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ABSTRACTWe present an algorithm that eÆiently ounts all inter-seting triples among a olletion T of n triangles in R3 ,in time O(n2+"), for any " > 0. This solves a problemposed by Pellegrini [18℄. Using a variant of the tehnique,one an represent the set of all � triple intersetions, inompat form, as the disjoint union of omplete tripartitehypergraphs, whih requires O(n2+") onstrution time andstorage, for any " > 0. Our approah also applies to anyolletion of onvex planar objets of onstant desriptionomplexity in R3 , with the same performane bounds. Wealso prove that this ounting problem belongs to the 3sum-hard family, and thus our algorithm is likely to be nearlyoptimal (sine it is believed that 3sum-hard problems an-not be solved in subquadrati time).
1. INTRODUCTIONIntersetion problems are among the most basi problemsin omputational geometry. Many intersetion problems in-volving geometri objets in the plane have been investi-gated, suh as reporting all intersetions in a set of generalars [8℄, deteting a red-blue intersetion between two sets of\red" and \blue" Jordan ars [5℄, and ounting intersetionsin a set of segments [1℄, or in a set of irular ars [4℄. Inontrast, there exist muh fewer studies of intersetion prob-lems involving objets in three dimensions. In [2℄, Agarwal�Work on this paper has been supported by NSF GrantsCCR-97-32101 and CCR-00-98246, by a grant from the U.S.-Israeli Binational Siene Foundation, by a grant from theIsrael Siene Fund, Israeli Aademy of Sienes, for a Cen-ter of Exellene in Geometri Computing at Tel Aviv Uni-versity, and by the Hermann Minkowski{MINERVA Centerfor Geometry at Tel Aviv University.
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et al. present an algorithm for ounting or reporting all inter-seting pairs in a olletion of onvex polytopes in three di-mensions. Counting requires time O(n8=5+"), for any " > 0,where n is the overall omplexity of the input polytopes, andreporting takes O(n8=5+" + �) time, where � is the numberof interseting pairs. An earlier work of de Berg et al. [12℄inludes a proedure for onstruting all interseting pairs ina olletion of n triangles in R3 in an output-sensitive man-ner. The running time of this proedure is O(n4=5+"�4=5+"),for any " > 0, where � is the number of interseting pairs.If � � n3=2, this will take subquadrati time. One the �intersetion segments of the triangles are onstruted, weperform, in bathed mode, segment intersetion queries be-tween these segments and the triangles. This step too anbe implemented in O(n4=5+"�4=5+") time, for any " > 0.Hene, when �� n3=2, we obtain a subquadrati algorithmfor ounting (and for representing) all triple intersetions.We are not aware of any previous spei� work on ountinginterseting triples among n objets in three dimensions, al-though known solutions for the planar ase an be employedto solve (suboptimally) three-dimensional instanes. For ex-ample, ounting the number of interseting triples among ngiven triangles in R3 an be done as follows: For eah inputtriangle t, interset all other input triangles with t, obtain-ing at most n�1 segments within t, and then ount, in timeO(n4=3+"), the number of intersetions between them, us-ing the algorithm of Agarwal [1℄. Repeating this proedureto eah triangle t, the number of interseting triples is onethird of the total ount. The overall running time is thusO(n7=3+"), for any " > 0. Another approah might be toonstrut the intersetion segments of all pairs of triangles,and then perform repeatedly ray shooting queries along eahof them in the olletion of input triangles, thereby obtainingall triple intersetions. Using the best available algorithm ofAgarwal and Matou�sek [3℄, this will take O(n12=5+") time,for any " > 0, whih is even worse than the �rst method.As our paper shows, both solutions are far from being opti-mal. (However, as already noted above, the latter approahmay result in a subquadrati algorithm, when the number ofintersetion segments formed by the triangles is small. Wewill use this as a supplementary routine in our solution, totake advantage of suh situations.)



1.1 Our ResultWe present an eÆient algorithm that ounts all inter-seting triples among a olletion T of n triangles in R3in nearly-quadrati time. This problem was posed by Pel-legrini [18℄. Our algorithm is reursive, and exploits 3-dimensional \urve-sensitive" uttings that were reently in-trodued by Koltun and Sharir [16℄. A utting of this kindis a standard (1=r)-utting of an arrangement of surfaes(the input triangles in our ase), whih is also sensitive toa set of urves (the triangles edges), in the sense that theoverall number of rossings between the urves and the ellsof the utting is small. See [16℄ and below for more de-tails. More spei�ally, we reursively partition R3 usingsuh a utting. Eah triangle is deomposed into portionsthat lie in di�erent ells of the utting. We take eah suhportion �, and interset it with all other triangles, obtain-ing a system of segments within �. We then ount thenumber of intersetions between these segments, applyingstandard tehniques that ount intersetions between lines,and between line-segments and lines in the plane [1℄. Thereursion is handled in a areful manner that ensures thatthe algorithm indeed runs in nearly-quadrati time.Using a variant of this tehnique, it is possible to onstruta representation of the triple-intersetion hypergraph of thetriangles in T as the disjoint union of omplete tripartite3-uniform subhypergraphs fAi � Bi � Cigsi=1 (where s isthe overall number of subhypergraphs), so thatPsi=1(jAij+jBij + jCij) = O(n2+"), for any " > 0. The onstrutiontakes O(n2+") time as well.One motivation for onstruting suh a ompat repre-sentation is the ability to sample a random vertex of thearrangement A(T ), without onstruting this arrangementexpliitly. This tehnique has been reently used by the au-thors [13℄ to eÆiently onstrut the union of n simplies inthree dimensions, when the union is determined by � � nsimplies. Another appliation of this problem is to seletthe k-th highest vertex in an arrangement of n triangles inR3 . This an be performed using an impliit binary searhon the verties of the arrangement, where in eah step wehoose a random vertex v from among those that lie in somespei�ed slab, and ount the number of verties that lie be-low v, in order to determine how to ontinue the searh. Thisextends similar approahes for the 2-dimensional version ofthe problem [10, 17℄. Using our mahinery, the problem anbe solved in nearly-quadrati time.We also extend our tehnique to ount or represent allinterseting triples among n planar onvex simply shapedobjets that lie in distint planes.Finally, we show that it is unlikely that the triangle inter-setion ounting problem has a subquadrati solution, sineit belongs to the 3sum-hard family [14℄, and thus our algo-rithm is likely to be nearly worst-ase optimal.We note that the problem of reporting all intersetingtriples among the triangles of T is muh simpler, and an betrivially solved in O(n2 log n+�) time, where � is the overallnumber of triple intersetions in T , as follows. We interseteah triangle t 2 T with the other triangles, obtaining O(n)segments on t. We then run a line-sweeping proedure onthese segments, onstruting all �t triple intersetions thatinvolve t, in time O(n log n+�t), for a total of O(n2 log n+�)time over all the triangles of T . This phenomenon that re-porting is simpler than ounting also arises for intersetingsegments in the plane.

In the next setion we present an algorithm that ounts allinterseting triples among a olletion of n triangles in R3 .In Setion 3 we show how these intersetions an be repre-sented as the disjoint union of omplete tripartite 3-uniformhypergraphs, with an overall storage (and onstrution time)that is nearly-quadrati in the size of the input. In Setion 4we show that the triangle intersetion ounting problem be-longs to the 3sum-hard family. In Setion 5 we extend ouralgorithm to ount interseting triples among a olletion ofplanar onvex objets of onstant desription omplexity inR3 . We give onluding remarks and suggestions for furtherresearh in Setion 6.
2. COUNTING INTERSECTING TRIPLES

AMONG TRIANGLES IN R3Given a olletion T of n triangles in R3 , we present an al-gorithm that eÆiently ounts all interseting triples amongthe triangles in T .If the number of pairs of interseting triangles is signi�-antly smaller than n3=2 then the problem an be solved insubquadrati time, using the algorithm of de Berg et al. [12℄,briey reviewed in the introdution. To detet suh favor-able situations, we �rst run this algorithm, as a preliminarystage. If the running time of this step beomes quadrati,we abandon it, and run the main algorithm, presented indetail below.
2.1 Ingredients of the Algorithm

Curve-Sensitive CuttingsWe use a reent result of Koltun and Sharir [16℄ on theexistene of \urve-sensitive" uttings. In our ontext, itimplies the following. For any r � n there exists a (1=r)-utting � for T of size O(r3+"), for any " > 0, whih isa partition of R3 into O(r3+") simplies, suh that everysimplex (also referred to as a ell of �) is rossed by atmost nr triangles of T , with the additional property that thenumber of rossings between the edges of the triangles andthe ells of � is O(n1+"r). The time needed to onstrutsuh a utting, when r is at most O(n"), is O(n1+"0 ), forany "0 > 0 that is suÆiently larger than ".We note that, for the ase of triangles, one an obtainsuh a utting using a simpler onstrution than that in [16℄.Spei�ally, the utting is onstruted from a random sam-ple R of O(r log r) of the planes ontaining the triangles of T .We form the arrangement A(R) of R and triangulate eah ofits ells using the Dobkin-Kirkpatrik hierarhial deompo-sition [11℄, whih has the property that a line that rosses aell C rosses only O(log r) of its simplies. Sine a line (or,rather, an edge of a triangle) rosses at most O(r log r) ellsof A(R) (it has to ross a plane of R to move from one ellto another), it rosses at most O(r log2 r) simplies, so thetotal number of edge-ell rossings is O(nr log2 r). A ut-ting of this kind an be onstruted in time O(nr2 log4 r):We onstrut A(R) and hierarhially deompose eah ell� of it, in a total of O(r3 log3 r) time [11℄. We next om-pute, for every original ell � of A(R), the subset T� of thetriangles of T that ross �, in overall time O(nr2 log2 r) [9℄,and then determine the rossings between the triangles inT� and the subells of � (onstruted by the hierarhi-al deomposition). The running time of the latter step isO(log r) for eah triangle of T� [11℄, for a total of O(nr log r)



time over all triangles of T�, and thus for a grand total ofO(nr2 log4 r) time over all ells of A(R). However, for moregeneral planar onvex �gures, that we will onsider in Se-tion 5, this simpler approah does not work, and the moregeneral urve-sensitive utting of [16℄ is needed.
The Recursive Decomposition—An OverviewWe onstrut an \edge-sensitive" (1=r)-utting �, as de-sribed above, with a value of r that will be spei�ed later,and ount the interseting triples in eah ell of � separately.Fix a ell � of �. We lassify eah triangle t 2 T that in-tersets � as being either long in �, if �t\� = ;, or short,otherwise. Eah interseting triple in � is onsequently las-si�ed asLLL, if all three triangles that form the intersetion are longin �,LLS, if two of these triangles are long and one is short,LSS, if one of these triangles is long and two are short,SSS, if all three triangles are short.In what follows we assume that eah triangle (long orshort) that rosses � is lipped to within �. In partiular,for any long triangle t, t\� is a triangle or a quadrilateral.For short triangles, t \� is at most a 7-gon: Sine � is asimplex, the plane ontaining t intersets � in at most aquadrilateral, and the edges of t ontribute at most threeadditional edges to the ross-setion.We ount the number of interseting triples within eahell �0 by further partitioning �0 into smaller subells �,and reursively derive from eah suh subell new subprob-lems. We partition �0 using the same kind of sensitive(1=r)-utting, for the same r, with respet to the set of longand short triangles in �0, and the set of edges bounding theshort triangles in �0 (and rossing �0). Initially, �0 is theentire three-dimensional spae, and all triangles are short in�0, but they may beome long in further reursive steps.Let us denote by NS = N�0S the overall number of shortinput triangles (within a ell �0) and by NL = N�0L theoverall number of long input triangles (within �0). Dur-ing eah step of the reursion, we partition �0 into smallersubells �, and immediately dispose of any new LLL andLLS intersetions within eah subell �, using two simple al-gorithms that ount all interseting triples of types LLL andLLS within � in timeO �(N�L )2 logN�L � andO(N�S N�L logN�L ),respetively. These intersetions are not reounted duringany further reursive substep. At the bottom of the reur-sion (when NS < max�pNL; 	, for some onstant  � 3),we use two additional simple algorithms that ount inter-seting triples of types LSS and SSS, whih run in timeO(NS3 +NSNL logNL)|see below. We note that the goalof the reursive step is only to ount eÆiently intersetingtriples of types LSS and SSS; the (new) interseting triplesof types LLL and LLS are ounted before entering the re-ursive step. (Of ourse, eah reursive step may generateits own LLL and LLS intersetions, involving triangles thatwere short in the input but beame long in some of its sub-problems.)For the algorithm to attain the desired eÆieny, we need,for eah parent ell �0, to onstrut a sensitive (1=r)-uttingof �0 that has the property that eah subell � of �0 isrossed by at most N�0Sr short triangles in �0 and by at mostN�0Lr long triangles in �0. This problem an be solved by

l1l2 ql2pl1tpl2 ql1
Figure 1: The long triangles that interset the tri-angle t, drawn as lines rossing t. Two lines l1 andl2 interset within t if and only if their intersetionpoints pl1 , ql1 , pl2 , ql2 with �t interleave along �t.sampling two subsets of O(r log r) triangles eah, one fromthe long triangles in �0 and one from the short ones. Thestandard "-net theory [15℄ implies that the resulting uttinghas the desired property.We �rst desribe these four simple intersetion ountingalgorithms, and then present in detail the omplete reur-sive algorithm, whih uses these simple algorithms as sub-routines.
Counting Intersections of Type LLLLet � be a simplex ell of (some reursive utting) � andlet L� denote the set of lipped long triangles in �. LetNL = N�L = jL�j denote, as above, the total number of longtriangles in �. We apply the planar algorithm of Agarwal [1℄to eah lipped triangle t 2 L�. That is, we interset t withall the other triangles in L�, and ount all interseting pairswithin t. Sine the boundary of every triangle t0 2 L� liesoutside �, t0 must ross t in a line segment, both of whoseendpoints lie on �t; see Figure 1. As desribed in [1℄, thisproblem an be solved in timeO ����L���� log ���L����� = O(NL logNL);by sorting the intersetion points of these lines with �t along�t in a lokwise diretion, say, and by ounting all pairswhose intersetion points appear along �t in an interleavedorder, as illustrated in Figure 1. It follows that the overallrunning time needed for ounting all LLL intersetions overall the lipped long triangles within � is O(N2L logNL).Note that one a triangle has beome long in a ell �, itwill remain long in all reursive steps involving subells of�. Sine we need to ensure that eah LLL intersetion isounted only one. we ount only intersetions that involveat least one new long triangle (a triangle that is short inthe parent ell of � but long in �). To do so, we take onlynew long triangles as the base triangles t, within whih theplanar ounting algorithm is applied. Moreover, we enu-merate the new long triangles as t1; : : : ; tk, and apply thealgorithm, within eah ti, only to the new long triangles tj ,for j > i, and to all the old triangles. With these modi�-ations, the running time of the algorithm just presented isO(NLN0L logNL), where N0L is the number of new long tri-angles (whih are also ounted among all NL long triangles).



Counting Intersections of Type LLSWe use a similar approah as in the LLL ase. Let NS = N�Sdenote the number of short triangles in �. We apply thepreeding two-dimensional sheme within eah short trian-gle. That is, we interset eah short triangle with all thelong triangles, obtaining O(NL) lines on eah suh (lipped)triangle. Then we ount all interseting pairs within eahshort triangle, using the preeding algorithm. The overallrunning time is thus O(NSNL logNL). Here too we needto ensure that no intersetion is reounted in further re-ursive substeps. This is done as follows: On eah shorttriangle in �, we solve the bihromati version of the prob-lem, whih ounts all intersetions between the new longtriangles and all the long triangles. The algorithm for solv-ing this problem is similar to the preeding one, and runsin time O(NL logNL); see [1℄ for further details. Then weount the intersetions involving only new long triangles,using the two-dimensional proedure desribed in the LLLase. It thus follows that the running time of the modi�edalgorithm remains O(NSNL logNL).
Counting Intersections of Type LSSLet S� denote the set of (lipped) short triangles in �,so NS = N�S = jS�j. Interset eah (lipped) triangle int 2 S� with all the other triangles of S� and L�. We thusfae the problem of ounting interseting pairs of long seg-ments (whose endpoints lie on the boundary of t) and shortsegments, within every triangle t 2 S�. Note that eah suhproblem has an input of O(NS) short segments and O(NL)long segments. Sine the short segments are on�ned towithin t, we may replae the long segments by their ontain-ing lines, without a�eting the set of interseting pairs. Theproblem an then be solved in O(NS2+NL logNL) time, us-ing an approah presented in [1℄, in whih we onstrut thearrangement of the lines dual to the endpoints of the primalsegments (representing short triangles), and then loate inthis arrangement all points that are dual to the primal lines(representing long triangles). Sine eah fae of the arrange-ment onsists of points dual to lines that ross a �xed setof segments, this easily yields the ount of the intersetionsbetween the (primal) segments and the (primal) lines.To make sure that eah intersetion is ounted only one,we enumerate the short triangles as t1; : : : ; tNS , and makeeah triangle ti proess only short segments that are formedby its intersetions with triangles tj with j > i. Thus, theoverall running time of the algorithm, for a �xed ell �, isO �NS3 +NSNL logNL�.
Counting Intersections of Type SSSWe ount all interseting triples of type SSS using a brute-fore algorithm whih examines all triples, in time O(N3S).Note that this bound is subsumed by the bound on the timeneeded to ompute LSS intersetions.
The Overall Recursive AlgorithmEah step of the algorithm involves a simplex �0, whih isinitially the entire 3-spae, or, in further reursive steps, isa ell of a utting of some larger simplex. The algorithmreeives as input a set of NS short triangles and a set of NLlong triangles lipped to within �0.If NS � max�pNL; 	, for some onstant  � 3, we stopthe reursion and ompute the number of LSS and SSS in-

tersetions, using the expliit algorithms desribed above.Note that, in this ase, there is no need to ount interset-ing triples of type LLL and LLS, sine all interseting triplesof these types have already been ounted in the preedingstep that has proessed the parent ell of �0.If NS > max�pNL; 	, we �rst ompute a (1=r)-utting� of the arrangement of all long and short triangles within�0, whih is also sensitive to the edges of the short trian-gles, in the sense de�ned above. (We apply the variant thatsamples O(r log r) triangles from eah of the sets of long tri-angles and of short triangles.) Then we ount all LLL andLLS intersetions within eah subell � of �0, that involveat least one new long triangle (a triangle that is short in �0but long in �), using the algorithms desribed above. Wethen ontinue to solve the problem reursively in every ell� 2 �, with some extra are | see below.Sine there are only O(N1+"S r) rossings between shorttriangles and the ells of �,1 it follows that, for any r2 �s � r3+", the number of ells in � that are rossed by atleast N1+"S rs short triangles is at most O(s). (The ase s < r2annot arise, sine eah ell of � is interseted by at mostNSr short triangles of T , due to the sampling that we haveused.) We partition the set of all ells in � into at mostlog �Mr2 � subsets, where M is the overall number of ells in� (note that log �Mr2 � = O((1 + ") log r)), so that in the i-thsubset �i, for i = 0; : : : ; log �Mr2 �, we have O(2ir2) ells of�, eah of whih satis�es (reall that S� denotes the set ofshort triangles in �)N1+"S2ir � jS�j � 2N1+"S2ir ;where the last subset of O(r3+") ells satis�es jS�j = O�N1+"Sr2 �,for eah ell � in this subset.We now reate reursive subproblems, taking into aountthe number of long triangles in eah subell �, as follows.For eah ell � 2 �i, we partition (arbitrarily) the set oflong triangles in � into 2i subsets, eah of size at mostNS+NL2ir (note that the number of long triangles in � is atmost NS+NLr , beause of the utting property, and beausesome of the short triangles in the parent ell �0 may havebeome long in �), and proess eah subset in a separatereursive step. Thus, � generates 2i subproblems, eah in-volving all O�N1+"S2ir � short triangles in �, and at mostNS+NL2ir long triangles in �. These subproblems are thensolved reursively. Note that ounting all LLL an LLS in-tersetions within �, before proeeding down the reursion,is ruial. Otherwise, in addition to the issues disussedearlier, we might miss interseting triples of types LLL andLLS that involve long triangles from two di�erent subsets.We estimate the ost of omputing the LLL and LLS in-tersetions within eah ell � of � in the following rudemanner. The number of new long triangles in � is at mostNSr , the overall number of long triangles in � is at most1We use here the more general and slightly weaker boundof [16℄ for the number of edge-ell rossings, rather thanthe slightly improved bound that an be obtained from theDobkin-Kirkpatrik hierarhial deomposition. This doesnot a�et the asymptoti running time bound, and allowsus to extend the analysis essentially verbatim to the ase ofgeneral onvex planar objets.



NS+NLr , and the number of short triangles in � is at mostNSr . Hene the ost of omputing the LLL and LLS inter-setions within � is O �NS(NS+NL) log (NS+NL)r2 �. Summingover all ells �, the overall running time isO�r3+"NS(NS +NL) log (NS +NL)r2 � =O �r1+"NS(NS +NL) log (NS +NL)� :Let F (NS; NL) denote the maximum time needed to ountall interseting triples at a reursive step involving NS shorttriangles and NL long triangles. Then F satis�es the follow-ing reurrene:
F (NS; NL) � 8>>>>>>>>>>>><>>>>>>>>>>>>:

O(r1+"NS(NS +NL) log (NS +NL))+O �(NS +NL)1+"0�+Plog �Mr2 �i=0 O(22ir2)F �NS1+"2ir ; NS+NL2ir � ;if NS > max�pNL; 	O(N3S +NSNL logNL);if NS � max�pNL; 	 ;where  � 3 is onstant, and the term O �(NS +NL)1+"0�is the time to onstrut the urve-sensitive utting, for any"0 > 0, whose hoie depends on the hoie of r.To solve the reurrene, for a given " > 0, we substituter = n0"0 , for an appropriate onstant 0 > 0. It is then easyto see, using indution on n and hoosing "0 appropriately,that the solution isF (NS; NL) = O(NS(NS +NL)1+"); for any " > 0; (1)with a onstant of proportionality that depends on ". (Notethat in the ase NS < pNL, the term O(N3S), that ap-pears in the bound for the ost of ounting all interset-ing triples of types LSS and SSS, is dominated by the termO(NSNL logNL).)Initially, the algorithm begins with � equal to the entirethree-dimensional spae, and NS = n, NL = 0. Note thatat this point there are only interseting triples of type SSS,but the reursive proess will generate the other types ofintersetions as spae is progressively ut up into subells.In summary, we have shown:Theorem 2.1. The number of interseting triples in a setof n triangles in R3 an be ounted in timeminnO(n4=5+"�4=5+"); O(n2+")o ;for any " > 0, where � is the overall number of pairs ofinterseting triangles.Remark. We note that by slightly modifying this algo-rithm, we an solve the following trihromati variant of theproblem in nearly-quadrati time:\Given three sets, Tr of nr \red" triangles, Tb of nb \blue"triangles, and Tg of ng \green" triangles, all in R3 , eÆientlyount the number of triples in Tr � Tb � Tg with nonemptyintersetion."

3. COMPACT REPRESENTATION OF ALL
INTERSECTING TRIPLESGiven a olletion T on n triangles in R3 , we representthe set of all interseting triples among the triangles of T asa 3-uniform hypergraph [7℄ H = (T;E) whereE = ffti; tj ; tkg j ti; tj ; tk 2 T and ti \ tj \ tk 6= ;g ;for all 1 � i < j < k � n.The size of the above representation is �(n3) in the worstase. Our goal is to provide a ompat representation forH of nearly-quadrati size, so that the set of all intersetingtriples in T need not be listed in the above expliit manner.As noted in the introdution, one immediate appliation ofsuh a ompat representation is for sampling a random el-ement out of the set of all interseting triples in T , withouthaving to list all these intersetions expliitly. We disuss afew appliations, already mentioned in the introdution, atthe end of this setion.The ompat representation for H that we seek (de�nedanalogously to that in [6℄) is a olletionH = fHi = (Vi; Ei)gsi=1,of s subhypergraphs of H, suh that1. EahHi is a omplete tripartite 3-uniform hypergraph,that is, the set of its verties Vi an be partitionedinto three disjoint subsets Ai, Bi and Ci, suh thatany triple of triangles fai; bi; ig, suh that ai 2 Ai,bi 2 Bi, and i 2 Ci, is an edge of H.2. E = Ssi=1Ei.3. EiTEj = ;, for i 6= j.Clearly, the storage needed for suh a ompat representa-tion is Psi=1 jVij, sine the edges of H are now de�ned im-pliitly. We show that the algorithm desribed in Setion 2an be modi�ed to produe suh a ompat representationof H, with Psi=1 jVij = O(n2+"), for any " > 0. We use thesame reursive mehanism as in the preeding setion, butmodify the four simple algorithms (that the reursive algo-rithm uses as subroutines) so that they onstrut a ompatrepresentation for all relevant interseting triples (instead ofounting them). We �rst desribe these simple algorithms.(As in the preeding setion, we �rst run as a preliminarystage the algorithm of de Berg et al., whih an be eas-ily modi�ed to produe all verties along eah intersetionsegment as the union of preomputed anonial subsets, sothat the total size of all these subsets is O(n4=5+"�4=5+"),for any " > 0. (With some are, we an ensure that novertex is impliitly onstruted more than one.) Hene,when the number � of intersetion segments is signi�antlysmaller than n3=2, this method will yield a ompat repre-sentation of subquadrati size. As above, we abandon thisalternative omputation when its output size beomes morethan quadrati, and resort to the main algorithm.)

Representing Intersections of Types LLL and LLSWe desribe the ompat representation of interseting triplesof type LLS; the interseting triples of type LLL are handledsimilarly. As desribed in the preeding setion, given a ell�, the algorithm that ounts all interseting triples of typeLLS in � applies the planar algorithm on eah (lipped)short triangle t in �. Let Lt denote the set of the linesobtained by interseting t with all the long triangles in �.



(Reall that the atual algorithm is slightly modi�ed, to a-ount only for intersetions that involve new long triangles;for simpliity of presentation, we ignore this issue in whatfollows.) It is suÆient to obtain a separate ompat repre-sentation of all interseting pairs of lines in Lt, for eah shorttriangle t in �. These interseting pairs are represented asfollows. Sort the intersetion points of the lines in Lt withthe boundary of t, and turn the resulting irular sequeneinto a linear sequene �t by breaking it at some arbitrarypoint. For eah original triangle ti (i = 1; : : : ; NL = N�L )that intersets t in a line li, we write li1 for its �rst interse-tion point in �t and li2 for its seond intersetion point in�t. We want to represent ompatly all pairs fti; tjg, i 6= j,that satisfy li1 < lj1 < li2 < lj2.We use a 2-level tree-like struture. The �rst-level stru-ture T1 stores the points li1 in sorted order. For eah node(subtree) v of T1, we onstrut a seondary struture T2(v)that stores all the points li2 whose mathing points li1 arestored at v. We now query with eah triangle tj . We �rstsearh with lj1 in T1, and �nd all elements that (stritly)preede lj1, represented as the disjoint union of O(logNL)subtrees. For eah subtree (rooted at some node) v, we goto T2(v) and searh there for all elements that lie (stritly)between lj1 and lj2, again, obtaining them as a olletion ofO(logNL) subtrees. Altogether, tj \lands" in O(log2NL)subtrees of the seondary strutures. For eah suh subtree� , we ollet the set A� of all triangles of T in � that reahit, and output the omplete bipartite graph A� �B� , whereB� is the set of triangles that are stored at � (more pre-isely, those triangles ti whose seond intersetion points li2are stored there).The overall size of the vertex sets of the output graphs isO(NL log2NL). Indeed, the overall size of all the seondarytrees is O(NL logNL), and the overall size of all subtreesof a seondary tree � with k verties is O(k log k), whiheasily implies that P� jB� j = O(NL log2NL). Similarly,sine eah triangle reahes as a query O(log2NL) subtrees,we also have P� jA� j = O(NL log2NL). We now add, foreah subtree � , the tripartite hypergraph ftg � A� �B� tothe output representation. Hene, the overall size of thesets of the ompat representation, over all short trianglestj in �, is O(N�S N�L log2N�L ). The time for onstrutingsuh a representation has the same upper bound. Note thatthe output onsists of edge-disjoint omplete tripartite 3-uniform hypergraphs, with one of the three vertex sets ineah hypergraph being a singleton.As in Setion 2, we need to ensure that eah triple interse-tion is represented only one. Proeeding as in Setion 2, thealgorithm an be modi�ed so that it represents only bihro-mati intersetions between the new long triangles and allthe long triangles. This an be done by onstruting the two-level tree-like struture for all the long triangles as above,but query only with the points obtained by the new longtriangles.Handling LLL intersetions is done similarly. We ensurethat eah triple intersetion is represented only one, us-ing similar arguments to those desribed in the LLL ount-ing algorithm (see Setion 2 for further details). The sizeof the resulting representation is O(NLN0L log2NL), whereN0L is de�ned as in Setion 2, and it an be onstruted inO(NLN0L log2NL) time.

Representing Intersections of Type LSSHere too we adapt the orresponding algorithm of the pre-eding setion, so that it represents (rather than ounts) allinterseting pairs between the O(NS) short segments andthe O(NL) long segments within every short triangle t in�. As in the LSS ounting algorithm, to make sure thateah intersetion is represented only one, we enumerate theshort triangles as t1; : : : ; tNS , and make eah triangle ti pro-ess only short segments that are formed by its intersetionswith triangles tj with j > i. By repeating this proedurefor all short triangles, we obtain a ompat representationof all LSS intersetions.Fix a short triangle t, denote by St the set of short seg-ments within t, obtained by interseting t with all the shorttriangles in � (that sueed t in the above enumeration),and by Lt the set of lines within t, obtained by intersetingt with all the long triangles in �. Denote by S�t the set ofthe double wedges dual to the segments in St (eah endpointof a segment s in the primal plane is transformed into a linein the dual plane, and thus the two endpoints of s form adouble wedge in the dual plane, whih is the lous of allpoints dual to lines that interset s), and by L�t the set ofpoints dual to the lines in Lt.We onstrut a (1=r)-utting � for the double wedgesin S�t , for a suÆiently large onstant parameter r. Next,we loate all the points of L�t in the ells of �, and thenompute for eah ell � 2 � all the double wedges of S�tthat ontain �. The overall running time of this step isO(r2jS�t j + jL�t j log r). Let us denote by Lt(�) the set oflines of Lt whose dual points lie in the interior of �, and bySt(�) the set of segments in S�t whose dual double wedgesontain �. We add ftg � Lt(�) � St(�) to the output rep-resentation. Sine eah double wedge may ontain O(r2)ells in its interior, and sine P�2� jLt(�)j = jL�t j, it fol-lows that the overall size of the vertex sets of this ompatrepresentation, at this stage, isX�2� (1 + jLt(�)j+ jSt(�)j) = O(r2jS�t j+ jL�t j);(we add 1 for eah ell of �, sine ftg is also a part of therepresentation). We now subdivide, if needed, eah ell in� into smaller subells, eah ontaining at most jL�t jr2 pointsof L�t in its interior. Let �0 denote this new set of ells (it iseasily seen that this deomposition does not asymptotiallyinrease the number of ells in �0, and thus j�0j = O(r2)).We now reursively ontinue to onstrut suh a ompatrepresentation within eah ell � of �0, where the subprob-lem at � involves the at most jL�t jr2 dual points in � and theat most jS�t jr double wedges whose boundaries ross �. Thereursion is stopped when either NS or NL beome smallerthan r. We then report all interseting pairs in a brute-foremanner. The omplexity of the representation, at any suhbottom step, is O(r(NL +NS)).Let G(NS ; NL) denote the maximum size of the ompatrepresentation of all interseting pairs at a reursive stepinvolving NS segments and NL lines. Then G satis�es the



following reurrene:G(NS ; NL) � 8>>>><>>>>:O �r2NS +NL� +O(r2)G�NSr ; NLr2 � ;if NS ; NL > rO (r (NS +NL)) ;if NS � r or NL � r:The solution of this reurrene (for a suÆiently large valueof r) is easily seen to beG(NS ; NL) = O(N2+ÆS +N1+ÆL );for any Æ > 0. (We note that the same bound applies forthe time needed to onstrut this representation.) Thusthe overall size of the ompat representation of all inter-seting triples of type LSS within a ell � is O((N�S )3+Æ +N�S (N�L )1+Æ), for any Æ > 0.
Representing Intersections of Type SSSThe ompat representation for all interseting triples oftype SSS is onstruted in a brute-fore manner, by exam-ining all triples, and reporting separately eah intersetingtriple, as a separate single-edge tripartite graph. The overallsize of the representation, and the time needed to omputeit, are both O(N3S). This bound is subsumed by the boundon the representation of the interseting triples of type LSS.
The Overall Compact RepresentationWe use the same reursive mehanism as in Setion 2. Inthis ase, we let F (NS; NL) denote the time needed to on-strut the ompat representation of all interseting triplesat a reursive step involving NS short triangles and NL longtriangles. Then F satis�es the following reurrene:
F (NS ; NL) � 8>>>>>>>>>>>><>>>>>>>>>>>>:

O(r1+"NS(NS +NL) log2 (NS +NL))+O �(NS +NL)1+"0�+Plog �Mr2 �i=0 O(22ir2)F �NS1+"2ir ; NS+NL2ir � ;if NS > max�pNL; 	O(N3+ÆS +NSN1+ÆL );if NS � max�pNL; 	 ;for any Æ > 0, where  � 3 is onstant, and M and "0 arede�ned as in Setion 2.Applying arguments similar to those in Setion 2, we on-lude that the solution of this reurrene isF (NS; NL) = O �NS(NS +NL)1+"� ; for any " > 0;and the same bound applies for the size of the ompat rep-resentation. We have thus shown:Theorem 3.1. Given a olletion T of n triangles in R3,the set of all interseting triples among the triangles of Tan be represented in ompat form, as the disjoint union ofomplete tripartite 3-uniform hypergraphs, with an overallsize of minnO(n4=5+"�4=5+"); O(n2+")o ;for any " > 0, where � is the overall number of pairs of in-terseting triangles. The time needed to onstrut this rep-resentation has the same bound.

Drawing a Random Intersecting TripleWe now present an appliation that exploits the ompatrepresentation of the interseting triples among a set T of ntriangles in R3 . In this appliation we wish to draw at ran-dom an element from the set of all interseting triples. Thisis easy to do, in O(log n) time, using the ompat represen-tation of this set.2 We �rst ount all the interseting triplesamong the triangles of T , in time minnO(n4=5+"�4=5+"); O(n2+")o, for any " > 0, where � denotes the overall number of in-terseting pairs. If � � n3=2, we onstrut all interset-ing triples expliitly in subquadrati time, using the pro-edure of de Berg et al. [12℄. Otherwise, if the number ofinterseting triples is O(n2), we onstrut all intersetingtriples expliitly in time O(n2 log n), using the reporting al-gorithm desribed in Setion 1. In this ase a random in-tersetion an be drawn in O(1) time. Otherwise, let theompat representation of all interseting triples be given asSsi=1Ai � Bi � Ci. We �rst ompute, as a preproessingstep, all the \pre�x sums" �i =Pi0<i jAi0 j � jBi0 j � jCi0 j, fori = 1; : : : ; s. We store these sums in a (sorted) array. Theost of this step is O(n2+"), for any " > 0. Next, to drawa random interseting triple, we draw a random number jbetween 1 and �, and �nd in O(log n) time the index i thatsatis�es �i < j � �i+1. We then pik the (j � �i)-th edgeof the hypergraph Ai �Bi �Ci, aording to some obviouslexiographial order, and output the orresponding inter-seting triple of triangles. Thus, drawing an intersetingtriple takes O(log n) time, with O(n2+") preproessing andstorage, for any " > 0.We have mentioned in the introdution another applia-tion of our mahinery: Given a set T of n triangles in R3 ,and a parameter k, �nd the k-th highest vertex of A(T ). Wehave noted that our results an be used to solve this prob-lem in nearly quadrati time, using an appropriate form ofrandomized binary searh on the verties. For lak of spaewe omit the full details of this appliation in this version.
4. COUNTING INTERSECTING TRIPLES

IS A 3SUM-HARD PROBLEMIn this setion we show that the problem of ounting allinterseting triples among triangles in R3 , a problem thatwe denote as 3ounting, belongs to the 3sum-hard family(see [14℄), and thus, the best solution to this problem is likelyto require �(n2) time in the worst ase. We show that thefollowing problem
Problem3sum':\Given three sets of integers A, B, and C of totalsize n, are there a 2 A, b 2 B,  2 C witha+ b = ?"is linear-time reduible to 3ounting.Given three sets A, B and C of integers, we proeed asfollows. We transform eah element a 2 A (resp., b 2 B, 2 C) to the plane ha : x = a (resp., hb : y = b, h : z = ).We denote the three resulting sets of planes by A�, B� andC�, respetively. Every triple of planes ha 2 A�, hb 2 B�and h 2 C� intersets at the point (a; b; ), and the overall2This algorithm is a variant of another algorithm presentedby the authors, for drawing a random element of the set ofall interseting pairs of n given segments in the plane [13℄.
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Figure 2: The onstrution used to redue 3ount-ing to 3sum'. The vertial lines are the planes rep-resenting the elements of A, the retangles are theplanes representing the elements of B, and the hori-zontal lines are the planes representing the elementsof C. We exlude the region x+y�1=2 < z < x+y+1=2.number of suh interseting triples is jAjjBjjCj. We nowadd to the sene the plane H : z = x+ y. See Figure 2 foran illustration.The (obvious but) key observation is that there is a triplea 2 A, b 2 B,  2 C suh that a + b =  if and only if theplane H ontains the intersetion point of the three planesha, hb and h. We thus split eah plane h 2 A� [ B� [ C�into two halfplanes at the intersetion line h \ H, result-ing in six sets of open halfplanes, suh that the halfplanesin three subfamilies lie above H and the halfplanes in theother three subfamilies lie below H. (Sine 3ountingreeives as input losed triangles, we atually replae eahplane in A� [ B� [ C� by its intersetions with the twolosed halfspaes z � x+ y � 1=2 and z � x+ y + 1=2; it iseasy to see that all the triple intersetions in the remainingslab x+ y� 1=2 < z < x+ y+ 1=2 lie on H itself.) We nowount all triple intersetions among the resulting losed half-planes that lie above H, and all triple intersetions amongthe losed halfplanes that lie below H. It now followsthat the overall number of intersetions on both sides of His stritly smaller than jAjjBjjCj if and only if there are threeplanes ha 2 A�, hb 2 B� and h 2 C�, suh that H ontainstheir intersetion point (a; b; ), whih is equivalent to theexistene of three numbers a 2 A, b 2 B,  2 C suh thata+ b = .We note that the onstrution of the six families of tri-angles takes O(n) time. Thus we have shown that 3sum'nn 3ounting, implying that 3ounting is a 3sum-hardproblem.
5. EXTENSIONSIn this setion we extend the algorithms presented in Se-tions 2 and 3 to ount or represent all interseting triplesamong n planar onvex objets in R3 .Let S be a olletion of n planar onvex objets in R3 ,suh that eah objet s 2 S is bounded by a losed (and on-

�
Figure 3: A view from above on four ellipses in R3.After the vertial walls from their boundaries areereted, a nononvex ell � is generated. Thus, theintersetion of � with any ellipse that rosses � isnot onvex.

ql2l1l2 pl2
tl1 tl3sl3pl3 ql1pl1l3 sl1ql3s

Figure 4: The lines l1, l2, l3 are ross setions withins of orresponding long objets of S. The lines l1and l2 interset within s sine the intersetion pointspl1 , ql1 , pl2 , ql2 of their ontained segments interleavealong �s. The lines l1 and l3 do not interset within ssine they do not ontain segments that are lippedto within s and have interleaving endpoints.



vex) planar urve  2 R3 of onstant desription omplexity.That is, eah bounding urve is de�ned as a Boolean om-bination of a onstant number of polynomial equalities andinequalities of onstant maximum degree. We also assumethat the objets in S are in general position, and in parti-ular that no two of them are oplanar. In this ase, we anonstrut for S a (1=r)-utting � of size O(r3+"), whih issensitive to all the bounding urves of the elements in S, inthe sense that the number of rossings between these bound-ing urves and the ells of � is O(n1+"r), for any " > 0; seeSetion 2 and [16℄. The time needed to onstrut this ut-ting, when r is at most O(n"), is O(n1+"0 ), for any "0 > 0that is suÆiently larger than ".Note that the ells of � need not be onvex, sine, as partof the onstrution of �, we draw a random sample R of thebounding urves, and eret vertial walls up and down fromeah suh urve; see [16℄ for further details. Thus, a lippedobjet s 2 S to within a ell � 2 � need not be onvex; seeFigure 3. Nevertheless, sine the given objets have onstantdesription omplexity (and hene so does eah ell � 2 �),it follows that eah lipped objet s has onstant desriptionomplexity, and eah element s0 2 S intersets the (lipped)objet s in O(1) line-segments. Note that a lipped objetneed not be onneted, but it has at most O(1) onnetedomponents, and we treat eah of them separately. In whatfollows we abuse the notation of s to denote a (onnetedomponent of a) lipped objet to within a ell � of �.These properties allow us to apply a similar algorithm tothat presented in Setion 2, in order to ount all interset-ing triples among the elements of S. More spei�ally, thereursive mehanism remains the same, and the four simplealgorithms an be applied with slight modi�ations. In thease of ounting interseting triples of type LLL (or LLS),the input to the planar algorithm, that we apply within eah(lipped) objet s (see Setion 2 for further details), is theset of all lipped segments that are generated by the inter-setions of s with an appropriate subset of the long objets.Note that, sine we interset s only with long objets, theendpoints of eah intersetion segment lie on �s. In this ase,two lipped segments l1, l2 interset within s if and only if(obeying the same rules as in Setion 2, so as to ensure thatno intersetion is ounted twie) their endpoints interleavealong �s; see Figure 4 for an illustration. Sine eah longobjet s0 intersets s in a onstant number of segments, thenumber of input segments to the two-dimensional algorithmis O(NL), and thus the running time of the planar algorithmremains O(NL logNL).In the ase of ounting interseting triples of type LSS,the input to the two-dimensional algorithm (desribed inSetion 2), that we apply within eah lipped objet, is theset of all lipped short segments and the set of the ontain-ing lines of all the lipped long segments. Note that if s0is long, then it follows from the onvexity of s and s0 thatreplaing all the long segments that onstitute s\ s0 by theline l that ontains them does not generate new (lipped)long segments within s. Sine the overall number of shortsegments is O(NS) (due to the properties that we have dis-ussed above), and the overall number of lines is NL, therunning time of the two-dimensional algorithm is, as in Se-tion 2, O(N2S +NL logNL).In the ase of ounting interseting triples of type SSS,we use a brute-fore algorithm as in Setion 2. The runningtime of this algorithm is O(N3S), beause the objets in S

have onstant desription omplexity, and thus eah tripleis examined in onstant time.Arguing as in Setion 3, we an use the same mehanism,with appropriate modi�ations, to derive an algorithm foronstruting a ompat representation of these intersetions,with the same nearly-quadrati bound on the storage andthe running time.Note that the preliminary algorithm of [12℄ is not applia-ble to general onvex planar objets, sine it operates onlyon polygonal objets. We therefore do not run this stage atall. It would be interesting to investigate to what extent thistehnique an be extended to more general planar regions.We thus onlude:Theorem 5.1. The number of interseting triples in a setof n planar onvex objets of onstant desription omplex-ity in R3 an be ounted in time O(n2+"), for any " > 0.Moreover, these interseting triples an be represented in aompat form, as the disjoint union of omplete tripartite3-uniform hypergraphs, using O(n2+") time and storage.It follows, as in Setion 3, that with O(n2+") preproess-ing time and storage, we an draw a random intersetingtriple of objets of S in O(log n) time. Similarly, we an�nd in nearly quadrati time the k-highest vertex in an ar-rangement of suh objets.
6. CONCLUDING REMARKS AND OPEN

PROBLEMSIn this paper we have presented an algorithm that ountsall interseting triples among n triangles in R3 in nearly-quadrati time. This algorithm an be modi�ed so that itonstruts a ompat representation of these intersetionswith an overall size of minnO(n4=5+"�4=5+"); O(n2+")o ,for any " > 0, where � denotes the overall number of inter-seting pairs of triangles. We also proved that the problemof ounting all interseting triples is 3sum-hard, and thusthe algorithm presented in this paper is likely to be nearlyworst-ase optimal.We have extended these results to planar onvex objetsin R3 , and showed that the problem of ounting all interset-ing triples in this ase an be solved in nearly-quadrati timeas in the ase of triangles. However, this problem beomesmore hallenging when the input objets are not neessarilyplanar, but are urved surfae pathes (or losed shapes) inR3 of onstant desription omplexity. The three subtasksof ounting LLL, LLS or LSS intersetions beome onsid-erably harder, beause they all for ounting the number ofintersetions between urves and ars on some urved sur-fae, and the best known algorithms for these tasks are muhless eÆient than those for lines and line-segments, whih wehave used above.Consider, for example, the problem of ounting all inter-seting triples among n balls in R3 . In this ase, in theLLL subroutine, we need to solve the problem of ountingall interseting pairs among irles and long irular ars(that is, ars within a path of a ball, that ompletely rossthis path). However, we are not aware of any algorithmfor this task that is faster than the standard algorithm thatounts intersetions between irular ars, and runs in timeO(n3=2+"), for any " > 0 [4℄. Thus, in this ase, our al-gorithm is not better than a simple-minded algorithm thatintersets eah ball with all the others balls, and uses the



two-dimensional algorithm of [4℄ on eah ball. The runningtime of this algorithm is thus O(n5=2+"), for any " > 0.Finally, another hallenging problem is to ount d-wiseintersetions among (d� 1)-simplies in Rd , for d � 4. Thisan be performed, for example, by indution on the dimen-sion d, as follows. Given n simplies in Rd , we interset thefaets of eah simplex s with all the other n � 1 input sim-plies, obtaining O(n) subproblems in one dimension lower(with a onstant of proportionality that depends on d). Wenow ontinue to solve eah suh subproblem reursively. Westop the reursion when we reah three-dimensional prob-lems, and then solve eah of them in nearly-quadrati time.It thus follows that the overall running time of this algo-rithm is O(nd�1+"), for any " > 0, for eah d � 3, where theonstant of proportionality depends on d and ". An openproblem is to prove that this bound is nearly optimal, or, al-ternatively, design an improved algorithm for this problem.We also note that in higher dimensions there is a widerrange of problems, in whih we wish to ount the numberof k-wise intersetions among n (d� 1)-simplies in d-spae,where k an vary from 2 to d. Eah of these variants is ahallenging open problem.
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