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tober 18, 2001Abstra
tWe provide an alternative, simpler and more general derivation of the Clarkson-Shor proba-bilisti
 te
hnique [6℄ and use it to obtain in addition several extensions and new 
ombinatorialbounds.1 Introdu
tionIn abstra
t and general setting, the Clarkson-Shor te
hnique [6℄ (originally presented by Clarkson[5℄) deals with the following type of problems. Let S be a set of n obje
ts, and C a set of 
on�gu-rations, ea
h de�ned by d obje
ts of S, for some 
onstant integer parameter d. We are also given a
on
i
t relationship between obje
ts a 2 S and 
on�gurations 
 2 C, where it is assumed that thed obje
ts that de�ne 
 are not at 
on
i
t with it. The weight of a 
on�guration 
 is the number ofobje
ts that are in 
on
i
t with 
.As a 
on
rete example, let S be a set of n lines (the obje
ts) in the plane. A 
on�guration isa vertex of the arrangement A(S), de�ned by d = 2 lines. A line is at 
on
i
t with a vertex if itpasses below the vertex. The zero-weight verti
es are those that appear on the lower envelope ofthe lines, and their number is at most n � 1. Verti
es of weight k belong to the k-th level of thearrangement.Let C0(S) denote the set of 0-weight 
on�gurations, let Ck(S) denote the set of 
on�gurationsof weight exa
tly k, and let C�k(S) denote the set of 
on�gurations of weight at most k, where k isany integer between 0 and n� d. Put N0(S) = jC0(S)j, Nk(S) = jCk(S)j, and N�k(S) = jC�k(S)j.We also denote by N0(n) (resp. Nk(n), N�k(n)) the maximum of N0(S) (resp. of Nk(S), N�k(S)),over all sets S of n obje
ts of this kind.The Clarkson-Shor te
hnique provides the following upper bound for N�k(S):Theorem 1.1 (Clarkson and Shor [6℄)N�k(n) = O(kdN0(n=k)): (1)We derive a somewhat di�erent bound, whi
h 
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Theorem 1.2 N�k(S) � E(N0(Rp))pd(1� pk) ; (2)for any 0 < p < 1=k, where Rp is a random sample of obje
ts from S, where ea
h obje
t is 
hosenindependently with probability p, and N0(Rp) is the number of 
on�gurations, all of whose de�ningobje
ts are in Rp and none of whose 
on
i
ting obje
ts are in Rp.Remark: Theorem 1.1 
an in fa
t also be stated in terms of expe
tation: It asserts that N�k(S)is upper bounded by O(kd) times the expe
ted value of N0(R0n=k), where R0n=k is a random sampleof n=k obje
ts from S, where all su
h samples are 
hosen with equal probability.By now, the Clarkson-Shor te
hnique needs no praise|it has be
ome a 
ornerstone of many ofthe developments in 
omputational and 
ombinatorial geometry in the past de
ade, for example,in the analysis of randomized in
remental algorithms [11℄, and in the derivation of sharp boundson the 
omplexity of lower envelopes and other substru
tures in higher-dimensional arrangements[13℄. This paper serves two main purposes:(i) It puts the Clarkson-Shor's te
hnique in a somewhat di�erent 
ontext, leading to a simplerproof and perhaps also to a better understanding of the te
hnique.(ii) It fa
ilitates the extension of the 
ontext in whi
h the te
hnique 
an be applied. We obtain infa
t several results whi
h do not seem to be derivable dire
tly by the original te
hnique, eventhough there exist alternative te
hniques that one 
ould use for deriving the bounds obtainedhere.Our proof te
hnique is a simple extension of the probabilisti
 proof of the Crossing Lemma ofLeighton [10℄ and of Ajtai et al. [2℄. (This proof is so elegant that it has a
hieved a status of `aproof from the Book' in [1℄.) On one hand, this te
hnique is quite general, but, on the other hand,in almost all appli
ations to date, it has been administered to 
rossings between edges of graphsdrawn in the plane (see [3, 7℄ for some ex
eptions). It is our hope that the results reported herewould 
onstitute a �rst step towards a wider range of appli
ations of the te
hnique.2 AnalysisBefore pro
eeding to the proof of Theorem 1.2, we �rst establish the following more general result.Let C 0 be any subset of 
on�gurations. Let X be the number of 
on
i
ts with the 
on�gurationsof C 0. That is, X = ��f(a; 
) j 
 2 C 0; a is at 
on
i
t with 
g��We then have X � jC 0j �N0(S): (3)Indeed, if jC 0j > N0(S) then C 0 
ontains at least one 
on�guration 
 that has at least one 
on
i
t,
ontributing at least 1 to the 
ount X. Remove 
 from C 0 and repeat this argument, and keepdoing so as long as jC 0j > N0(S).Draw a random sample R of obje
ts from S, by drawing ea
h a 2 S independently, with thesame probability p. Let C 0R denote the set of 
on�gurations in C 0 that appear in R, that is, those
on�gurations for whi
h all d de�ning obje
ts are 
hosen in R, and let XR denote the number of
on
i
ts of these 
on�gurations in R, that is, the number of pairs (a; 
) su
h that 
 2 C 0R, a 2 Rand a is at 
on
i
t with 
. 2



By (3), we have XR � jC 0Rj �N0(R);so the same holds for the expe
tation of this inequality:E(XR) � E(jC 0Rj)�E(N0(R)):It follows from the 
onstru
tion thatE(jC 0Rj) = jC 0jpd and E(XR) = Xpd+1:Hen
e we obtainTheorem 2.1 For any set C 0 of 
on�gurations, whi
h have a total of X 
on
i
ts, and for anyprobability 0 < p � 1, one has Xp � jC 0j � E(N0(Rp))pd ; (4)where Rp is as in the statement of Theorem 1.2.Proof of Theorem 1.2: Let us spe
ialize Theorem 2.1 to the 
ase C 0 = C�k(S). In this 
ase wehave, by de�nition, X � kN�k(S), whi
h implies:(1� pk)N�k(S) � E(N0(Rp))pd ;and therefore 
ompletes the proof. 2A qui
k illustration. Consider the 
ase of lines and verti
es mentioned in the introdu
tion. Wehave E(N0(Rp)) = E(jRpj � 1) � np, soN�k(S) � npp2(1� pk) � 4nk;by 
hoosing p = 1=(2k).The Clarkson-Shor bound. Let us turn (2) into the more familiar bound given in Theorem 1.1.Suppose that N0(S) � A�n
�, for any set S of n obje
ts and for some integer parameter 
 � 1 and
onstant A > 0. We have E " jRpj
 !# =  n
!p
 :Indeed, the left-hand side is the expe
ted number of 
-tuples of distin
t obje
ts in Rp. The right-hand side provides an expli
it expression for this quantity, observing that there are �n
� 
-tuples ofdistin
t obje
ts in S, and that the probability of any of them to materialize in Rp is p
 .Hen
e (2) be
omes N�k(S) � A�n
�pd�
(1� pk) :Now 
hoose p = �=k, for some parameter � 2 (0; 1), to obtainN�k(S) � A�n
�kd�
�d�
(1� �) :The denominator is maximized when � = (d� 
)=(d� 
 + 1), whi
h is easily seen to yieldN�k(n) � A(d� 
 + 1)e n
!kd�
 : (5)This is essentially the Clarkson-Shor result. 3



3 Extensions|Simple ConstraintsRe
all that the inequality (4) of Theorem 2.1 is fairly general, and does not impose any spe
i�
assumptions on the set C 0. We next apply this theorem to several other problems involving setsof 
on�gurations C 0 whose overall number of 
on
i
ts 
an be upper bounded by some other simpleargument, whi
h will lead to various new upper bounds on the size of su
h sets C 0. In the followingse
tion, we will extend the te
hnique further, by 
onsidering 
on
i
ts between a 
on�guration andseveral obje
ts.Con�gurations for whi
h no obje
t is at 
on
i
t with many. Here we 
onsider an `inverseproblem', where we wish to bound the maximum possible size of a set C��k of 
on�gurations so thatno obje
t is at 
on
i
t with more than k 
on�gurations in C��k.For su
h sets we have trivially X � nk. Assume also, as above, that N0(n) � A�n
�, for someinteger 
 � 1 and 
onstant A > 0. Then (4) be
omesjC��kj � nkp+ A�n
�pd�
 :Choose p =  A�n
�nk !1=(d�
+1) ;whi
h makes sense only when k � A�n
�=n. Assuming this to be the 
ase, we havejC��kj = O �nd=(d�
+1)k(d�
)=(d�
+1)� :If k < A�n
�=n, 
hoose p = 1 to obtain jC��kj � 2A�n
�. We thus obtain:Theorem 3.1 Assume the above abstra
t setup of obje
ts, 
on�gurations, and 
on
i
ts, and sup-pose that the number of 
on�gurations with no 
on
i
ts in any set of n obje
ts is O(n
). Let1 � k � n be a given parameter. Then the maximum 
ardinality of any set of 
on�gurations withthe property that no obje
t is at 
on
i
t with more than k of them isO �n
 + nd=(d�
+1)k(d�
)=(d�
+1)� : (6)Examples. (1) Suppose that, as in the introdu
tion, the obje
ts are n lines in the plane, 
on�g-urations are verti
es of their arrangement, and a vertex is at 
on
i
t with a line if the vertex liesabove the line. In this 
ase we have d = 2, 
 = 1, and we obtainCorollary 3.2 The maximum number of verti
es in an arrangement of n lines in the plane, su
hthat none of the lines passes below more than k of them, is O(nk1=2). This bound is tight in theworst 
ase. Dually, the maximum number of lines 
onne
ting pairs of points in an n-element pointset in the plane, su
h that none of the given points lies below more than k 
onne
ting lines, isO(nk1=2), whi
h again is worst-
ase tight.The lower bound is obtained as follows. Take n=k1=2 lines, all appearing along their lowerenvelope. repla
e ea
h line by a bundle of k1=2 parallel lines suÆ
iently 
lose to ea
h other. Ea
hvertex of the lower envelope of the original lines is repla
ed by k new verti
es. Colle
ting all theseverti
es, we obtain a set of nk1=2 verti
es, and it is 
lear that no line passes below more than 2k ofthem.(2) A similar problem 
an be stated and analyzed for hyperplanes in IRd, where the 
on�gura-tions are verti
es in an arrangement of n hyperplanes, with the parameter d equal to the dimension,and 
 = bd=2
: 4



Corollary 3.3 The maximum number of verti
es in an arrangement of n hyperplanes in IRd, forwhi
h no hyperplane passes below more than k of them, isO �nbd=2
 + nd=(dd=2e+1)kdd=2e=(dd=2e+1)� ;and this bound is tight in the worst 
ase. The same bound holds for the maximum number ofhyperplanes spanned by a set of n points in IRd so that no point lies below more than k of them.The lower bound follows from a 
onstru
tion similar to that for the planar 
ase, whi
h is based onthe upper bound theorem for 
onvex polytopes.In d = 3 dimensions, we get the bound O(nk2=3). By using a standard lifting transform fromthe plane to three dimensions [9℄ and by spe
ializing the pre
eding 
orollary to d = 3, we alsoobtain:Corollary 3.4 The maximum number of 
ir
les spanned by n points in the plane, su
h that noneof the given points lies in more than k 
ir
les, is O(nk2=3), and this bound is tight in the worst
ase.4 Extensions|More General Con
i
tsSo far, we have only 
onsidered 
on
i
ts, ea
h involving one 
on�guration and one single obje
t,but the te
hnique is suÆ
iently powerful to allow us to 
onsider more elaborate types of 
on
i
ts,ea
h involving one 
on�guration and several obje
ts. We illustrate this in two examples:In the �rst example, the obje
ts are lines in the plane, the 
on�gurations are triangles boundedby triples of the lines, and a triangle � is at 
on
i
t with two other lines `1; `2 if the vertex `1 \ `2lies in the interior of �.In the se
ond example, the obje
ts are points in 3-spa
e, the 
on�gurations are triangles spannedby triples of the points, and a triangle � is at 
on
i
t with two other points u; v i� the segment uv
rosses the relative interior of �.Handling 
on
i
ts of this kind 
an be done by a straightforward modi�
ation of the method ofSe
tion 2. Spe
i�
ally, suppose that a 
on
i
t involves one 
on�guration and b obje
ts. Startingfrom the inequality X � jC 0j�N0(S), whi
h 
learly holds in this 
ase too, and passing to a randomsample Rp as above, we haveE(jC 0Rj) = jC 0jpd and E(XR) = Xpd+b;so we obtain:Theorem 4.1 For any set C 0 of 
on�gurations, whi
h have a total of X 
on
i
ts, ea
h involvingone 
on�guration and b obje
ts, and for any probability 0 < p � 1, one hasXpb � jC 0j � E(N0(Rp))pd ; (7)where Rp is as in the statement of Theorem 1.2.We next apply this theorem to the examples mentioned above.
5



4.1 Triangles and verti
es in a line arrangementTheorem 4.2 In an arrangement of n lines in the plane in general position, there are at mostO(n2k1=2) triangles whose edges lie on three of the given lines and whi
h 
ontain at most k verti
esof the arrangement in their interiors. This bound is tight in the worst 
ase.Proof: Let L be the given set of lines. Here the obje
ts are the lines of L and the 
on�gurationsare triangles bounded by triples of lines in L. Con
i
ts are more involved: A triangle is at 
on
i
twith a vertex of A(L) if it 
ontains the vertex in its interior. Thus a 
on
i
t is de�ned in terms of5 lines: three de�ning the triangle and two the vertex.Claim: The number N0(L) of triangles spanned by three lines of L and 
ontaining no vertex ofA(L) in their interior is O(n2).Indeed, let T0 be the set of triangles that are bounded by three lines of L and do not 
ontainany vertex in their interior. The number of triangles in T0 that are not 
rossed by any line of L is
learly O(n2)|they are fa
es of the arrangement.Suppose then that a triangle � of T0 is 
rossed by at least one line ` but 
ontains no vertexin its interior. Let a; b; 
 denote the verti
es of �. If there exist lines that 
ross �� at the edgesab; a
, 
hoose from among them the line whose interse
tions with these edges are further away froma, and denote it by `a (sin
e all these lines do not 
ross inside �, `a is well-de�ned). De�ne `b, `
in an analogous fashion, when they exist. See Figure 1(a). At least one of these lines must exist;assume, without loss of generality, that `a exists.We 
harge � to an interse
tion point v of `a with ��, say with the line `0 that 
ontains ab. We
laim that there 
an exist at most one other triangle �0 in T0 that is bounded by `0, lies on thesame side of `0 as �, 
ontains v on its boundary, and 
harges v. Indeed, suppose to the 
ontrarythat two su
h triangles �0;�00 exist. The interse
tion � \�0 is a 
onvex polygon that 
ontains von its boundary and is 
rossed by ` = `a. Hen
e ` must interse
t the boundary of this region ata se
ond point w. Without loss of generality, assume that w lies on ��. Sin
e w is a vertex ofA(L), it 
annot lie in the interior of �0. Hen
e, � and �0 must share the vertex a, and their edgesin
ident to a overlap in pairs. The same holds for � and �00. See Figure 1(b).

ba(a)

`
 `b b (̀b) b00`0

00 
0

b0v`a 
a
Figure 1: (a) The lines `a; `b; `
 for the triangle � = ab
. (b) A triple 
harging of a vertex v isimpossible.Consider the three edges of �;�0;�00 opposite to a, and denote them by b
; b0
0, and b00
00,respe
tively. Suppose that there is a pair of these edges, say, b
 and b0
0, that do not 
ross ea
h6



other, with b0
0 
loser to a than b
. Then the line `a for the triangle � must be either the line
ontaining b0
0 or a line that lies further away from a. In either 
ase, it 
annot interse
t ab at v,
ontrary to assumption. Hen
e we may assume that all three pairs among b
; b0
0; b00
00 
ross ea
hother, in whi
h 
ase at least one of the three interse
tion points must lie inside the triangle boundedby the third edge, again a 
ontradi
tion.This implies that the number of triangles in question is at most proportional to the number ofverti
es v of the arrangement, so their number is O(n2). This 
ompletes the proof of the 
laim.Let N�k(L) denote the number of triangles with weight at most k, and let X denote the totalnumber of 
on
i
ts that they have, whi
h is 
learly upper bounded by X � kN�k(L). UsingTheorem 4.1, we thus obtain kp2N�k(L) � N�k(L)� E(N0(Rp))p3 ;so N�k(L) � E(N0(Rp))p3(1� kp2) :Choosing p = �=k1=2, for an appropriate � < 1, and using the fa
t that N0(n) = O(n2), the upperbound of the theorem follows readily. The lower bound is obtained for an arrangement 
onsistingof n=3 equally-spa
ed horizontal lines, n=3 equally-spa
ed verti
al lines, whi
h together form partof the integer grid, and n=3 additional equally-spa
ed lines of slope 1, passing very near the gridpoints formed by the �rst two subfamilies. We leave the easy veri�
ation of the lower bound to thereader. 2Theorem 4.3 In an arrangement of n lines in the plane, there are at most O(n2k1=3) triangleswhose edges lie on three of the given lines and for whi
h no vertex of the arrangement is 
ontainedin the interiors of more than k of the triangles. This bound is tight in the worst 
ase.Proof: Here X � k�n2�, so, using Theorem 4.1, the number of su
h triangles is at most O(n2kp2 +n2=p). The theorem follows by 
hoosing p = 1=k1=3. The lower bound 
an be obtained from thesame 
onstru
tion used in the pre
eding proof. 2Remark: The 
laim in the proof of Theorem 4.2, 
on
erning triangles that 
ontain no vertex intheir interior, does not seem to extend to verti
al trapezoids in an arrangement of lines.4.2 Triangles and 
rossing segments in a 3-dimensional point setTheorem 4.4 Given a set of n points in IR3, the maximum number of triangles spanned by thepoints of S that are 
rossed by at most k segments 
onne
ting pairs of points in S is O(n2k1=2).Proof: Let T�k denote the set of these triangles, and let X denote the number of 
on
i
ts betweentriangles in T�k and segments. We have X � kjT�k(S)j. By the results of [7, 15℄, we haveN0(S) = O(n2). Hen
e, by Theorem 4.1, we havekp2jT�k(S)j � jT�k(S)j � E(N0(Rp))p3 ;so jT�k(S)j � E(N0(Rp))p3(1� kp2) :Choosing p = �=k1=2, for an appropriate � < 1, and using the fa
t that N0(n) = O(n2), the theoremfollows readily. 2 7



Theorem 4.5 Given a set of n points in IR3, the maximum number of triangles spanned by thepoints of S, so that no segment 
onne
ting a pair of points of S 
rosses more than k of them, isO(n2k1=3).Proof: Here we have X � k�n2�, so the proof pro
eeds as in the proof of Theorem 4.3. 2Corollary 4.6 The number of halving triangles in an n-element point set in 3-spa
e is O(n8=3).Proof: By Lov�asz lemma (see [4, 15℄), any segment 
an 
ross at most O(n2) halving triangles, sothe bound follows by substituting k = O(n2) in Theorem 4.5. 2Note that this bound is weaker than the best known bound O(n5=2) [15℄.Corollary 4.7 The maximum number of distin
t triangles that lie on the boundaries of k 
onvexpolytopes spanned by a set of n points in 3-spa
e is O(n2k1=3).Proof: Clearly, no segment 
rosses more than 2k of these triangles, so the bound is an immediateappli
ation of Theorem 4.5. 2This result has been obtained by Aronov and Dey [3℄ using a more involved argument. A simplealternative proof is given in [14℄.5 Dis
ussionClearly, this paper only s
rat
hes the surfa
e of the realm of appli
ations of this (extended) te
h-nique. For example, in the original setup of the Crossing Lemma of [2, 10℄, a 
on
i
t o

urs betweentwo 
on�gurations (a 
on
i
t is a 
rossing between two edges, that is, between two 
on�gurations),a situation that we haven't 
onsidered at all here, but one that should be amenable to the newte
hnique just as the other 
ases studied here.We believe that the ideas developed here will have additional appli
ations. For example, ournext planned step in this resear
h is to �nd algorithmi
 appli
ations for the new bounds, extendingsimilar appli
ations of the standard Clarkson-Shor's bounds, e.g., to the analysis of randomizedin
remental algorithms.We end the paper by presenting an alternative interpretation of the analysis employed in thispaper. Let S be a set of obje
ts, and let A be a subset of Sq, for some q. Put dA = q, and refer toit as the dimension of A. For any R � S, let AR = A \Rq.Suppose now that we have a �nite 
olle
tion A1; : : : ; A� of su
h sets of ordered tuples, possiblywith di�erent dimensions dAi , with 
orresponding (positive or negative) 
onstants 
1; : : : ; 
� , sothat the linear relation �Xi=1 
Ai j(Ai)Rj � f(jRj)holds for any R � S, where f(�) is some fun
tion of jRj.Then, for any p 2 (0; 1), we have �Xi=1 
ipdAi jAij � E[f(jRpj)℄: (8)The proof of the Crossing Lemma of [2, 10℄ is an instan
e of this observation, using three setsA1; A2; A3 of respe
tive dimensions 1; 2; 4, where A1 is S, the set of verti
es of the given graph, A28



is the set of its edges, and A3 is the set of edge 
rossings (ea
h represented by the quadruple of theverti
es in
ident to the pair of 
rossing edges). The linear relation is jA3j � jA2j + 3jA1j � 0, and(8), with an appropriate 
hoi
e of p, yields the lemma.The derivation of, say, Theorem 2.1 
an also be interpreted as an appli
ation of (8) to theinequality (3), as the reader 
an easily verify. This interpretation applies also to other theoremsderived in this paper.This view of the analysis presented here shows that it is indeed strongly related to the originalCrossing Lemma.A
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