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Abstract

Given n non-vertical lines in 3-space, their vertical depth (above/below) relation
can contain cycles. We show that the lines can be cut into O(n3/2 polylog n) pieces,
such that the depth relation among these pieces is now a proper partial order. This
bound is nearly tight in the worst case.

Previous results on this topic could only handle restricted cases of the problem
(such as handling only triangular cycles, by Aronov, Koltun, and Sharir (2005), or only
cycles in grid-like patterns, by Chazelle et al. (1992)), and the bounds were considerably
weaker—much closer to the trivial quadratic bound.

Our proof uses a recent variant of the polynomial partitioning technique, due to
Guth, and some simple tools from algebraic geometry. It is much more straightforward
than the previous “purely combinatorial” methods.

Our technique can be extended to eliminating all cycles in the depth relation among
segments, and among constant-degree algebraic arcs. We hope that a suitable extension
of this technique could be used to handle the much more difficult case of pairwise-disjoint
triangles.

We also discuss several algorithms for constructing a small set of cuts so as to
eliminate all depth-relation cycles among the lines (minimizing such a set, for the case
of line segments, is known to be NP-complete). The performance of these algorithms
improves due to our new bound, but, so far, none of them both (a) produce close to
n3/2 cuts, and (b) run in time close to n3/2, in the worst case.
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Our results almost completely settle a 35-year-old open problem in computational
geometry, motivated by hidden-surface removal in computer graphics.

1 Introduction

The problem. Let L be a collection of n non-vertical lines in R3 in general position. In
particular, we assume that no two lines in L intersect, that the xy-projections of no pair of the
lines are parallel, and those of no three of the lines are concurrent. For any pair `, `′ of lines
in L, we say that ` passes above `′ (equivalently, `′ passes below `) if the unique vertical line
that meets both ` and `′ intersects ` at a point that lies higher than its intersection with `′.
We denote this relation as `′ ≺ `. The relation ≺ is total (under our assumptions), but in
general it need not be transitive, so it may contain cycles of the form `1 ≺ `2 ≺ · · · ≺ `k ≺ `1,
for some k ≥ 3. We call this a k-cycle, and refer to k as the length of the cycle. Cycles of
length three are called triangular. See Figure 1.

`1

`2

`3

Figure 1: A triangular depth cycle, viewed from above.

If we cut the lines of L at a finite number of points, we obtain a collection of lines,
segments, and rays. We can extend the definition of the relation ≺ to the new collection in
the obvious manner, except that it is now only a partial relation. Our goal is to cut the lines
in such a way that ≺ becomes a partial order, in which case we call it a depth order. We note
that it is trivial to construct a depth order with Θ(n2) cuts: Simply cut each line near every
point whose xy-projection is a crossing point with another projected line. It is desirable
though to minimize the number of cuts. A long-standing conjecture, open since 1980, is that
one can always construct a depth order with a subquadratic number of cuts. In this paper
we finally settle this conjecture, in a strong, almost worst-case tight manner; see below for
precise details.

Background. The main motivation for studying this problem comes from hidden surface
removal in computer graphics. A detailed description of this motivation can be found, e.g., in
the earlier paper of Aronov et al. [4]. Briefly, a conceptually simple technique for rendering a
scene in computer graphics is the so-called Painter’s Algorithm, which renders the (pairwise
openly disjoint) objects in the scene on the screen in a back-to-front manner, painting each
new object over the portions of earlier objects that it hides. For this, though, one needs an
acyclic depth relation among the objects with respect to the viewing point (which, as we
assume in this paper, without loss of generality, lies at z = +∞). When there are cycles in
the depth relation, one would like to cut the objects into a small number of pieces, so as
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to eliminate all cycles, and then paint the pieces in the above manner, obtaining a correct
rendering of the scene; see [4, 8] for more details.

The study of depth cycles in a set of lines (or, more generally, of segments) in R3 was in
a rather poor state circa 1990, where only very weak combinatorial and algorithmic bounds
were available. The situation is reviewed in de Berg’s 1992 dissertation [7, Chapter 9] (where
he summarizes the state of affairs before the results described in his thesis and those of
Chazelle et al. [11] were obtained; see the discussion below). At that time it was not even
known how to compute a depth order among n line segments in 3-space in subquadratic time,
assuming that such an order exists, or how to verify in subquadratic time that a given order
of n segments is acyclic.

The study of subquadratic bounds for depth cycles goes back to Chazelle et al. [11],
who have shown that, if the xy-projections of a collection of n segments in 3-space form
a “grid” (see Figure 2 for an illustration and the paper for a formal definition), then all

Figure 2: A collection of line segments that forms a grid, viewed from below.

cycles defined by this collection can be eliminated with O(n9/5) cuts. Another significant
development is due to Aronov et al. [4], who have considered the problem of triangular cycles,
and established the rather weak (albeit subquadratic) O(n2−1/34 log8/17 n) upper bound on the
number of elementary triangular cycles (namely, cycles whose xy-projections1 form triangular
faces in the arrangement of the projected lines). They also showed that O(n2−1/69 log16/69 n)
cuts suffice to eliminate all triangular cycles. Finally, combining this bound with earlier
algorithmic techniques of Solan [20] and of Har-Peled and Sharir [16], they have obtained an
algorithm that eliminates all triangular cycles by making roughly O(n2−1/138) cuts. However,
their results did not apply to general (non-triangular) cycles, and, in addition to the very
weak bounds just stated, the proof technique was very involved. Just as the analysis of
Chazelle et al. [11], it used, as a major ingredient, the impossibility of certain “weaving
patterns” of lines in space, an interesting and intriguing topic in itself. Unfortunately, it
appears that arguments based on forbidden weaving patterns lead to fairly weak bounds.

In another, more recent development, Aronov et al. [3] have shown that finding the
minimum number χ of cuts needed to eliminate all cycles in a collection of segments in R3

is NP-complete. They have also presented a deterministic polynomial-time approximation
algorithm that constructs O(χ logχ log logχ) cuts. More details are given below.

1Here, and throughout the paper, we think of a cycle C : `1 ≺ `2 ≺ · · · ≺ `k ≺ `1 as a spatial geometric
object; it is the unique closed polygonal path whose edges alternate between segments along the lines and
vertical jumps between consecutive lines that connect the unique pairs of co-vertical points on those lines.
This realization will be defined formally in Section 2.
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Our contribution. In this paper we settle the general problem and show that all cycles
in a set of n lines can be eliminated with O(n3/2 polylog n) cuts. A simple and well-known
construction, reviewed below, yields a scenario where Ω(n3/2) cuts have to be made, implying
that ours is the best possible worst-case bound, up to the polylogarithmic factor.

The proof of the new bound is embarrassingly straightforward. It uses tools from algebraic
geometry, in the spirit of much recent work that exploited similar ideas; see, e.g., the simple
proofs in [17,18] for the corresponding worst-case tight bound of Θ(n3/2) on the number of
so-called joints in a collection of n lines in 3-space. At the heart of the construction lies a
recent result of Guth [13], which extends the basic polynomial partitioning technique of Guth
and Katz [14] to higher-dimensional objects (lines or curves in our case).

As a matter of fact, the algebraic approach to this problem is fairly versatile and can be
extended to the elimination of cycles involving more general objects. In this paper we also
discuss such extensions to the cases of line segments (this is in fact a trivial extension) and of
constant-degree algebraic arcs. Furthermore, in both cases, by combining our technique with
standard tools for constructing output-sensitive cuttings in the plane, we obtain improved
bounds on the number of cuts necessary to eliminate all cycles, which depend on the number
of intersections among the xy-projections of the segments or arcs. See Theorems 4.1 and 4.2
for further details.

We note that the practical motivation arising from computer graphics involves data sets
consisting of pairwise openly-disjoint triangles. Eliminating cycles in the depth relation of a
collection of triangles (with a subquadratic number of cuts) is a considerably more difficult
problem, which so far has barely been touched. The case of lines, as studied in this paper
and in the previous cited works, is a simpler instance of the problem, which already turned
out to be a very challenging question. It is our hope that the technique presented in this
paper could be extended to tackle this case too, and we are presently investigating such an
extension.

We also note that the problem studied here is different from most of the combinatorial
geometry questions tackled so far by the new algebraic approach, in that these former
problems involve incidences between points, lines, and other objects. In contrast, in this
paper the lines are not incident to one another, and the configurations that we want to
capture involve certain non-contact spatial (here, “above/below”) relationships between them.
It is our hope that this study will find applications to additional problems involving relations
more general than incidences.

Our proof is constructive, and leads, in principle, to an efficient algorithm for performing
the cuts. The only currently missing ingredient is an efficient construction of Guth’s parti-
tioning polynomial, a step that we leave as a topic for further research. (The problematic
aspects of effectively constructing a partitioning polynomial, already for the simpler case of a
set of points, and techniques for overcoming these issues are discussed by Agarwal et al. [2];
one hopes that an extension of these techniques could also be used for effectively partitioning
lines or curves, and we plan to investigate this question further.)

Alternatively, to identify the cuts sufficient to eliminate all cycles, one could also use the
earlier algorithms of Har-Peled and Sharir [16] or of Solan [20]. Our analysis implies that
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they perform O(n7/4 polylog n) cuts (using the algorithm of [16]; the one in [20] generates
a slightly larger number of cuts), in expected time O(n11/6+ε), for any ε > 0, significantly
improving previous bounds, but still falling short of the ideal goal of achieving a running
time close to the worst-case optimal number of cuts.

Another approach is to use the deterministic approximation algorithm of Aronov et
al. [3, Theorem 3.1], mentioned earlier. It constructs O(χ logχ log logχ) cuts that eliminate
all cycles, where χ is the smallest number of such cuts, in O(n4+2ω log2 n) time, where
ω < 2.373 is the exponent of matrix multiplication. In view of our main result, this algorithm
produces O(n3/2 polylog n) cuts (where the power in the polylogarithmic factor is slightly
larger than that in Theorem 2.1). This is probably the best algorithm one can offer at the
present state of affairs. Its only drawback is its rather large running time (which is O(n8.746));
the algorithms of [16,20] are much faster, but they produce a larger number of cuts.

Paper organization. Section 2 presents the main result on the number of cuts sufficient
to eliminate all depth cycles among lines in R3. Section 3 discusses the algorithmic aspects
of efficiently finding such a set of cuts. Finally, Section 4 discusses the extensions of our
technique to the cases of line segments and of constant-degree algebraic arcs.

2 Eliminating all cycles

We first introduce a few definitions. Let L be a collection of n non-vertical lines in R3 in
general position. For each ` ∈ L, denote by `∗ the xy-projection of ` and by L∗ the collection
of the n resulting projections. The general position assumption on L implies that L∗ is also
in general position, in the traditional sense, that is, with no two lines parallel and no three
concurrent. Consider the planar arrangement A(L∗) of L∗.

Recall that k distinct lines `1, . . . , `k, for k ≥ 3, form a k-cycle C if `1 ≺ `2 ≺ · · · ≺ `k ≺ `1.
We can interpret C as a spatial object as follows. For each i = 1, . . . , k, let v+i ∈ `i and
v−i+1 ∈ `i+1 (with indices treated mod k) be the two unique points on these lines that are
vertically above each other (informally, C “jumps upwards” from v+i on `i to v−i+1 on `i+1).
We associate with C the closed directed polygonal path

π(C) := v−1 v
+
1 v
−
2 v

+
2 · · · v−k v+k v−1 .

Let ei denote the segment v−i v
+
i on `i. Then π(C) alternates between the segments ei and

the vertical jumps v+i v
−
i+1; see Figure 3.

We say that C is eliminated if at least one of the non-vertical edges v−i v
+
i of π(C) is cut.

It is an easy (yet crucial) observation that if we cut the lines of L at some discrete set of
points, so that all cycles in L are eliminated, in the above sense, then the collection of lines,
rays, and segments resulting from the cuts has an acyclic depth relation.

The xy-projection C∗ of π(C) (or, with a slight abuse of notation, of C) is a closed
polygonal path contained in ∪L∗. That is, it is the concatenation of the projections e∗i of the
segments ei (the vertical segments disappear, or rather shrink to points, in the projection).
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Figure 3: Cycle C : `1 ≺ `2 ≺ `3 ≺ `1 (thick lines), with the corresponding path π(C) (in
dashed brown), and its projection C∗ (solid blue).

The path C∗ can be fairly arbitrary, non-convex, and even self-crossing. Nevertheless,
we claim that, for the purposes of eliminating all cycles, it suffices to consider only simple
cycles,2 that is, cycles C for which C∗ is non-self-crossing. This is because any other cycle C
can be shortcut to a cycle C0, such that (a) C0 has fewer edges than C, and (b) C∗0 ⊂ C∗.
Clearly, any cut that eliminates C0 also eliminates C. We repeat this reduction until we
obtain a simple cycle (in the extreme, we reach the case where C0 is triangular, and thus
simple). Indeed, if C∗ is self-crossing, let w be a point where C∗ crosses itself, and let `, `′ be
the lines whose projections cross at w; see Figure 4. Then C∗ is naturally split at w into two
shorter closed paths, and it is easily checked that one of them is the projection of a cycle C0

in L that satisfies the properties claimed above.
In what follows we thus restrict ourselves to simple cycles only. Two (simple) cycles C1,

C2 overlap if C∗1 and C∗2 share an edge of A(L∗); for example, in Figure 4, cycles C and C0

overlap.
The following is the main result of the paper.

Theorem 2.1. Let L be a collection of n non-vertical lines in R3 in general position. The
lines of L can be cut at O(n3/2 polylog n) points so that the depth relation on the resulting
pieces (lines, rays, and segments) has no cycles. This bound is almost tight in the worst case,
since Ω(n3/2) cuts are sometimes necessary.

Remark. Theorem 2.1 also provides the same upper bound on the maximum size of any

2This is a slight abuse of terminology, as we require the projection C∗ of the cycle C to be simple, rather
than C itself.
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`1
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Figure 4: Cycle C : `1 ≺ `2 ≺ `3 ≺ `4 ≺ `1 (thick lines, with corresponding path π(C)
in dotted green), whose projection C∗ (solid blue) crosses itself. We shortcut it to a new
triangular cycle C0 : `2 ≺ `3 ≺ `4 ≺ `2, indicating the corresponding path π(C0) in dash-dotted
brown and its projection C∗0 in dash-dotted purple.

family F of pairwise non-overlapping cycles in L, because a distinct cut is required to eliminate
each cycle of F .

Proof. As argued above, it suffices to cut all simple cycles. We fix some degree D = D(n),
which depends on n and whose value will be set below, and construct a non-zero trivariate
polynomial f ∈ R[x, y, z] of degree at most D, such that each of the s = O(D3) open
connected components (cells) of R3 \ Z(f) is intersected by at most cn/D2 lines of L, where
Z(f) denotes the zero set of f , and c is an absolute constant. By the aforementioned recent
result of Guth [13], such a polynomial does exist, for some suitable constant c. (As already
noted, effective and efficient construction of such a polynomial remains to be worked out,
and is the only reason this proof is not entirely polynomial-time constructive.) Let τ1, . . . , τs
be the cells of R3 \ Z(f), and, for each i, let Li denote the set of lines of L that intersect τi.

In what follows we want to exclude situations where Z(f) fully contains a vertical segment
(and therefore, a line). We can guarantee that this does not happen, by applying a sufficiently
small generic “tilting” to the coordinate frame, ensuring that this property holds, and that
every simple cycle in L remains a (simple) cycle.

Define the level λ(q) of a point q ∈ R3 with respect to Z(f) to be the number of
intersection points of Z(f) with the downward-directed open vertical ray ρq emanating from q.
Formally, let (x0, y0, z0) be the coordinates of q, and consider the univariate polynomial
F (z) = f(x0, y0, z). The level λ(q) of q is the number of real zeros of F in (−∞, z0), counted
with multiplicity.

Denote by χ(L) the minimum number of cuts needed to eliminate all (simple) cycles in
the given set L of lines, and put χ(n) := max|L|=n χ(L), where the maximum is taken over
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all collections L of n non-vertical lines in general position in R3.

The procedure for cutting the lines. The procedure is recursive and follows the parti-
tioning induced by Z(f). It consists of the following steps.

(i) We cut each line ` ∈ L not fully contained in Z(f) at all its intersection points with Z(f).
The number of such cuts is at most D per line, for a total of O(nD) cuts.

(ii) For each line ` ∈ L not fully contained in Z(f), let h(`) be the vertical plane containing `,
and let g` be the bivariate polynomial obtained by restricting f to h(`). More formally,
parametrize h(`) by orthogonal coordinates (ξ`, z), where ξ` is horizontal, and each (ξ`, z)
represents a point (x`(ξ`), y`(ξ`), z) in h(`), where x`(·), y`(·) are appropriate linear functions
depending on `. Then g` is given by g`(ξ`, z) := f(x`(ξ`), y`(ξ`), z); it is a bivariate polynomial
of degree at most D. By removing repeated factors, we may assume that g` is square-free.
We then cut `, in addition to the cuts made in step (i), at each point that lies directly
above a singular point, or a point of vertical tangency, of Z(g`) ⊂ h(`). A simple application
of Bézout’s theorem implies that the number of such points is O(D2), because each such
point is a common zero of g` and ∂g`/∂z. Note that to apply Bézout’s theorem, we need to
ensure that g` and ∂g`/∂z do not have a common factor, which is indeed the case since g` is
square-free. Hence we perform in this step O(D2) cuts of each line, for a total of O(nD2)
cuts.

(iii) Assume next that ` ⊂ Z(f); since Z(f) contains no vertical lines, h(`) 6⊂ Z(f). Let g`
be the (square-free) bivariate polynomial defined in step (ii). Then ` ⊂ Z(g`) is an irreducible
component of Z(g`). By removing the linear factor corresponding to `, we replace g` by
another square-free polynomial g0` , of degree smaller than D, whose zero set does not fully
contain `. We then cut ` at each point where it meets Z(g0` ) (this is a variant of step (i)),
and at each point that lies directly above a critical point of g0` , as defined earlier (a variant of
step (ii)). As before, the number of such cuts of ` is O(D2), for a total of O(nD2) cuts.

(iv) We now proceed recursively: For each cell τi of the partition, we recurse on the
corresponding subset Li of lines. The bottom of the recursion is at cells τi for which
ni := |Li| < D2(ni)/c. For such cells we apply the näıve procedure, noted in the introduction,
which cuts the lines of Li into O(n2

i ) = O(D4(ni)) pieces, so that all cycles in Li are trivially
eliminated.

Lemma 2.2. The procedure described above eliminates all the cycles in L.

Proof. The proof is by induction on the size of the input. The claim holds at the bottom of
recursion, because we make all possible cuts there, thereby eliminating all cycles. Consider
then any non-terminal instance of the recursion, involving some subset of lines, which, for
convenience, we again call L.

As argued above, it suffices to show that we have cut all simple cycles. Let C be a simple
cycle in L, formed by some k lines `1, . . . , `k, with `1 ≺ `2 ≺ · · · ≺ `k ≺ `1, and k ≥ 3. Let
C∗ denote the xy-projection of C, which is a simple polygon with k sides e∗1, . . . , e

∗
k, so that,
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for i = 1, . . . , k, e∗i ⊂ `∗i is the xy-projection of the corresponding segment ei ⊂ `i of the path
π(C).

If Z(f) does not intersect π(C) then π(C) is fully contained in some cell τi, and therefore
all the lines `1, . . . , `k belong to Li, since they all intersect τi. By induction, the cycle C will
be eliminated by the recursive call to the line-cutting procedure on Li. Assume then, in what
follows, that Z(f) intersects π(C).

Assume first that Z(f) does not fully contain any of the lines `1, . . . , `k. If Z(f) intersects
(but does not contain) one of the segments ei, for i = 1, . . . , k, then this intersection point, at
which we have cut ` in step (i), eliminates the cycle C.

Assume next that none of the lines `1, . . . , `k is fully contained in Z(f), and that none of
the segments ei ⊂ `i is crossed by Z(f). In this case, the crossing points of π(C) with Z(f)
must all lie on the vertical edges of π(C). Recall that we have ensured that Z(f) does not
fully contain any such segment.

Trace π(C) in a circular fashion, as in its definition, and keep track of the level λ(q) in
Z(f) of the point q being traced. By our general position assumption, and by the tilting
performed above, the level is well defined, and it can change only either (i) at the vertical
jumps of π(C), or (ii) at a discrete set of points q on the edges ei of π(C) at which the
univariate restriction of f to the vertical line through q has a multiple real root (recall that,
by assumption, Z(f) does not intersect any ei); see below for a discussion of this statement.
Each time we go up along one of the vertical segments of π(C), the level either increases or
stays the same, and, by assumption, it strictly increases at least once along the cycle, when
π(C) intersects Z(f). Since the levels at the beginning and at the end of the tour are the
same, the level must go down at least once, as we trace one of the segments ei, i = 1, . . . , k.
Suppose, without loss of generality, that the level goes down as we trace e1. This must happen
at a point q ∈ `1 at which the univariate restriction of f to the vertical line through q has a
multiple real root. That is, q lies vertically above a point at which g`1 = ∂g`1/∂z = 0, where
g`1 refers here to the original version of the restriction of f to h(`1). Now if g`1 is square-free,
we are done, since, by construction, we have cut `1 at q, and thus C got eliminated by this
cut. If g`1 is not square-free, it is possible that g`1 = ∂g`1/∂z = 0 along a one-dimensional
curve, so this property holds for a continuum of points q on `1. However, in such a case (i)
the multiplicity of the root does not cause the level to change at q, and (ii) this vanishing on
a one-dimensional curve does not occur for the square-free version of g`1 . This implies that
the change in level must occur at a criticality of the square-free version of g`1 , and `1 has been
cut above every such criticality, implying that C has been eliminated in this case as well.

Finally, consider the case where one (or more) of the lines `1, . . . , `k is fully contained
in Z(f); say `1 is such a line. If one of the edges ei of C has been cut by steps (i)–(iii), we are
done, so assume that this did not happen. As a point q traces π(C), as above, the level λ(q)
goes up at least once, when we go up from v+1 to v−2 (at v−2 we count `1 (i.e., v+1 ∈ Z(f)) in
its level, whereas at v+1 we do not). Since the level cannot go down along any of the vertical
upward edges of π(C), it must go down when q traverses some edge ei of C. Therefore,
arguing as above, q must lie directly above a critical point of the square-free version of the
restricted polynomial g`i , or of its reduced version g0`i if `i ⊂ Z(f) (`1 falls into this latter
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case), for some i = 1, . . . , k. In either case, `i has been cut at q and C has been eliminated.
Having covered all cases, the lemma follows.

It remains to bound the number of cuts. Collecting the bounds from each step of our
construction and maximizing over L produces the recurrence

χ(n) ≤
{
bD3(n)χ(cn/D2(n)) +O(nD2(n)), for n > D2(n)/c,

bD4(n), for n ≤ D2(n)/c,

where c is the absolute constant from Guth’s construction, mentioned above, and b is another
suitable absolute constant.

Setting D(n) = c1/2n1/4, the termination condition n ≤ D2(n)/c becomes n ≤ 1, in which
case no cuts are needed.3 That is, χ(1) = 0, and for n > 1 we have

χ(n) ≤ b1n
3/4χ(n1/2) +O(n3/2),

for another absolute constant b1 = bc3/2. Since the depth of recursion is O(log log n), its
solution is easily seen to be χ(n) = O(n3/2 logβ n), where β is a constant that depends only
on the absolute constant b1. This completes the proof of the upper bound.

Lower bound. The near-tightness of the bound follows from the grid-like construction of
Θ(n3/2) joints (points incident to at least three non-coplanar lines) in a collection of n (or
rather 3n) lines, where the joints are the vertices of the

√
n ×√n ×√n integer grid, and

the lines are the 3n axis-parallel lines of the grid; see, e.g., [4, 11]. By slightly perturbing
(translating and tilting) each of the lines, and by appropriately tilting the coordinate frame,
each joint is mapped to a small elementary triangular cycle in the arrangement of Θ(n) lines
in general position in R3. As the cycles do not overlap, each requires a separate cut.

Remark. (1) Setting D to a sufficiently large constant, rather than a function of n, in the
above argument allows us to avoid having to work with polynomials whose degree depends
on n, at the expense of slightly weakening the upper bound to O(n3/2+ε), where ε = ε(D) > 0
depends on the choice of D and can be made arbitrarily small. Of course, the implied constant
in the big-Oh grows with D.

(2) In the opposite direction, sharpening the bound further by increasing D does not work in
the present setting, because of step (ii) of the construction (and the corresponding portion
of step (iii)), where each line is cut at O(D2) points. If only step (i) were sufficient, the
non-recursive overhead would have been only O(nD), and then we could choose D = O(n1/2),
skipping the recursion altogether, to obtain the worst-case optimal bound O(n3/2). It is an
interesting challenge to improve the bound along these lines.

3For the algorithmic part of the analysis, it is preferable to work with constant degree D, which is why, up
to this point, we have not committed to a particular choice of D = D(n); see the remark below and Section 3
for more details.
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3 Algorithmic considerations

We now outline and discuss several algorithms for eliminating cycles. Notice that identifying
a smallest possible set of cuts to eliminate all cycles for a given family of line segments is
shown in Aronov et al. [3] to be NP-complete.

Implementing the procedure in the proof of Theorem 2.1. The most straightforward
way to obtain the required cuts would be to implement the mostly-constructive proof of
Theorem 2.1, except that we set D to be a sufficiently large constant (see the remark after the
proof), in order to control the cost of the algebraic calculations that are needed to determine
the cutting points.

However, this would require an effective and efficient construction of the partitioning
polynomial of Guth [13], the existence which is currently an open problem. One may hope
that the techniques developed in Agarwal et al. [2] for effective construction of “approximate
partitioning polynomials” for sets of points would be helpful here as well, especially since the
degree D is now assumed to be a constant. However, the machinery employed by Guth to
prove the existence of the said polynomial is sufficiently different to make an extension to
this case a serious challenge.

The rest of the algorithm would proceed as in the proof of Theorem 2.1. One needs to
assume a suitable model of algebraic computation that supports constant-time execution of
each of the various primitive algebraic operations required by the algorithm (such as finding
the intersections of a line with Z(f), finding the critical points of the polynomials g`, etc.)
for constant-degree polynomials. See, e.g., Basu et al. [6] for a discussion of the existing
machinery for implementing operations of this kind.

The algorithms of Har-Peled and Sharir and of Solan. Alternatively, we can use the
algorithms of Har-Peled and Sharir [16] or of Solan [20], specifically designed to eliminate
cycles in the depth relation. Given a collection L of n lines (or line segments) in R3, these
algorithms work on the arrangement A(L∗) of the xy-projections of the lines, and partition the
plane into regions, either by a cutting (in Solan [20]), or by incrementally refining regions into
subregions (in Har-Peled and Sharir [16]), exploiting the fact that one can efficiently detect the
presence of a depth cycle in a collection of line segments in R3 using an algorithm of De Berg
et al. [9]. Both algorithms generate close to O(n

√
χ) cuts, where χ is the minimum number

of cuts required to eliminate all cycles in the given set of segments. Concretely, the slightly
improved randomized algorithm in [16] makes O(n

√
χα(n) log n) cuts in expectation (the

bound in Solan’s algorithm [20] is slightly worse), and runs in expected time O(n4/3+εχ1/3),
for any ε > 0; see [16, Theorem 6.1] and [20, Theorem 2.1]; here α(·) is the inverse Ackermann
function. Therefore, we may conclude:

Theorem 3.1. There exists a randomized algorithm that, given a set of n lines in R3, can
find a set of O(n7/4 polylog n) cuts sufficient to eliminate all cycles in the depth relation
among the lines, in expected time O(n11/6+ε), for any ε > 0.
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Clearly, the algorithm falls short of the ideal double goal of (a) finding a set of cuts
close to the minimum possible size (or just of size close to n3/2), as in the (not yet fully
polynomial-time) construction in the proof of Theorem 2.1, and (b) doing it in time close to
n3/2. The main merit of this approach is its efficiency, as it runs in subquadratic time.

The approximation algorithm of Aronov et al. The third algorithm, at the present
state of affairs, appears to be the best of the three approaches. It is due to Aronov et al. [3,
Theorem 3.1], and is based on an approximation algorithm of Even et al. [12] for Feedback
Vertex Cover. It is a deterministic algorithm that produces a set of O(χ logχ log logχ)
cuts that eliminate all cycles, where χ is the smallest size of such a set, and runs in
O(n4+2ω log2 n) = O(n8.746) time, where ω < 2.373 is the exponent of matrix multiplication.
That is, this yields a (not very efficient but still) polynomial-time algorithm that gets very
close to the minimum number of cuts needed. In particular, it generates O(n3/2 polylog n) cuts
(where the power in the polylogarithmic factor is slightly larger than the one in Theorem 2.1).

4 Extensions to line segments and algebraic arcs

In this section we discuss two extensions of our technique, to sets of line segments and of
constant-degree algebraic arcs.

The case of line segments. Consider a non-degenerate set S of n non-vertical line
segments in R3, and let A(S∗) be the arrangement formed by their xy-projections; as we
assume general position, each vertex of A(S∗) is either the projection of an endpoint of a
segment in S, or a proper crossing of two projected segments. Let X denote the number of
vertices of the latter kind; we refer to them as proper vertices.

Of course, suitably perturbed, S can be extended to a set of lines in general position, and
therefore all cycles in S can be eliminated using O(n3/2 polylog n) cuts, by Theorem 2.1. We
want to refine this bound, to make it depend on X.

Clearly the case X = 0 requires no cuts, and if X ≤ n, we cut every segment s near each
point projecting to a proper vertex of A(S∗), thereby making O(n) cuts and eliminating all
cycles.

For larger values of X, set r := n2/X < n, and construct a (1/r)-cutting of S∗ with
O(r + r2

n2X) = O(r) trapezoids, each crossed by at most n/r segments in S∗ [10]. Cut every
segment of S at each point lying vertically above the boundary of a trapezoid of the cutting,
thereby making O(r) · (n/r) = O(n) cuts. Now apply the bound of Theorem 2.1 over each
trapezoid separately, concluding that

O
(
n+ r(n/r)3/2 polylog(n/r)

)
= O(n1/2X1/2 polylog n)

cuts are sufficient to eliminate all cycles. Combining the two cases and using the algorithms
of Har-Peled and Sharir [16] or of Solan [20], or of Aronov et al. [3], we conclude:
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Theorem 4.1. The number of cuts sufficient to eliminate all cycles in a family of n non-
vertical line segments in general position in R3 is O(n+ n1/2X1/2 polylog n), where X is the
number of pairs of segments whose xy-projections cross.

One can compute (i) O(n+ n3/4X1/4 polylog n) cuts that eliminate all cycles, in expected
time O(n3/2+εX1/6), for any ε > 0, or (ii) O(n log n log log n+ n1/2X1/2 polylog n) cuts that
eliminate all cycles, in deterministic time O(n4+2ω log2 n), where ω is the matrix multiplication
exponent.

The case of algebraic arcs. Our argument can be extended, with fairly minor adjustments,
to a similar bound on the number of cuts needed to eliminate all cycles in a collection of n
constant-degree algebraic curves or arcs, with a suitable general position assumption. We do
not spell out all the details of this extension, which can be found in a subsequent work of
Sharir and Zahl [19]. Here we only highlight the necessary modifications.

First, in the case of curves or arcs, one can have cycles of length 1 (a curve passing above
itself) or 2 (two twisted curves, each passing above the other). This however does not affect
the argument in any significant manner.

The definition of a cycle and of a simple cycle, the xy-projection of a cycle, and the path
associated with a cycle, extend to the case of arcs in an immediate and obvious manner.

Guth’s polynomial partitioning technique [13] also applies for constant-degree algebraic
curves, with the same performance parameters (albeit with potentially larger constants of
proportionality that depend on the maximum degree of the curves). This allows us to run the
same recursive cutting procedure, and use analogous reasoning to show that it does indeed
eliminate all cycles. (The aforementioned follow-up application of our technique by Sharir
and Zahl [19] spells out the algebraic issues that arise in such an extension.) It results in a
similar recurrence (with different constants), that solves to the same bound O(n3/2 logβ n),
albeit with a larger exponent β which now depends on the maximum degree of the arcs.

Finally, to obtain a bound that depends on the number of intersecting pairs of arc
projections, we can first construct a (1/r)-cutting of A(Γ∗), exactly as in the case of segments,4

and apply the bound on the number of cuts within each “pseudo-trapezoid” of the cutting
separately, resulting in the following summary result (again, for the detailed and rigorous
proof, see [19]).

Theorem 4.2. The number of cuts sufficient to eliminate all cycles in a family of n constant-
degree algebraic curves or arcs in general position in R3 is O(n+ n1/2X1/2 polylog n), where
X is the number of pairs of arcs whose xy-projections cross, and where the constant of
proportionality and the exponent of the polylogarithmic factor depend on the degree of the
input arcs.

Remark. Both the algorithms of Har-Peled and Sharir [16] and of Solan [20] rely on a
subroutine for quickly checking if a set of lines or line segments has an acyclic depth relation.

4This extension of the analysis of [10], which had originally been done explicitly only for the case of
segments, to more general well-behaved arcs, appears to be considered folklore (see, e.g., [1, 15]); refer to the
discussion of this issue in the subsequent work [19].
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Analogous tools would have to be developed in order to yield an efficient construction of a
small set of cuts to eliminate all cycles, for the case of algebraic arcs and/or curves.

Concerning the other approach of Aronov et al. [3], we do not know whether the reduction
to Feedback Vertex Cover employed there extends to the more general case of algebraic arcs.
If it does, it would imply the existence of a polynomial-time approximation algorithm for
this case as well.
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[14] L. Guth and N. H. Katz, On the Erdős distinct distances problem in the plane, Annals
Math. 181 (2015), 155–190. Also in arXiv:1011.4105.

[15] S. Har-Peled, Constructing cuttings in theory and practice, SIAM J. Comput. 29 (2000),
2016–2039.

[16] S. Har-Peled and M. Sharir, Online point location in planar arrangements and its
applications, Discrete Comput. Geom. 26 (2001), 19–40.

[17] H. Kaplan, M. Sharir, and E. Shustin, On lines and joints, Discrete Comput. Geom. 44
(2010), 838–843. Also in arXiv:0906.0558.

[18] R. Quilodrán, The joints problem in Rn, SIAM J. Discrete Math. 23 (2010), 2211–2213.
Also in arXiv:0906.0555.

[19] M. Sharir and J. Zahl, Cutting algebraic curves into pseudo-segments and applications,
J. Combinat. Theory Ser. A., submitted. Also in arXiv:1604.07877.

[20] A. Solan, Cutting cycles of rods in space, Proc. 14th Annu. ACM Sympos. Comput.
Geom., 1998, 135–142.

15


	Introduction
	Eliminating all cycles
	Algorithmic considerations
	Extensions to line segments and algebraic arcs

