ € C},and¥ = Ep U X¢.

A subdivision= of R? into constant-description-complexity cells, in the sedsgned in [25],
is called a(1/r)-cutting of X if each cell inZ is crossed by at mogt/r (resp.c/r) spheres of
Y p (resp.X¢). A similar cutting is used in the algorithm sketched at tinel ®f the previous
section. By following the approach originally proposed byaZelle and Friedman [14] and refined
by Agarwalet al. [4], we compute &1/r)-cutting of & of size O(r? logr) as follows. LiftY to a
collection H of b + ¢ hyperplanes iR+, using the well-known lifting transformation, e.g. given
in [16], which maps a spheref + - + 22 = 21 + - -+ + agzq + (3 to the hyperplane ., =
121+ - -+ agrq+ 6. The points ofR? are lifted to the standard paraboldid: x4, = Zle z3.
We choose a random subgetC H, compute the arrangement Bf and decompose each cell of
the arrangement into simplices, using, e.g., bottom-xdriangulation [14]. LetT" be the set of
simplices in the decomposition that intersélctThe generalized zone theorem of Arorehal. [7]
implies that the number of simplices s O(r¢logr). Let Hn C H be the set of hyperplanes
that cross a simplexX\ in 7. Next, we construct a s&' of pairwise-disjoint, constant-size cells,
which coverll, as follows. If|Ha| < (b + ¢)/r, then we addA to E'. Otherwise, suppose
t(b+c)/r < |Hpa| < (t+ 1)(b + ¢)/r for some integer > 1. We then choose a random subset
Ra C Hp of O(tlogt), construct a decompositiodY (R ) of the arrangement, and clip each
simplex of AV (R ) to within A. If the resulting cell, which is a convex polytope with(1) faces,
intersectdl, then we add it t&'. The set{7 N1II | 7 € E'} forms a subdivision ofl. Thee-net
theory (see, e.g., [23]) implies that, with high probafijlieach cell ofAY (R ) is crossed by at
most(b + ¢)/r hyperplanes o, and a result by Agarwadt al.[4] implies that the expected size
of = is at moster? log r, for some constant For each celi’ € =/, we computer’ N IT and project
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the intersection onto the hyperplang, ; = 0 (our original space). LeE denote the resulting set of
cells. By constructionz is a(1/r) cutting of > of sizeO(r%logr). In fact, a slightly more careful
analysis implies that one may assume that each céllisfcrossed by at most/r spheres ofp
and by at most/r spheres oE¢.

Foreach celr € E,letA, = AN7, B, = {p € B |1 C oelp)}, andB, = {p € B |
TNog(p) # 0 and T & o¢(p)}. Thatis, a poinp € B is in B; if the spheres¢(p) contains the
(necessarily lower-dimensional) cell and it is inB if o¢(p) crosses (i.e., intersects but does not
contain)r. Similarly, we define®, = {g € C | 7 C 0,)(q)}, C; = {q € C | TNay(q) # Dandr ¢
o,(q)}. By further refinement of the cells of the cutting, which does change the asymptotic
bound on the number of cells, we may assume ftHat < a/r%, 3 _|A,| = a, |B,| < b/r and
|C | < ¢/r. Since the point setd, B, andC are not in general position, the subdet (resp.
C,) could be as large a8 (resp.C). Note thatB, andC, can be nonempty only if is a lower-
dimensional cell.

If a triangle Auvw is in U (A, B, C; A), thenu € o¢(v) Noy(w). If u € A,, thenv € B, UB;
andw € C, U C,. Therefore,

(A, B,C;A) < Z[w(AT,BT,éT;A)+¢(AT,BT,O;A)+¢(AT,B,C*T;A)] (3.1)
TEZ
a b c

-, >+Z[ AT,BT,C;A)+¢(AT,B,C*T;A)]-

< 0Gogr) -4 (5,
T T T

In the remainder of this section we obtain boundsydat., B.,C; A) and(A,, B, Cr; A), for

d = 4,5, and substitute them in the above recurrence to derive thiesponding bounds fap(*)

and®)

3.1 The four-dimensional case

Lemma 3.1 Let A, B, and C be three point sets of sizesb, ¢, respectively, irR*. For any cellr
in the corresponding subdivisids,

w(A‘HET’C; A) + @b(AmBa C’T; A) = O(|AT||B| + |AT||C| + |B||C|)

Proof: As noted, we may assume thait a lower-dimensional cell. We first bouid A -, B.,C; A).

The assertion is obvious ifiin{|A.|,|B,|} < 2, so assume that each of the two sets has at least
three points. Recall that each point4f lies at distanceé from every point ofB3,.. This implies that
there exist two orthogonal concentric circtesg, v such thatd, C v, andB, C ~vp; see Figure 3.
Indeed, letu;, us, u3 be three distinct points ol.. The intersection of the sphereg(u, ), o¢(u2),
o¢(ug) is a circle; it cannot be a 2-sphere because a 2-sphere can taly two 3-spheres of a
given radius. Letyz denote this intersection circle, and febe the2-plane containingygz. Clearly,

B, C ~vp. The centew of vp is such that:;0, us0, ugo are all orthogonal tar. This implies that
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Figure 3: lllustration to the upper bound.

u1, ug, us lie in the (unique) planer containingo and orthogonal tor. Applying a symmetric
argument, in which the roles of, and B, are reversed, completes the proof of the existence of

YA, VB-
Letw be any point inC'. If w lies at distance from at most two points ofi,, then

(Ar, By, {w}; A) < 2|B,|,

for an overall bound o2|B;||C|. Similarly, if w lies at distance from at most two points of3;,
thene(A,, B;, {w}; A) < 2|A,], for an overall bound o2|A,||C|. If w is at distanceg from
at least three points ofl, and at distanceg from at least three points d8., thenw lies on a
circle y¢ that is orthogonal to both4 and+p. But this is impossible ifiR*, soy (A, B.,C; A) <
2(|A;|+|B,])|C]. A similar argument shows that( A, B, C;; A) < 2(|A,|+|C|)| B|. Summing
all the bounds obtained above, the assertion of the lemr®l O

In other words, we can write (3.1) far= 4 as

W(A,B,C;A) = O@r*logr) - |(ab+ ac+ be) + p™ (%, g, ;)] )

We now repeat this analysis a second time, using each of taé3seas the set of points and
the two other sets as representing sets of spheres of ajgieopadii (this is theB-step. Then we
perform a third step, thé'-step in which the resulting subsets 6f represent points and the two
other subsets represent spheres. In each of the secondrargtdbs, the size of each set of spheres
decreases by a factor of and the size of each set of points decreases by a factdr. dffter the
third round, we have(r'? log® ) subproblems in which the size of each point set has beenedduc
by a factor ofr®. Therefore we obtain the following recurrence:

D (n) = 0(r'210g* 1)y (%) + 0(n?), (3.2)

where the constant of proportionality of the second termeddp (polynomially) on-. For any
constant: > 0, with an appropriate choice efas a function of the prescribed it can be shown
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that the solution to (3.2) i) (n) = O(n?*¢), where the constant of proportionality depends on
e. Applying this bound forA = B = C' = P, we obtain thay”2(4) (n) = O(n?**).

Observe that the above proof is constructive in the sens& dan be converted into a recursive
algorithm for computing the triangles ir(A, B, C; A), whose running time follows the same
recurrence as (3.2). Indeed, since a constant, we can compute {Higr)-cutting described above
by a randomized algorithm i@ (b+ c) expected time. In fact, it can be computed by a detreministic
algorithm inO(b + ¢) worst-case time [12]. For each celle =, A., B.,C;, can be computed in
an additionalO(a + b + ¢) time. Following the proof of Lemma 3.1, the s@t$A., B.,C; A) and
U(A:, B, Cr; A) can be computed in tim@(ab + be + ca). Hence, the total running time of the
recursive algorithm i€ (n?+¢).

It can be shown thq:fQ(4) (n) = Q(n?), by generalizing Lenz’ construction. In fact, the follogin
construction shows that this lower bound can be attaineaifigrgiven triangleA. Let the side
lengths ofA bea,b,c. Choosen; < a, by < b, andh > 0 so thata; + by > c anda® — a? =
b? — b? = h?. Geometrically, regard\ as a triangle ifR* with the side of length: lying on the
zy-plane, projectA on thezy-plane;a; andb, are the two other sides of the projected triangle (see

Figure 4). Take the following three circles
Y1 ZE%—FiE%:hQ, 153:.%‘4:0,
Y2 w%—i—xiza%, r1 =x0 =0,
Y3 w%—l—xizb%, 1 =29 = 0.

Placen /3 points on each of the circles so that for each of the pgimtkced ony, there is a point

Zo
b

20

IS)

Yo, by

®0

Figure 4: Lower bound construction.

q placed ony; at distancec from p. The resulting set hag/3)? congruent copies ofA. This
construction is reminiscent of a constructionki#, given in [2].

Hence, we have the following theorem.

Theorem 3.2 Let P be a set of: points inR*, and letA be a triangle. The number of triangles
spanned byP that are congruent ta\ is O(n?*¢), for anye > 0, and can be?(n?) in the worst
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case. Moreover, all the triangles spanned Bythat are congruent ta\ can be computed in time
O(n2+e)_

3.2 The five-dimensional case

An argument similar to but somewhat more involved than the wsed in Lemma 3.1 implies the
following lemma ford = 5.

Lemma 3.3 Let 4, B, andC be three point sets of sizasb, c, respectively, irR>. For any cellr
in the corresponding subdivisids,

Y(Ar, By, O3 A) + (A7, B, Crs A) = O(|A|(IBIP|C? + | B| + |C)) + | B]|C)).

Proof: The proof follows the same line of reasoning as that of Lemmia 3Ne first bound
zp(AT,BT,C; A). Again, we can assume that |, |E}T| > 3. Since each point ofd, lies at
distancet from every point of3;, it follows, similar to the 4-dimensional case, that onlpteases
are possible:

(i) A, lies on a circley, and B; lies on a concentric orthogonal 2-spherg.

(i) A, lies on a 2-sphere 4 and B; lies on a concentric orthogonal circie;.

Indeed, take three distinct points, us, u3 € A,. Arguing as aboveB, is contained in a 2-sphere
that is concentric with and orthogonal to the cirgléhat passes throughy , uo, ug. If B, contains

at least four noncoplanar points then the enfiremust be contained ify, and we get the situation
in case (i). Otherwise, the entife, must lie on a single circle and we get the situation in caje (ii

Letw be any point inC'. If w lies at distancey from at most three points o then
$(Ar, By, {w}; A) <3|B,],

for an overall bound o8| B, ||C|. So assume that is at distance) from at least four points of...

In case (i),w must lie on a 2-spherg that is concentric with and orthogonal 4q, and thus
lies in the same 3-space containipg. We have thus reduced the problem to the following one:
We have two concentric spheres, ¢/, in three dimensions, and two finite point s€isQ’, with
Q C pand@’ C ¢, and we wish to bound the number of pairs of point€jirk Q' that are at
distance( from each other. Following the proof in [15] on the number efeated distances in a
planar point set and the proof of Theorem 2.1, it can be shtvahthe number of such pairs is
O(|Q1*?1Q"** +1Q| +|Q'|). In other words, the number of triangles under considendtio

O (IA-(B,*P1CPP + 1B, +|C)))

In case (ii),w must lie on a circleyc that is concentric with and orthogonal ¢9y, and thus lies
in the same 2-plane containing;. In this case it is easily seen that the number of pairs oftpoin
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in B, x (C N~c) at distance from each other is at mo&tB; |, so the number of triangles under
consideration i$)(|A;||B:|).

The estimation ofs(A,, B, Cr; A) is fully symmetric, and yields the bound
O (14:(1C; P1* B +1Cy | + B)) + C- 1B )
Summing all the bounds obtained above, the assertion oétheh follows. O

We now apply Lemma 3.3 to each lower-dimensional ¢efl =, sum up the resulting bounds,
and recall that is a constant, to conclude that the number of triangles titatfg the assumptions
of the lemma, over all cells, is O(a(b*/3¢2/3 + b+ ¢) + be).

By applying a round-robin decomposition process, as in tdawkensional case, we obtain the
following recurrence fory®) (n):

¥O ) = 06 log* () + 0. (33)

Using induction om and choosing a sufficiently large constant valuerfdt can be shown that the
solution to (3.3) igp®) (n) = O(n/3).

Again, we can convert the above argument into an efficietrdkgn for computing? (P, P, P; A).
Let T'(n) be an upper bound on the running time of the algorithm, fas |98t = n. All the steps
in the preceding analysis are effective, and can be compffmiently. In particular, given two
sets of points) and @’ on two spheres in 3-space, and a real parametare can find, in time
O((|QIP21Q'12? + Q| + Q') log(|Q| + |Q'])), all pairs inQ x Q' that are at distance, by mod-
ifying an algorithm by Chazelle [13]. Proceeding as above,get the following recurrence for
T(n):

_ 1573 n 7/3
T(n) = O(r® log® r)T (ﬂ) + OB logn),

whose solution i€ (n"/? log n).

Finally, a matching lower bound fap(® (n) is constructed as follows. Take a unit 2-sphere
o and a unit circley that are concentric and orthogonal. Plag& points ono so that there are
Q(n*/?) pairs of these points at distan¢ apart (as in [18]), and place/2 points arbitrarily on
~. We obtain a set ofi points withQ(n7/3) equilateral triangles of side lengtfi2. We thus obtain
the following theorem.

Theorem 3.4 Let P be a set of, points inR, and letA be a triangle. The number of triangles
spanned by’ that are congruent ta\ is O(n"/3), and the bound is tight in the worst case. Moreover,
the triangles spanning b¥ that are congruent té\ can be computed in tin{é(n7/3 logn).

Remark 3.5 The number of congruent triangles in a setqioints in the plane iQ(n4/3), which
is an immediate consequence of the same bound for the nurhiegeated distances in the plane.
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Itis curious to note that each of these four bounds is clog®td%2)/3), whered is the dimension.
However, while ford = 4, 5 these bounds are nearly tight (b= 4) and tight (ford = 5), they are
conjectured not to be tight faf = 2, 3.

4 Congruent Tetrahedra in Four Dimensions

We now bound the number of tetrahedra spanned by R sét» points inR* that are congruent to

a given tetrahedro\ = pgrs. Fix three points:, v, w € P so that the trianglevw is congruent to
the facepqr of A. By Theorem 3.2, the number of such triplegign?*¢). Any pointz € P such
thatuvwz is congruent ta\ must lie on a circley,,,, that is orthogonal to the 2-plane spanned by
u, v, w, Whose center lies at a fixed point in this plane, which is thage (under the congruence)
of the base point* of the height ofA from s.

LetI" denote the collection of circleg,,,,. Note that the circley,,,, is fully determined by the
pointsu, v, w, but that it is possible that two different circleg,,, and~, ., coincide. In this case,
u'v'w' is obtained fromuvw by a rotation (and/or reflection) in the plane orthogona}.i9,, about
the center of this circle. In other words, all the poiatse P that induce, with two other points
of P, a fixed circley = v,,, SO thatu maps top, must lie on a circle’, ;,, which is concentric
with and orthogonal tey. The radius of”, ,, is the distance betwegnands*. Similarly, the points
that inducey and map toy (resp.r) lie on a circleC, , (resp.C, ). The three circleg’, ;,, C, 4,
andC, . are concentric and coplanar. It is easily checked that arlyesfe three circles uniquely
determinesy and vice versa. For simplicity of presentation, we only use af these three coplanar
circles, sayC, ,,. For acircley € T, there areD(|P Ny - |[P N C, ) tetrahedrawwwz spanned by
P such thatz € v andu, v, w lie on the respective orthogonal concentric cirdles,, C, 4, C, ..
Indeed, once the point has been chosen (frof N C., ), the pointy that maps ta; must lie on
C, , and must be at distang¢gg| from «. There are at most two such points. Similarly there are two
candidate points fow in P N C., , and any point in” N «y is a candidate fog.

Fix a threshold parametér whose value will be specified later. If a cirejec T" contains fewer
than k points, then the number of tetrahedra under considerasiat mostk times the number
of trianglesuvw that are spanned b¥, are congruent t@qr, and induce the circle,,, = v.
Summing this bound over all such “low-degree” circles, weobthe bound) (n*°k).

The problem can thus be reduced to the following. We have & &6t points and a collection
IT of pairs of concentric orthogonal circles, in which no twarpdnave a circle in common, and at
least one circle in each pair contains at ldapbints of P. Our goal is to estimate the sum

Yo Pnql- Py 1< Y max{|P Ny, PNy}
(v,7') el (v,y)en

The problem of estimating the last sum can be restated asv&llWe have the point sdét and
a collection€ of circles so that each circle i@ contains at least points of P, and our goal is to
estimate the suh__ . [P N v|2. Note that we may assume that the circle€’iare all congruent.
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Lemma 4.1 The numbet ; of circles inC that contain at leasj points ofP is O(n?k(n) /"% +
n2/53 + n/j), wherer(n) = (logn)0@*m),

Proof: The number of incidences between thesgcircles and the points aP is at leastjt> ;. A

result by Aronowet al. [6] implies that the maximum number of incidences betweeaircles and
n points isO(n% 1 m? Lk (n) +m2/3n2/3 4 n+m), wherex(n) = (logn)°@ () We thus have
jt>j = O(nﬁ/uti/jnm(n) + t2>/]?’n2/3 + n + t;), from which the asserted bound follows easily.

Lett; denote the number of circles éthat contain exactly points of P. We then have

YNoPnyl? = > % =K+ Y (25 + Dt

yee j>k j>k

2
= 0 nk—i—k k7/2 +Z[g/2 — +n

>k
= 0w+ no).

Hence, the overall number of tetrahedra spannef laywd congruent td\ is

n3 2+e
O [ n? +Wf<c(n)+n k).

Choosingk = n?/?, we obtain the following bound.

Theorem 4.2 Let P be a set of: points inR*. The number of tetrahedra spanned Bythat are
congruent to a fixed tetrahedron ((n20/9+), for anye > 0.

5 The General Case

Let P be a set of points inR? and let3 < k < d—1. LetA = ajas - - - a1 be afix