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Abstract

We provide an alternative, simpler and more general derivation of the Clarkson-Shor proba-
bilistic technique [6] and use it to obtain in addition several extensions and new combinatorial
bounds.

1 Introduction

In abstract and general setting, the Clarkson-Shor technique [6] (originally presented by Clarkson
[5]) deals with the following type of problems. Let S be a set of n objects, and C' a set of configu-
rations, each defined by d objects of .S, for some constant integer parameter d. We are also given a
conflict relationship between objects a € S and configurations ¢ € C, where it is assumed that the
d objects that define ¢ are not at conflict with it. The weight of a configuration ¢ is the number of
objects that are in conflict with c.

As a concrete example, let S be a set of n lines (the objects) in the plane. A configuration is
a vertex of the arrangement A(S), defined by d = 2 lines. A line is at conflict with a vertex if it
passes below the vertex. The zero-weight vertices are those that appear on the lower envelope of
the lines, and their number is at most n — 1. Vertices of weight k belong to the k-th level of the
arrangement.

Let Cp(S) denote the set of O-weight configurations, let Ck(S) denote the set of configurations
of weight exactly k, and let C<;(S) denote the set of configurations of weight at most k, where & is
any integer between 0 and n — d. Put No(S) = [Cy(S5)|, Np(S) = |Cr(S)|, and N<i(S) = |C<(95)].
We also denote by Ny(n) (resp. Ni(n), N<g(n)) the maximum of Ny(S) (resp. of N (S), N<x(S5)),
over all sets S of n objects of this kind. - -

The Clarkson-Shor technique provides the following upper bound for N<;(S):

Theorem 1.1 (Clarkson and Shor [6])
Nei(n) = O(kNo(n/k)). (1)

We derive a somewhat different bound, which can then be manipulated to yield the Clarkson-Shor’s
bound—see below.
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Theorem 1.2
E(No(Ry))

) (2)
p?(1 - pk)
for any 0 < p < 1/k, where R, is a random sample of objects from S, where each object is chosen

independently with probability p, and No(R,) is the number of configurations, all of whose defining
objects are in R, and none of whose conflicting objects are in R,.

Nep(S) <

Remark: Theorem 1.1 can in fact also be stated in terms of expectation: It asserts that N<(S5)
is upper bounded by O(k?) times the expected value of No(R, /k), where R/, /i, is a random sample
of n/k objects from S, where all such samples are chosen with equal probability.

By now, the Clarkson-Shor technique needs no praise—it has become a cornerstone of many of
the developments in computational and combinatorial geometry in the past decade, for example,
in the analysis of randomized incremental algorithms [11], and in the derivation of sharp bounds
on the complexity of lower envelopes and other substructures in higher-dimensional arrangements
[13]. This paper serves two main purposes:

i puts the Clarkson-Shor’s technique in a somewhat different context, leading to a simpler
i) It puts the Clarkson-Shor’s techni i hat different text, leading t impl
proof and perhaps also to a better understanding of the technique.

(ii) Tt facilitates the extension of the context in which the technique can be applied. We obtain in
fact several results which do not seem to be derivable directly by the original technique, even
though there exist alternative techniques that one could use for deriving the bounds obtained
here.

Our proof technique is a simple extension of the probabilistic proof of the Crossing Lemma of
Leighton [10] and of Ajtai et al. [2]. (This proof is so elegant that it has achieved a status of ‘a
proof from the Book’ in [1].) On one hand, this technique is quite general, but, on the other hand,
in almost all applications to date, it has been administered to crossings between edges of graphs
drawn in the plane (see [3, 7] for some exceptions). It is our hope that the results reported here
would constitute a first step towards a wider range of applications of the technique.

2 Analysis

Before proceeding to the proof of Theorem 1.2, we first establish the following more general result.
Let C' be any subset of configurations. Let X be the number of conflicts with the configurations
of C'. That is,
X = |{(a,c) | c € C',a is at conflict with c}|

We then have
X > |C'] = No(S). (3)

Indeed, if |C'] > Ny(S) then C' contains at least one configuration ¢ that has at least one conflict,
contributing at least 1 to the count X. Remove ¢ from C’ and repeat this argument, and keep
doing so as long as |C’| > Ny(S).

Draw a random sample R of objects from S, by drawing each a € S independently, with the
same probability p. Let C, denote the set of configurations in C” that appear in R, that is, those
configurations for which all d defining objects are chosen in R, and let Xz denote the number of
conflicts of these configurations in R, that is, the number of pairs (a,c) such that ¢ € Cy, a € R
and a is at conflict with c.



By (3), we have
Xr > |Cg| = No(R),

so the same holds for the expectation of this inequality:
E(XR) > E(|CR|) — E(No(R)).
It follows from the construction that
B(|C}) = [C'p? and B(Xg) = Xp™.
Hence we obtain

Theorem 2.1 For any set C' of configurations, which have a total of X conflicts, and for any

probability 0 < p <1, one has
E(No(Ry))

Xp > |C,| - pd ’ (4)

where Ry, is as in the statement of Theorem 1.2.

Proof of Theorem 1.2: Let us specialize Theorem 2.1 to the case C' = C<j(S). In this case we
have, by definition, X < kN« (S), which implies:

E(No(R

(1= ph)Na(s) < 2O,

and therefore completes the proof. O

A quick illustration. Consider the case of lines and vertices mentioned in the introduction. We
have E(Ny(Ry)) = E(|Ry| — 1) < np, so

np

Neg(S) < 22(1—pk)

<dnk,

by choosing p = 1/(2k).

The Clarkson-Shor bound. Let us turn (2) into the more familiar bound given in Theorem 1.1.
Suppose that No(S) < A("), for any set S of n objects and for some integer parameter v > 1 and

constant A > 0. We have !
R n
vy 4

Indeed, the left-hand side is the expected number of v-tuples of distinct objects in R,. The right-
hand side provides an explicit expression for this quantity, observing that there are (2) ~v-tuples of
distinct objects in S, and that the probability of any of them to materialize in R, is p7.
Hence (2) becomes
N<p(S) < A(z)
<K(5) < S =)

Now choose p = 3/k, for some parameter 3 € (0, 1), to obtain

@)k
Nék(s) < m

The denominator is maximized when 8 = (d — v)/(d — v + 1), which is easily seen to yield

Nep(n) < A(d — v+ 1)e (:) k4, (5)

This is essentially the Clarkson-Shor result.



3 Extensions—Simple Constraints

Recall that the inequality (4) of Theorem 2.1 is fairly general, and does not impose any specific
assumptions on the set C’. We next apply this theorem to several other problems involving sets
of configurations C’ whose overall number of conflicts can be upper bounded by some other simple
argument, which will lead to various new upper bounds on the size of such sets C’. In the following
section, we will extend the technique further, by considering conflicts between a configuration and
several objects.
Configurations for which no object is at conflict with many. Here we consider an ‘inverse
problem’, where we wish to bound the maximum possible size of a set CZ, of configurations so that
no object is at conflict with more than k configurations in C%,. B

For such sets we have trivially X < nk. Assume also, as above, that Ny(n) < A(:), for some
integer v > 1 and constant A > 0. Then (4) becomes

AQ)

pd=

|CZk] < nkp +
Choose

nk ’

(A(:) ) 1/(d=v+1)
p =

which makes sense only when k& > A(’,;) /n. Assuming this to be the case, we have
ICE ] =0 (nd/(d—ﬂ-l)k(d—’Y)/(d—’Y-H)) )
Ifk < A(z) /m, choose p =1 to obtain [CZ,| < 2A(:). We thus obtain:
Theorem 3.1 Assume the above abstract setup of objects, configurations, and conflicts, and sup-
pose that the number of configurations with no conflicts in any set of n objects is O(n”). Let

1 <k <n be a given parameter. Then the mazimum cardinality of any set of configurations with
the property that no object is at conflict with more than k of them is

O (w7 + nt/ld=r+) a0/ d=rD)) (6)

Examples. (1) Suppose that, as in the introduction, the objects are n lines in the plane, config-
urations are vertices of their arrangement, and a vertex is at conflict with a line if the vertex lies
above the line. In this case we have d = 2, v = 1, and we obtain

Corollary 3.2 The mazimum number of vertices in an arrangement of n lines in the plane, such
that none of the lines passes below more than k of them, is O(nkl/Q). This bound is tight in the
worst case. Dually, the mazimum number of lines connecting pairs of points in an n-element point
set in the plane, such that none of the given points lies below more than k connecting lines, is
O(nk'/?), which again is worst-case tight.

The lower bound is obtained as follows. Take n/ k'/2 lines, all appearing along their lower
envelope. replace each line by a bundle of k'/2 parallel lines sufficiently close to each other. Each
vertex of the lower envelope of the original lines is replaced by k& new vertices. Collecting all these
vertices, we obtain a set of nk'/2 vertices, and it is clear that no line passes below more than 2k of
them.

(2) A similar problem can be stated and analyzed for hyperplanes in IR, where the configura-
tions are vertices in an arrangement of n hyperplanes, with the parameter d equal to the dimension,
and v = |d/2]:



Corollary 3.3 The mazimum number of vertices in an arrangement of n hyperplanes in R?, for
which no hyperplane passes below more than k of them, is

O (nld/2) 4t/ F4/2140) e/ /210 )

and this bound is tight in the worst case. The same bound holds for the mazimum number of
hyperplanes spanned by a set of n points in RY so0 that no point lies below more than k of them.

The lower bound follows from a construction similar to that for the planar case, which is based on
the upper bound theorem for convex polytopes.

In d = 3 dimensions, we get the bound O(nk?/?). By using a standard lifting transform from
the plane to three dimensions [9] and by specializing the preceding corollary to d = 3, we also
obtain:

Corollary 3.4 The mazimum number of circles spanned by n points in the plane, such that none
of the given points lies in more than k circles, is O(nk2/3), and this bound is tight in the worst
case.

4 Extensions—More General Conflicts

So far, we have only considered conflicts, each involving one configuration and one single object,
but the technique is sufficiently powerful to allow us to consider more elaborate types of conflicts,
each involving one configuration and several objects. We illustrate this in two examples:

In the first example, the objects are lines in the plane, the configurations are triangles bounded
by triples of the lines, and a triangle A is at conflict with two other lines /1, {5 if the vertex £ N/
lies in the interior of A.

In the second example, the objects are points in 3-space, the configurations are triangles spanned
by triples of the points, and a triangle A is at conflict with two other points u, v iff the segment uw
crosses the relative interior of A.

Handling conflicts of this kind can be done by a straightforward modification of the method of
Section 2. Specifically, suppose that a conflict involves one configuration and b objects. Starting
from the inequality X > |C'| — Ny(S), which clearly holds in this case too, and passing to a random
sample R, as above, we have

E(|Ck|) = |C")p? and B(Xg) = Xp*?,
so we obtain:

Theorem 4.1 For any set C' of configurations, which have a total of X conflicts, each involving
one configuration and b objects, and for any probability 0 < p < 1, one has

Xpb > |O'] - W ™)

where Ry, is as in the statement of Theorem 1.2.

We next apply this theorem to the examples mentioned above.



4.1 Triangles and vertices in a line arrangement

Theorem 4.2 In an arrangement of n lines in the plane in general position, there are at most
O(n2k1/2) triangles whose edges lie on three of the given lines and which contain at most k vertices
of the arrangement in their interiors. This bound is tight in the worst case.

Proof: Let L be the given set of lines. Here the objects are the lines of I and the configurations
are triangles bounded by triples of lines in L. Conflicts are more involved: A triangle is at conflict
with a vertex of A(L) if it contains the vertex in its interior. Thus a conflict is defined in terms of
5 lines: three defining the triangle and two the vertex.

Claim: The number Ny(L) of triangles spanned by three lines of L and containing no vertex of
A(L) in their interior is O(n?).

Indeed, let Ty be the set of triangles that are bounded by three lines of L and do not contain
any vertex in their interior. The number of triangles in Tj that are not crossed by any line of L is
clearly O(n?)—they are faces of the arrangement.

Suppose then that a triangle A of Tj is crossed by at least one line ¢ but contains no vertex
in its interior. Let a,b, ¢ denote the vertices of A. If there exist lines that cross JA at the edges
ab, ac, choose from among them the line whose intersections with these edges are further away from
a, and denote it by ¢, (since all these lines do not cross inside A, ¢, is well-defined). Define ¢y, ¢,
in an analogous fashion, when they exist. See Figure 1(a). At least one of these lines must exist;
assume, without loss of generality, that /, exists.

We charge A to an intersection point v of ¢, with JA, say with the line ¢; that contains ab. We
claim that there can exist at most one other triangle A’ in Tj that is bounded by /g, lies on the
same side of {3 as A, contains v on its boundary, and charges v. Indeed, suppose to the contrary
that two such triangles A’,; A” exist. The intersection A N A’ is a convex polygon that contains v
on its boundary and is crossed by ¢ = /,. Hence ¢ must intersect the boundary of this region at
a second point w. Without loss of generality, assume that w lies on JA. Since w is a vertex of
A(L), it cannot lie in the interior of A’. Hence, A and A’ must share the vertex a, and their edges
incident to a overlap in pairs. The same holds for A and A”. See Figure 1(b).

Figure 1: (a) The lines ¢4, ¢, (. for the triangle A = abc. (b) A triple charging of a vertex v is
impossible.

Consider the three edges of A, A’, A” opposite to a, and denote them by be,b'c’, and b"c”,
respectively. Suppose that there is a pair of these edges, say, bc and b'c/, that do not cross each



other, with b'¢’ closer to a than bc. Then the line £, for the triangle A must be either the line
containing b'¢’ or a line that lies further away from a. In either case, it cannot intersect ab at v,
contrary to assumption. Hence we may assume that all three pairs among bc, b'c’,b"c” cross each
other, in which case at least one of the three intersection points must lie inside the triangle bounded
by the third edge, again a contradiction.

This implies that the number of triangles in question is at most proportional to the number of
vertices v of the arrangement, so their number is O(n?). This completes the proof of the claim.

Let N<j(L) denote the number of triangles with weight at most &, and let X denote the total
number of conflicts that they have, which is clearly upper bounded by X < EN<i(L). Using
Theorem 4.1, we thus obtain

kP Nep(L) > Noy(L) — W
» E(No(R,))
N<i(L) < m-

Choosing p = 3/k'/2, for an appropriate 3 < 1, and using the fact that Ny(n) = O(n?), the upper
bound of the theorem follows readily. The lower bound is obtained for an arrangement consisting
of n/3 equally-spaced horizontal lines, n/3 equally-spaced vertical lines, which together form part
of the integer grid, and n/3 additional equally-spaced lines of slope 1, passing very near the grid
points formed by the first two subfamilies. We leave the easy verification of the lower bound to the
reader. O

Theorem 4.3 In an arrangement of n lines in the plane, there are at most O(n2k1/3) triangles
whose edges lie on three of the given lines and for which no vertex of the arrangement is contained
in the interiors of more than k of the triangles. This bound is tight in the worst case.

Proof: Here X < k(}), so, using Theorem 4.1, the number of such triangles is at most O(n?kp* +
n?/p). The theorem follows by choosing p = 1/k/?. The lower bound can be obtained from the
same construction used in the preceding proof. O

Remark: The claim in the proof of Theorem 4.2, concerning triangles that contain no vertex in
their interior, does not seem to extend to vertical trapezoids in an arrangement of lines.

4.2 Triangles and crossing segments in a 3-dimensional point set

Theorem 4.4 Given a set of n points in R?, the mazimum number of triangles spanned by the
points of S that are crossed by at most k segments connecting pairs of points in S is O(n2k1/2).

Proof: Let T<; denote the set of these triangles, and let X denote the number of conflicts between
triangles in T, and segments. We have X < k|T<,(S)|. By the results of [7, 15], we have
No(S) = O(n?). Hence, by Theorem 4.1, we have

FPITer(S)] 2 1T<i(S)] - W
» E(No(R,))
T<(5)] < W-

Choosing p = 3/k'/?, for an appropriate § < 1, and using the fact that Ny(n) = O(n?), the theorem
follows readily. O



Theorem 4.5 Given a set of n points in R?, the mazimum number of triangles spanned by the
points of S, so that no segment connecting a pair of points of S crosses more than k of them, is

O(n2k'/3).
Proof: Here we have X < k(3), so the proof proceeds as in the proof of Theorem 4.3. O
Corollary 4.6 The number of halving triangles in an n-element point set in 3-space is O(n8/3).

Proof: By Lovész lemma (see [4, 15]), any segment can cross at most O(n?) halving triangles, so
the bound follows by substituting & = O(n?) in Theorem 4.5. O
Note that this bound is weaker than the best known bound O(n%/?) [15].

Corollary 4.7 The mazimum number of distinct triangles that lie on the boundaries of k convez
polytopes spanned by a set of n points in 3-space is O(n2k1/3).

Proof: Clearly, no segment crosses more than 2k of these triangles, so the bound is an immediate
application of Theorem 4.5. O

This result has been obtained by Aronov and Dey [3] using a more involved argument. A simple
alternative proof is given in [14].

5 Discussion

Clearly, this paper only scratches the surface of the realm of applications of this (extended) tech-
nique. For example, in the original setup of the Crossing Lemma of [2, 10], a conflict occurs between
two configurations (a conflict is a crossing between two edges, that is, between two configurations),
a situation that we haven’t considered at all here, but one that should be amenable to the new
technique just as the other cases studied here.

We believe that the ideas developed here will have additional applications. For example, our
next planned step in this research is to find algorithmic applications for the new bounds, extending
similar applications of the standard Clarkson-Shor’s bounds, e.g., to the analysis of randomized
incremental algorithms.

We end the paper by presenting an alternative interpretation of the analysis employed in this
paper. Let S be a set of objects, and let A be a subset of S?, for some ¢q. Put d4 = ¢, and refer to
it as the dimension of A. For any R C S, let Ap = AN RY.

Suppose now that we have a finite collection Ay, ..., A, of such sets of ordered tuples, possibly
with different dimensions dy4,, with corresponding (positive or negative) constants cp,...,c,, so
that the linear relation

> cal(Airl < F(RI)
1=1

holds for any R C S, where f(-) is some function of |R]|.
Then, for any p € (0,1), we have

v

> eiptai

=1

Ai| <E[f(1R])]- (8)

The proof of the Crossing Lemma of [2, 10] is an instance of this observation, using three sets
Ay, Ag, Ag of respective dimensions 1, 2,4, where A; is S, the set of vertices of the given graph, Ao



is the set of its edges, and Aj is the set of edge crossings (each represented by the quadruple of the
vertices incident to the pair of crossing edges). The linear relation is |Az| — |A2| + 3|41| > 0, and
(8), with an appropriate choice of p, yields the lemma.

The derivation of, say, Theorem 2.1 can also be interpreted as an application of (8) to the
inequality (3), as the reader can easily verify. This interpretation applies also to other theorems
derived in this paper.

This view of the analysis presented here shows that it is indeed strongly related to the original
Crossing Lemma.
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