
The Clarkson-Shor Tehnique Revisited and Extended�Miha ShariryOtober 18, 2001AbstratWe provide an alternative, simpler and more general derivation of the Clarkson-Shor proba-bilisti tehnique [6℄ and use it to obtain in addition several extensions and new ombinatorialbounds.1 IntrodutionIn abstrat and general setting, the Clarkson-Shor tehnique [6℄ (originally presented by Clarkson[5℄) deals with the following type of problems. Let S be a set of n objets, and C a set of on�gu-rations, eah de�ned by d objets of S, for some onstant integer parameter d. We are also given aonit relationship between objets a 2 S and on�gurations  2 C, where it is assumed that thed objets that de�ne  are not at onit with it. The weight of a on�guration  is the number ofobjets that are in onit with .As a onrete example, let S be a set of n lines (the objets) in the plane. A on�guration isa vertex of the arrangement A(S), de�ned by d = 2 lines. A line is at onit with a vertex if itpasses below the vertex. The zero-weight verties are those that appear on the lower envelope ofthe lines, and their number is at most n � 1. Verties of weight k belong to the k-th level of thearrangement.Let C0(S) denote the set of 0-weight on�gurations, let Ck(S) denote the set of on�gurationsof weight exatly k, and let C�k(S) denote the set of on�gurations of weight at most k, where k isany integer between 0 and n� d. Put N0(S) = jC0(S)j, Nk(S) = jCk(S)j, and N�k(S) = jC�k(S)j.We also denote by N0(n) (resp. Nk(n), N�k(n)) the maximum of N0(S) (resp. of Nk(S), N�k(S)),over all sets S of n objets of this kind.The Clarkson-Shor tehnique provides the following upper bound for N�k(S):Theorem 1.1 (Clarkson and Shor [6℄)N�k(n) = O(kdN0(n=k)): (1)We derive a somewhat di�erent bound, whih an then be manipulated to yield the Clarkson-Shor'sbound|see below.�Work on this paper has been supported by NSF Grants CCR-97-32101 and CCR-00-98246, by a grant from theU.S.-Israeli Binational Siene Foundation, by a grant from the Israeli Aademy of Sienes for a Center of Exellenein Geometri Computing at Tel Aviv University, and by the Hermann Minkowski{MINERVA Center for Geometryat Tel Aviv University.yShool of Computer Siene, Tel Aviv University, Tel Aviv 69978, Israel, and Courant Institute of MathematialSienes, New York University, New York, NY 10012, USA, sharir�s.tau.a.il1



Theorem 1.2 N�k(S) � E(N0(Rp))pd(1� pk) ; (2)for any 0 < p < 1=k, where Rp is a random sample of objets from S, where eah objet is hosenindependently with probability p, and N0(Rp) is the number of on�gurations, all of whose de�ningobjets are in Rp and none of whose oniting objets are in Rp.Remark: Theorem 1.1 an in fat also be stated in terms of expetation: It asserts that N�k(S)is upper bounded by O(kd) times the expeted value of N0(R0n=k), where R0n=k is a random sampleof n=k objets from S, where all suh samples are hosen with equal probability.By now, the Clarkson-Shor tehnique needs no praise|it has beome a ornerstone of many ofthe developments in omputational and ombinatorial geometry in the past deade, for example,in the analysis of randomized inremental algorithms [11℄, and in the derivation of sharp boundson the omplexity of lower envelopes and other substrutures in higher-dimensional arrangements[13℄. This paper serves two main purposes:(i) It puts the Clarkson-Shor's tehnique in a somewhat di�erent ontext, leading to a simplerproof and perhaps also to a better understanding of the tehnique.(ii) It failitates the extension of the ontext in whih the tehnique an be applied. We obtain infat several results whih do not seem to be derivable diretly by the original tehnique, eventhough there exist alternative tehniques that one ould use for deriving the bounds obtainedhere.Our proof tehnique is a simple extension of the probabilisti proof of the Crossing Lemma ofLeighton [10℄ and of Ajtai et al. [2℄. (This proof is so elegant that it has ahieved a status of `aproof from the Book' in [1℄.) On one hand, this tehnique is quite general, but, on the other hand,in almost all appliations to date, it has been administered to rossings between edges of graphsdrawn in the plane (see [3, 7℄ for some exeptions). It is our hope that the results reported herewould onstitute a �rst step towards a wider range of appliations of the tehnique.2 AnalysisBefore proeeding to the proof of Theorem 1.2, we �rst establish the following more general result.Let C 0 be any subset of on�gurations. Let X be the number of onits with the on�gurationsof C 0. That is, X = ��f(a; ) j  2 C 0; a is at onit with g��We then have X � jC 0j �N0(S): (3)Indeed, if jC 0j > N0(S) then C 0 ontains at least one on�guration  that has at least one onit,ontributing at least 1 to the ount X. Remove  from C 0 and repeat this argument, and keepdoing so as long as jC 0j > N0(S).Draw a random sample R of objets from S, by drawing eah a 2 S independently, with thesame probability p. Let C 0R denote the set of on�gurations in C 0 that appear in R, that is, thoseon�gurations for whih all d de�ning objets are hosen in R, and let XR denote the number ofonits of these on�gurations in R, that is, the number of pairs (a; ) suh that  2 C 0R, a 2 Rand a is at onit with . 2



By (3), we have XR � jC 0Rj �N0(R);so the same holds for the expetation of this inequality:E(XR) � E(jC 0Rj)�E(N0(R)):It follows from the onstrution thatE(jC 0Rj) = jC 0jpd and E(XR) = Xpd+1:Hene we obtainTheorem 2.1 For any set C 0 of on�gurations, whih have a total of X onits, and for anyprobability 0 < p � 1, one has Xp � jC 0j � E(N0(Rp))pd ; (4)where Rp is as in the statement of Theorem 1.2.Proof of Theorem 1.2: Let us speialize Theorem 2.1 to the ase C 0 = C�k(S). In this ase wehave, by de�nition, X � kN�k(S), whih implies:(1� pk)N�k(S) � E(N0(Rp))pd ;and therefore ompletes the proof. 2A quik illustration. Consider the ase of lines and verties mentioned in the introdution. Wehave E(N0(Rp)) = E(jRpj � 1) � np, soN�k(S) � npp2(1� pk) � 4nk;by hoosing p = 1=(2k).The Clarkson-Shor bound. Let us turn (2) into the more familiar bound given in Theorem 1.1.Suppose that N0(S) � A�n�, for any set S of n objets and for some integer parameter  � 1 andonstant A > 0. We have E " jRpj !# =  n!p :Indeed, the left-hand side is the expeted number of -tuples of distint objets in Rp. The right-hand side provides an expliit expression for this quantity, observing that there are �n� -tuples ofdistint objets in S, and that the probability of any of them to materialize in Rp is p .Hene (2) beomes N�k(S) � A�n�pd�(1� pk) :Now hoose p = �=k, for some parameter � 2 (0; 1), to obtainN�k(S) � A�n�kd��d�(1� �) :The denominator is maximized when � = (d� )=(d�  + 1), whih is easily seen to yieldN�k(n) � A(d�  + 1)e n!kd� : (5)This is essentially the Clarkson-Shor result. 3



3 Extensions|Simple ConstraintsReall that the inequality (4) of Theorem 2.1 is fairly general, and does not impose any spei�assumptions on the set C 0. We next apply this theorem to several other problems involving setsof on�gurations C 0 whose overall number of onits an be upper bounded by some other simpleargument, whih will lead to various new upper bounds on the size of suh sets C 0. In the followingsetion, we will extend the tehnique further, by onsidering onits between a on�guration andseveral objets.Con�gurations for whih no objet is at onit with many. Here we onsider an `inverseproblem', where we wish to bound the maximum possible size of a set C��k of on�gurations so thatno objet is at onit with more than k on�gurations in C��k.For suh sets we have trivially X � nk. Assume also, as above, that N0(n) � A�n�, for someinteger  � 1 and onstant A > 0. Then (4) beomesjC��kj � nkp+ A�n�pd� :Choose p =  A�n�nk !1=(d�+1) ;whih makes sense only when k � A�n�=n. Assuming this to be the ase, we havejC��kj = O �nd=(d�+1)k(d�)=(d�+1)� :If k < A�n�=n, hoose p = 1 to obtain jC��kj � 2A�n�. We thus obtain:Theorem 3.1 Assume the above abstrat setup of objets, on�gurations, and onits, and sup-pose that the number of on�gurations with no onits in any set of n objets is O(n). Let1 � k � n be a given parameter. Then the maximum ardinality of any set of on�gurations withthe property that no objet is at onit with more than k of them isO �n + nd=(d�+1)k(d�)=(d�+1)� : (6)Examples. (1) Suppose that, as in the introdution, the objets are n lines in the plane, on�g-urations are verties of their arrangement, and a vertex is at onit with a line if the vertex liesabove the line. In this ase we have d = 2,  = 1, and we obtainCorollary 3.2 The maximum number of verties in an arrangement of n lines in the plane, suhthat none of the lines passes below more than k of them, is O(nk1=2). This bound is tight in theworst ase. Dually, the maximum number of lines onneting pairs of points in an n-element pointset in the plane, suh that none of the given points lies below more than k onneting lines, isO(nk1=2), whih again is worst-ase tight.The lower bound is obtained as follows. Take n=k1=2 lines, all appearing along their lowerenvelope. replae eah line by a bundle of k1=2 parallel lines suÆiently lose to eah other. Eahvertex of the lower envelope of the original lines is replaed by k new verties. Colleting all theseverties, we obtain a set of nk1=2 verties, and it is lear that no line passes below more than 2k ofthem.(2) A similar problem an be stated and analyzed for hyperplanes in IRd, where the on�gura-tions are verties in an arrangement of n hyperplanes, with the parameter d equal to the dimension,and  = bd=2: 4



Corollary 3.3 The maximum number of verties in an arrangement of n hyperplanes in IRd, forwhih no hyperplane passes below more than k of them, isO �nbd=2 + nd=(dd=2e+1)kdd=2e=(dd=2e+1)� ;and this bound is tight in the worst ase. The same bound holds for the maximum number ofhyperplanes spanned by a set of n points in IRd so that no point lies below more than k of them.The lower bound follows from a onstrution similar to that for the planar ase, whih is based onthe upper bound theorem for onvex polytopes.In d = 3 dimensions, we get the bound O(nk2=3). By using a standard lifting transform fromthe plane to three dimensions [9℄ and by speializing the preeding orollary to d = 3, we alsoobtain:Corollary 3.4 The maximum number of irles spanned by n points in the plane, suh that noneof the given points lies in more than k irles, is O(nk2=3), and this bound is tight in the worstase.4 Extensions|More General ConitsSo far, we have only onsidered onits, eah involving one on�guration and one single objet,but the tehnique is suÆiently powerful to allow us to onsider more elaborate types of onits,eah involving one on�guration and several objets. We illustrate this in two examples:In the �rst example, the objets are lines in the plane, the on�gurations are triangles boundedby triples of the lines, and a triangle � is at onit with two other lines `1; `2 if the vertex `1 \ `2lies in the interior of �.In the seond example, the objets are points in 3-spae, the on�gurations are triangles spannedby triples of the points, and a triangle � is at onit with two other points u; v i� the segment uvrosses the relative interior of �.Handling onits of this kind an be done by a straightforward modi�ation of the method ofSetion 2. Spei�ally, suppose that a onit involves one on�guration and b objets. Startingfrom the inequality X � jC 0j�N0(S), whih learly holds in this ase too, and passing to a randomsample Rp as above, we haveE(jC 0Rj) = jC 0jpd and E(XR) = Xpd+b;so we obtain:Theorem 4.1 For any set C 0 of on�gurations, whih have a total of X onits, eah involvingone on�guration and b objets, and for any probability 0 < p � 1, one hasXpb � jC 0j � E(N0(Rp))pd ; (7)where Rp is as in the statement of Theorem 1.2.We next apply this theorem to the examples mentioned above.
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4.1 Triangles and verties in a line arrangementTheorem 4.2 In an arrangement of n lines in the plane in general position, there are at mostO(n2k1=2) triangles whose edges lie on three of the given lines and whih ontain at most k vertiesof the arrangement in their interiors. This bound is tight in the worst ase.Proof: Let L be the given set of lines. Here the objets are the lines of L and the on�gurationsare triangles bounded by triples of lines in L. Conits are more involved: A triangle is at onitwith a vertex of A(L) if it ontains the vertex in its interior. Thus a onit is de�ned in terms of5 lines: three de�ning the triangle and two the vertex.Claim: The number N0(L) of triangles spanned by three lines of L and ontaining no vertex ofA(L) in their interior is O(n2).Indeed, let T0 be the set of triangles that are bounded by three lines of L and do not ontainany vertex in their interior. The number of triangles in T0 that are not rossed by any line of L islearly O(n2)|they are faes of the arrangement.Suppose then that a triangle � of T0 is rossed by at least one line ` but ontains no vertexin its interior. Let a; b;  denote the verties of �. If there exist lines that ross �� at the edgesab; a, hoose from among them the line whose intersetions with these edges are further away froma, and denote it by `a (sine all these lines do not ross inside �, `a is well-de�ned). De�ne `b, `in an analogous fashion, when they exist. See Figure 1(a). At least one of these lines must exist;assume, without loss of generality, that `a exists.We harge � to an intersetion point v of `a with ��, say with the line `0 that ontains ab. Welaim that there an exist at most one other triangle �0 in T0 that is bounded by `0, lies on thesame side of `0 as �, ontains v on its boundary, and harges v. Indeed, suppose to the ontrarythat two suh triangles �0;�00 exist. The intersetion � \�0 is a onvex polygon that ontains von its boundary and is rossed by ` = `a. Hene ` must interset the boundary of this region ata seond point w. Without loss of generality, assume that w lies on ��. Sine w is a vertex ofA(L), it annot lie in the interior of �0. Hene, � and �0 must share the vertex a, and their edgesinident to a overlap in pairs. The same holds for � and �00. See Figure 1(b).
ba(a)

` `b b (̀b) b00`0
00 0

b0v`a a
Figure 1: (a) The lines `a; `b; ` for the triangle � = ab. (b) A triple harging of a vertex v isimpossible.Consider the three edges of �;�0;�00 opposite to a, and denote them by b; b00, and b0000,respetively. Suppose that there is a pair of these edges, say, b and b00, that do not ross eah6



other, with b00 loser to a than b. Then the line `a for the triangle � must be either the lineontaining b00 or a line that lies further away from a. In either ase, it annot interset ab at v,ontrary to assumption. Hene we may assume that all three pairs among b; b00; b0000 ross eahother, in whih ase at least one of the three intersetion points must lie inside the triangle boundedby the third edge, again a ontradition.This implies that the number of triangles in question is at most proportional to the number ofverties v of the arrangement, so their number is O(n2). This ompletes the proof of the laim.Let N�k(L) denote the number of triangles with weight at most k, and let X denote the totalnumber of onits that they have, whih is learly upper bounded by X � kN�k(L). UsingTheorem 4.1, we thus obtain kp2N�k(L) � N�k(L)� E(N0(Rp))p3 ;so N�k(L) � E(N0(Rp))p3(1� kp2) :Choosing p = �=k1=2, for an appropriate � < 1, and using the fat that N0(n) = O(n2), the upperbound of the theorem follows readily. The lower bound is obtained for an arrangement onsistingof n=3 equally-spaed horizontal lines, n=3 equally-spaed vertial lines, whih together form partof the integer grid, and n=3 additional equally-spaed lines of slope 1, passing very near the gridpoints formed by the �rst two subfamilies. We leave the easy veri�ation of the lower bound to thereader. 2Theorem 4.3 In an arrangement of n lines in the plane, there are at most O(n2k1=3) triangleswhose edges lie on three of the given lines and for whih no vertex of the arrangement is ontainedin the interiors of more than k of the triangles. This bound is tight in the worst ase.Proof: Here X � k�n2�, so, using Theorem 4.1, the number of suh triangles is at most O(n2kp2 +n2=p). The theorem follows by hoosing p = 1=k1=3. The lower bound an be obtained from thesame onstrution used in the preeding proof. 2Remark: The laim in the proof of Theorem 4.2, onerning triangles that ontain no vertex intheir interior, does not seem to extend to vertial trapezoids in an arrangement of lines.4.2 Triangles and rossing segments in a 3-dimensional point setTheorem 4.4 Given a set of n points in IR3, the maximum number of triangles spanned by thepoints of S that are rossed by at most k segments onneting pairs of points in S is O(n2k1=2).Proof: Let T�k denote the set of these triangles, and let X denote the number of onits betweentriangles in T�k and segments. We have X � kjT�k(S)j. By the results of [7, 15℄, we haveN0(S) = O(n2). Hene, by Theorem 4.1, we havekp2jT�k(S)j � jT�k(S)j � E(N0(Rp))p3 ;so jT�k(S)j � E(N0(Rp))p3(1� kp2) :Choosing p = �=k1=2, for an appropriate � < 1, and using the fat that N0(n) = O(n2), the theoremfollows readily. 2 7



Theorem 4.5 Given a set of n points in IR3, the maximum number of triangles spanned by thepoints of S, so that no segment onneting a pair of points of S rosses more than k of them, isO(n2k1=3).Proof: Here we have X � k�n2�, so the proof proeeds as in the proof of Theorem 4.3. 2Corollary 4.6 The number of halving triangles in an n-element point set in 3-spae is O(n8=3).Proof: By Lov�asz lemma (see [4, 15℄), any segment an ross at most O(n2) halving triangles, sothe bound follows by substituting k = O(n2) in Theorem 4.5. 2Note that this bound is weaker than the best known bound O(n5=2) [15℄.Corollary 4.7 The maximum number of distint triangles that lie on the boundaries of k onvexpolytopes spanned by a set of n points in 3-spae is O(n2k1=3).Proof: Clearly, no segment rosses more than 2k of these triangles, so the bound is an immediateappliation of Theorem 4.5. 2This result has been obtained by Aronov and Dey [3℄ using a more involved argument. A simplealternative proof is given in [14℄.5 DisussionClearly, this paper only srathes the surfae of the realm of appliations of this (extended) teh-nique. For example, in the original setup of the Crossing Lemma of [2, 10℄, a onit ours betweentwo on�gurations (a onit is a rossing between two edges, that is, between two on�gurations),a situation that we haven't onsidered at all here, but one that should be amenable to the newtehnique just as the other ases studied here.We believe that the ideas developed here will have additional appliations. For example, ournext planned step in this researh is to �nd algorithmi appliations for the new bounds, extendingsimilar appliations of the standard Clarkson-Shor's bounds, e.g., to the analysis of randomizedinremental algorithms.We end the paper by presenting an alternative interpretation of the analysis employed in thispaper. Let S be a set of objets, and let A be a subset of Sq, for some q. Put dA = q, and refer toit as the dimension of A. For any R � S, let AR = A \Rq.Suppose now that we have a �nite olletion A1; : : : ; A� of suh sets of ordered tuples, possiblywith di�erent dimensions dAi , with orresponding (positive or negative) onstants 1; : : : ; � , sothat the linear relation �Xi=1 Ai j(Ai)Rj � f(jRj)holds for any R � S, where f(�) is some funtion of jRj.Then, for any p 2 (0; 1), we have �Xi=1 ipdAi jAij � E[f(jRpj)℄: (8)The proof of the Crossing Lemma of [2, 10℄ is an instane of this observation, using three setsA1; A2; A3 of respetive dimensions 1; 2; 4, where A1 is S, the set of verties of the given graph, A28
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