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Abstract

We show that n lines in 3-space can be cut into O(n2−1/69 log16/69 n) pieces, such
that all depth cycles defined by triples of lines are eliminated. This partially resolves
a long-standing open problem in computational geometry, motivated by hidden-surface
removal in computer graphics.

1 Introduction

The problem. Let L be a collection of n lines in R
3 in general position. In particular, we

assume that no two lines in L intersect and that the xy-projections of no two of the lines
are parallel. For any pair `, `′ of lines in L, we say that ` passes above `′ (equivalently, `′

passes below `) if the unique vertical line λ that meets both ` and `′ intersects ` at a point
that lies higher than its intersection with `′. We denote this relation as `′ ≺ `. The relation
≺ is total, but in general it need not be transitive and it can contain cycles of the form
`1 ≺ `2 ≺ · · · ≺ `k ≺ `1. We refer to k as the length of the cycle. Cycles of length three are
called triangular. See Figure 1(a).

If we cut the lines of L at a finite number of points, we obtain a collection of lines,
segments, and rays. We can extend the definition of the relation ≺ to the new collection
in the obvious manner, except that it is now only a partial relation. Our goal is to cut the
lines in such a way that ≺ becomes a partial order, in which case we call it a depth order.
We note that it is trivial to construct a depth order with Θ(n2) cuts: Simply cut each line
near every point whose xy-projection is a crossing point with another projected line. It is
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(a) (b)

Figure 1: Depths cycles formed (a) by three lines and (b) by three triangles

desirable to minimize the number of cuts. A long standing conjecture is that one can always
construct a depth order with a subquadratic number of cuts. In this paper we make a step
towards establishing this conjecture.

Background. The main motivation for studying this problem comes from hidden surface
removal (HSR) in computer graphics. Given a collection of objects in R

3, say pairwise
disjoint triangles, and a viewing point, placed for convenience at z = −∞, we wish to
compute and render all visible portions of the input objects; that is, for each object o
we wish to compute the subset of all points p on o for which the downward-directed ray
emanating from p meets no other object.

Until the 1970s, HSR was considered one of computer graphics’ most important prob-
lems, and has received a substantial amount of attention; see [21] for a survey of the ten
leading HSR algorithms circa 1974. Since then it has been solved in hardware, using the
z-buffer technique [4], which produces a “discrete” solution to the problem, by computing
the nearest object at each pixel of the image. Nevertheless, there is still considerable inter-
est in obtaining an object-space representation of the visible scene, which is a combinatorial
description of the visible portions, independent of the pixel locations and resolution.

These considerations motivated an extensive study of hidden-surface removal in compu-
tational geometry, culminating in the early 1990s with a number of algorithms that provide
both conceptual simplicity and satisfactory running-time bounds. See de Berg [2] and Dor-
ward [9] for overviews of these developments, and Overmars and Sharir [14] for a simple
HSR algorithm with good theoretical running-time bounds.

A common feature of most HSR algorithms is that they rely on the existence of a
consistent depth order for the input objects, which is defined as in the case of lines: A pair
of objects A,B satisfy A ≺ B if there exists a point on B so that the downward-directed ray
emanating from it meets A. These algorithms begin by sorting the objects either front-to-
back (e.g., the Overmars-Sharir algorithm [14]) or back-to-front (e.g., the classical Painter’s
Algorithm [21]).

A large number of algorithms have been developed for testing whether the relation ≺
in a collection of triangles is an order; see de Berg [2] and the references therein. However,
while these algorithms help detect cycles, they do not provide strategies for dealing with
cycles (Figure 1(b)).

One such common strategy is to eliminate all depth cycles, by cutting the objects into
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portions that do not form cycles, and running an HSR algorithm on the resulting collection
of pieces. In 1980, Fuchs et al. [10] introduced binary space partition (BSP) trees, which can
be used to perform the desired cutting. However, a BSP tree may force up to a quadratic
number of cuts [16], which brings us back to the original challenge: Devise an algorithm
that, given a specific viewpoint and a collection of n triangles in R

3, removes all depth cycles
defined by this collection with respect to the viewpoint, using a subquadratic number of
cuts. This has been an open problem since 1980.

In this paper we study the simpler problem mentioned above, by restricting the input
to lines in space, rather than triangles. Note that since any cycle defined by a collection of
line segments is also a cycle in the collection of lines spanned by these segments, the case of
line segments is simpler than the case of lines, and we thus concentrate on the latter case.
(The case of triangles, though, is more involved, since a depth cycle among triangles does
not necessarily imply a depth cycle among their edges.)

The work of Solan [19] and of Har-Peled and Sharir [11] supplies algorithms that achieve
the above goal, provided a subquadratic number of cuts is always sufficient. In partic-
ular, these works present algorithms that, given a collection L of n lines (or segments)
in 3-space, perform close to O(n

√
C) cuts (the precise bound is O(n1+ε

√
C) for [19] and

O(n
√

Cα(n) log n) for [11]) that eliminate all cycles defined by L as seen from z = −∞,
where C is the minimal required number of such cuts. That is, if we can provide a sub-
quadratic bound on the minimal number of cuts that suffice to eliminate all cycles defined by
a collection of lines, then the aforementioned algorithms are guaranteed to find a collection
of such cuts of (potentially larger but still) subquadratic size.

Such an upper bound has however remained elusive. The only progress in this direction
is due to Chazelle et al. [5], who in 1992 have analyzed the following special case of the
problem. A collection of line segments in the plane is said to form a grid if it can be
partitioned into two subcollections of “red” and “blue” segments, such that all red (resp.,
blue) segments are pairwise disjoint, and all red (resp., blue) segments intersect all blue
(resp., red) segments in the same order; see Figure 2. Chazelle et al. [5] have shown that,

Figure 2: A collection of line segments that forms a grid

if the xy-projections of a collection of n segments in 3-space form a grid, then all cycles
defined by this collection (again, as seen from z = −∞) can be eliminated with O(n9/5)
cuts.

Our contribution. This paper describes the first step towards obtaining subquadratic
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general upper bounds on the number of cuts that are sufficient to eliminate all cycles defined
by an arbitrary collection of lines in space. Specifically, we show that all triangular cycles
can be eliminated with O(n2−1/69 log16/69 n) cuts. This allows adapting the technique of
Har-Peled and Sharir [11] or of Solan [19], to yield an algorithm that eliminates all such
cycles using close to O(n2−1/138) cuts.

While our main bound is still far from the lower bound Ω(n3/2) provided by Chazelle et
al. [5] and does not immediately apply to cycles of arbitrary length, it is an essential first step
towards the complete solution. As the first nontrivial general upper bound for this problem,
since the problem’s conception more than 20 years ago, we expect it to be generalized
and improved, and the techniques we introduce to be extended and simplified. A central
component in our proof is a result of independent interest concerning the unrealizability of
a certain “weaving pattern” of lines; see next section for definitions.

2 The Magen-David Weaving

A weaving is a finite collection of lines drawn in the plane, such that at each intersection
of a pair of lines, it is specified which of the two passes above the other. A weaving Ψ
is said to be realizable if there is a collection L of lines in 3-space (called the realization
of Ψ) whose xy-projection forms a collection of lines that is combinatorially equivalent to
the one that defines Ψ, and the lines in L adhere to the above-below constraints specified
by Ψ. Otherwise, Ψ is said to be unrealizable. A growing, albeit still relatively small,
body of research deals with the analysis and classification of realizable and unrealizable
weavings [12, 15, 17]. While it can be shown that, for a sufficiently large number of lines,
most weavings are unrealizable, proving the unrealizability of a specific weaving is a rather
nontrivial problem. We contribute to this study by describing a simple weaving of six lines
and showing it not to be realizable. This result plays a crucial role in the overall analysis.

Consider the configuration shown in Figure 3. It consists of two lines B∗
1 , B∗

2 , each

B∗

2

B∗

1

R∗

1

R∗

2

G∗

2

G∗

1

a

b

c d

e

f

g

h

p

q

r

s

Figure 3: The Magen-David weaving
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crossing four other lines1 R∗
1, R

∗
2, G

∗
1, G

∗
2. All eight crossings occur on the boundary of a

single wedge W formed between B∗
1 and B∗

2 . (The figure shows pairs of parallel lines,
but this is drawn only for convenience. For example, it is immaterial whether B∗

1 and B∗
2

intersect to the left or to the right of the figure, and which of the lines B1, B2 passes above
which in 3-space.) Moreover, B∗

1 meets the four lines in the order R∗
1, G

∗
1, R

∗
2, G

∗
2, and B∗

2

meets them in the order G∗
1, R

∗
1, G

∗
2, R

∗
2. Thus the only pairs of the four lines that cross

within W are (R∗
1, G

∗
1) and (R∗

2, G
∗
2). We also assume that the pair (R∗

1, G
∗
2) crosses on the

opposite side of B∗
2 , and that the pair (R∗

2, G
∗
1) crosses on the opposite side of B∗

1 . Finally,
we assume that the actual lines in 3-space, B1, B2, R1, R2, G1, G2, whose projections form
the configuration, are such that the lines Gi are above the lines Rj at the appropriate four
intersection points, the lines Ri are above the lines Bj, and the lines Bi are above the lines
Gj , for i, j = 1, 2. Note that each of the eight triples (Bi, Rj , Gk), for i, j, k = 1, 2, is a
triangular cycle in the collection of these six lines. The weaving described will be referred
to as the Magen-David weaving.2 In light of the recent developments on the subject of
weavings [12, 15, 17], the following result is of independent interest.

Theorem 2.1. The Magen-David weaving is unrealizable.

Proof. Assume to the contrary that there exist six lines B1, B2, R1, R2, G1, G2 in 3-space
that realize the Magen-David weaving, and whose xy-projections are, respectively, B∗

1 , B∗
2 ,

R∗
1, R∗

2, G∗
1, G∗

2. We assume that the figure is drawn in a coordinate frame in which B∗
1 lies

above B∗
2 (in the y-direction) within W , as in Figure 3.

We also use the following notation. When two projected lines meet at a point w, each
of the original lines contains a point that projects to w. We designate these two points as
wξ, wη, where ξ, η ∈ {B,R,G} denote the families of the respective lines. For example, R∗

1

and G∗
1 meet at b, and the corresponding point on R1 (resp., G1) is denoted by bR (resp., bG).

In the proof below we will rotate some of the lines (without changing their xy-projections)
so as to make certain pairs of lines touch. When this happens, we will denote, with a slight
abuse of notation, their common point by the symbol denoting its projection.

Rotate the line G1, without changing its vertical projection, about aG, such that the
part of G1 whose xy-projection is incident to the central hexagon in the weaving rotates
downwards. Clearly, it will meet the line R1 over the point b before crossing any other
line; we stop the rotation of G1 when this contact with R1 occurs. Now rotate R1 about
b, again rotating the part of R1 whose projection overlaps the hexagon downwards. It will
similarly meet B2 over c. Continue this process in a domino-like fashion, rotating B2 until
it meets G2, then G2 until it meets R2, then R2 until it meets B1, and finally B1 until it
meets G1. We have thus forced six pairs of lines to touch each other, without changing their
vertical projections. The resulting configuration is shown in Figure 4, where dots denote
contacts. Note that the above process creates no contacts between the lines other than
the six contacts described above, and does not change any other above/below relationships
between the lines.

1We use the notation `∗ for the xy-projection of a line ` in 3-space. In accordance with this, we denote
lines drawn in the xy-plane using the ∗-notation. The above/below data at a crossing is depicted in the
figures using the standard convention for views from above that the line passing below is drawn with a small
gap around the crossing.

2“Magen-David” is the original Hebrew expression for the Star of David, meaning literally “David’s
Shield.”
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Figure 4: An (impossible) realization of the Magen-David weaving, after six contacts were
enforced

Let X denote the plane spanned by the contact points a, b, c and let Y denote the plane
spanned by the contact points d, e, f in R

3. Note that X also contains the points gG, hR, pR

and qG, and Y similarly contains gR, hG, rG and sR. Since pB lies below pR, the line B1

passes below X over p. Since B1 meets X at a we conclude that to the right of a, B1 lies
above X. Symmetrically, rB lies above rG, so B1 passes above Y over r, meets Y at f , and
thus lies below Y to the left of f . Hence, between a and f , B1 lies above X and below Y ,
so X lies below Y over this interval.

A symmetric analysis applies to B2: qB lies above qG, so B2 lies above X over q, meets
X at c, and thus lies below X to the right of c. On the other hand sB lies below sR, so
B2 lies below Y over s, meets Y at d, and thus lies above Y to the left of d. Hence, X lies
above Y over the interval between c and d.

Since gG lies above gR, X lies above Y over g. Since hR lies below hG, X lies below Y
over h. Consider X and Y as linear functions defined over the interval gh. Our assumptions
imply that B∗

1 (resp., B∗
2) crosses gh at a point that lies in the interval af (resp., cd). Hence,

X lies above Y over g, below Y over B∗
1 ∩ gh, above Y over B∗

2 ∩ gh, and below Y over h.
This alternation is impossible for a pair of linear functions, implying that the Magen-David
weaving is unrealizable.

Remarks: (1) Notice that the contradiction is reached even by using only one of the two
above/below relationships of the lines over g and over h. We thus obtain a slightly stronger
unrealizability result, in which one of these order relationships can be arbitrary.

(2) Theorem 2.1 is a central tool in our analysis of the number of cuts needed to eliminate
all triangular cycles. It is interesting to note that the previous result of Chazelle et al. [5]
also relies on the unrealizability of a weaving, which in that case was the complete 4 × 4
weaving [15].
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3 Eliminating All Triangular Cycles

Let L be a set of n non-vertical lines in 3-space in general position and let L∗ = {`∗ | ` ∈ L}
denote the set of their projections. A cycle c in L of the form `1 ≺ `2 ≺ · · · ≺ `j ≺ `1

can be represented as a closed oriented (possibly self-intersecting or even self-overlapping)
polygonal path c∗ = p1p2 . . . pnp1, where pi is the intersection point of `∗i and `∗i+1 (mod j).

A triangular cycle is defined by three lines `1, `2, `3 satisfying `1 ≺ `2 ≺ `3 ≺ `1. We
call a triangular cycle c clockwise (resp., counterclockwise) if the resulting orientation of c∗

as we trace it in the order `∗1 → `∗2 → `∗3 → `∗1 is clockwise (resp., counterclockwise); see
Figure 5.

`1

`3
`2

`2

`3

`1

CounterclockwiseClockwise

Figure 5: The two types of triangular cycles

From triangular cycles to empty triangular cycles. In this paper we confine our
study to triangular cycles; thus from now on, the unqualified term ‘cycle’ will always refer to
a triangular cycle. We wish to cut the lines in L so that all such cycles are eliminated. Here
is a simple procedure that achieves this goal. Fix a parameter k to be determined later.
For each ` ∈ L, cut ` at (the points projecting on) every k-th vertex of the arrangement
A(L∗) lying on `∗. The total number of cuts is O(n2/k). After these cuts are performed,
any cycle c that has not been eliminated has the property that c∗ is crossed by at most 3k/2
lines of L∗. Using the probabilistic analysis technique of Clarkson and Shor [8], the overall
number of these “light” triangular cycles is O(k3ν0(n/k)), where ν0(m) is the maximum
number of triangular cycles c in a collection of m lines in space, such that c∗ is a face in the
arrangement of the projected lines. (We refer to cycles of the latter type as empty.) Hence,
the following number of cuts is certainly sufficient for eliminating all triangular cycles in L:

O

(
n2

k
+ k3ν0

(n

k

))
. (1)

Let C be a family of triples (`1, `2, `3) of distinct lines of L, such that each triple in
C forms a counterclockwise triangular cycle whose xy-projection is a face of A(L∗). We
refer to such cycles as (counterclockwise) empty cycles. It suffices to obtain a bound on
|C|, since, by symmetry, the overall number of triangular empty cycles is at most twice this
bound. This is precisely what we do in Sections 4 and 5, which culminate in Theorem 5.1.
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The theorem states that |C| is bounded by O(n2−1/34 log8/17 n), which implies that ν0(n) =
O(n2−1/34 log8/17 n). Plugging this estimate into (1) we conclude that the number of cuts
needed to eliminate all triangular cycles in L is

O

(
n2

k
+ k3

(n

k

)2−1/34
log8/17 n

k

)
= O

(
n2

k
+ k35/34n2−1/34 log8/17 n

)
.

Choosing k = n1/69/ log16/69 n, we obtain the main result of this paper.

Theorem 3.1. A set L of n nonvertical lines in R
3 in general position can be cut into

O(n2−1/69 log16/69 n) segments and rays, such that no triangular cycles are present in the
depth order of these portions of the lines.

The remainder of the paper is devoted to the derivation of the bound O(n2−1/34 log8/17 n)
on the number of empty counterclockwise triangular cycles.

4 Empty Cycles in a Restricted Setting

We commence our analysis of empty cycles by first proving a subquadratic bound on their
number in a restricted setting. In the next section we describe a reduction of the analysis
of empty cycles in a general collection of lines to the case considered here.

Lemma 4.1. Let L be the disjoint union of three collections of lines: B (blue lines), R (red
lines), and G (green lines), that satisfy the following two conditions:

(C1) Each line in B passes below each line in R, which passes below each line in G, which
passes below each line in B. In particular, for any b ∈ B, r ∈ R and g ∈ G, the triple
b, r, g forms a cycle.

(C2) Boris says: Mangled, please check! The lines in L∗ are oriented and there exist ←−
three orientations α, β, γ such that (1) α, β, γ,−α,−β,−γ are distinct and occur in
this cyclic order on the circle of orientations and (2) the directions of the lines of
B∗, R∗, G∗ occur in the interval (α, β), (γ,−α), (−β,−γ), respectively. We used minus
to denote the antipodal direction. See Figure 6.

−γ

β

γ

α

−α

−β

G

R

B

Figure 6: Illustration of condition (C2); R,B,G are used to label the intervals containing
the directions of the corresponding projected lines
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Let C be a collection of cycles defined by L such that each cycle of C projects to a triangular
face of A(L∗) that is bounded by a line of B∗, a line of R∗, and a line of G∗, and lies to
the left of each of these oriented lines. Then the number of cycles in C is

O
(
|R|5/6|B|1/3|G|1/3 min{|B|, |G|}1/3 + |R|1/2 max{|B|, |G|} + |R|

)
.

Observe that if |L| = n then this bound is O(n11/6), which is considerably stronger than
the bound O(n2−1/34 log8/17 n) mentioned above and established in Theorem 5.1 below for
the general case. Note also that the lemma yields two additional similar bounds, obtained
by cyclically permuting B,R, and G.

Proof. We assume that |B| ≤ |G|, which involves no loss of generality, and establish the
bound

O
(
|R|5/6|B|2/3|G|1/3 + |R|1/2|G| + |R|

)
.

For the ensuing discussion, we assume, without loss of generality, that all lines of R∗ form
angles of at most π/4 with the x-axis, and are oriented from left to right; this can be
enforced by an appropriate rotation and scaling of the coordinate frame. Put b = |B|,
r = |R|, g = |G|. Fix a threshold parameter t, to be determined later. Let R+ denote the
set of red lines that participate in at least t cycles of C. The total number of cycles of C
that involve red lines in R \R+ is at most rt. For each pair of lines ρ1, ρ2 ∈ R+, define the
distance d(ρ1, ρ2) to be the number of blue-green vertices of the arrangement A(L∗) that lie
in the double wedge W (ρ1, ρ2) formed between the projections ρ∗1, ρ

∗
2 of these two lines and

not containing the vertical (y-parallel) direction. Assign to each line ρ ∈ R+ the sequence
C(ρ) of the cycles of C whose xy-projections contain portions of ρ∗. These portions of ρ∗

form a sequence of pairwise disjoint segments of ρ∗, sorted from left to right along ρ∗.

Fix a pair ρ1, ρ2 of distinct lines in R+. The intersection point q of their projections
splits each of the sequences C(ρ1), C(ρ2) into two respective subsequences CL(ρ1), CR(ρ1),
and CL(ρ2), CR(ρ2), where CL(ρi) (resp., CR(ρi)) is the subsequence consisting of the cycles
that precede (resp., succeed) q along ρi, for i = 1, 2; note that no cycle on either line can
contain q. Put t1L = |CL(ρ1)|, t1R = |CR(ρ1)|, t2L = |CL(ρ2)|, t2R = |CR(ρ2)|. Suppose
finally, without loss of generality, that ρ2 lies counterclockwise of ρ1.

3 See Figure 7.

ρ2

ρ1
CR(ρ1)

CR(ρ2)

q

CL(ρ1)

CL(ρ2)

Figure 7: The structure of the double wedge W (ρ1, ρ2) and the cycles along it

3We say that an oriented line λ in the plane lies counterclockwise (resp., clockwise) of another oriented
line λ′ if the counterclockwise angle from the direction of λ to that of λ′ is greater than π (resp., less than
π).
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Claim 1. W (ρ1, ρ2) contains at least 1
2t21R + 1

2t22L blue-green vertices; that is,

d(ρ1, ρ2) ≥
1

2
(t21R + t22L).

Proof. We show that the right wedge WR(ρ1, ρ2) between ρ∗1 and ρ∗2 contains at least 1
2t21R

blue-green vertices. A symmetric argument implies that the left wedge WL(ρ1, ρ2) contains
at least 1

2t22L such vertices.

Let c1, c2 be two cycles in CR(ρ1), so that c∗1 precedes c∗2 along ρ∗1; see Figure 8. By
the separation of orientations (condition (C2)), the blue line β1 of c1 and the green line
γ2 of c2 must be such that β∗

1 and γ∗
2 cross to the left of ρ∗1, at some blue-green vertex

v. Note that ρ∗2 does not intersect c∗1 or c∗2, because they are faces of A(B∗ ∪ R∗ ∪ G∗).
If v lay outside WR(ρ1, ρ2), as in the figure, then ρ∗2 would have had to cross the lines
γ∗
1 , β∗

1 , γ∗
2 , β∗

2 in this order. This, together with condition (C2), would have implied that the
lines ρ∗1, ρ

∗
2, β

∗
1 , γ∗

1 , β∗
2 , γ∗

2 form an impossible weaving Magen-David configuration.

Hence, every vertex v of this type lies inside WR(ρ1, ρ2). Adding the t1R blue-green
vertices of the cycles themselves, which also lie in WR(ρ1, ρ2), we obtain a total of

(
t1R
2

)
+

t1R ≥ 1
2 t21R blue-green vertices. This completes the proof of the claim.

ρ1

ρ2

β2β1 γ1
γ2

c1
c2

v

Figure 8: The blue-green vertex v must lie in W (ρ1, ρ2)

Fix a line ρ0 ∈ R+ and consider the cluster N(ρ0) of lines ρ ∈ R+ such that d(ρ, ρ0) <
t2/36. The distance d(·, ·) satisfies the triangle inequality; this can be verified either directly,
or by using duality (see below for more details). Let ρ1, ρ2 ∈ N(ρ0). We thus have

d(ρ1, ρ2) ≤ d(ρ1, ρ0) + d(ρ2, ρ0) <
t2

18
.

The above claim implies that (assuming that ρ2 lies counterclockwise of ρ1)

1

2
t21R +

1

2
t22L <

t2

18
,

therefore t1R and t2L are both smaller than t/3. In other words, ρ∗1 passes below (in the
y-direction) the middle portion µ(ρ∗2) of ρ∗2, which is the shortest interval along ρ∗2 that
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contains the portions of ρ∗2 that participate in the middle t/3 cycles along that line, and,
symmetrically, ρ∗2 passes below the middle portion µ(ρ∗1) of ρ∗1. This implies that µ(ρ∗1) and
µ(ρ∗2) lie on the upper envelope of ρ∗1 and ρ∗2 (relative to the y-direction); see Figure 9.

ρ∗
1

µ(ρ∗
2
)

t2L < t/3

ρ∗2

µ(ρ∗
1
)

t1R < t/3

Figure 9: µ(ρ∗1) and µ(ρ∗2) lie on the upper envelope of ρ∗1, ρ
∗
2

Applying this argument to each pair of lines in N(ρ0), we conclude that all the middle
portions µ(ρ∗), for ρ ∈ N(ρ0), lie on the upper envelope E of the projections of the lines
in N(ρ0). Hence, E contains the red portions of at least t

3 |N(ρ0)| cycles of C. However,
since E is a convex chain, a blue or green line can generate at most one cycle along E, as
it intersects E at just one point, due to the separation of orientations in condition (C2).
Hence

t

3
|N(ρ0)| ≤ min{b, g} = b, or |N(ρ0)| ≤

3b

t
.

We now construct clusters of this type iteratively, picking a line ρ ∈ R+ not belonging to
any previously constructed cluster, and forming its cluster N(ρ), using only lines that have
not yet been assigned to any cluster. Let Rc denote the set of ‘centers’ of these clusters,
i.e., the lines ρ with respect to which the clusters N(ρ) have been defined. By construction,
any pair of lines ρ1, ρ2 ∈ Rc satisfies d(ρ1, ρ2) ≥ t2/36.

We apply a standard duality transform to the xy-plane which preserves the above-below
relationship (see [3]). We denote the dual of an object a by ã to avoid confusion with the

notation a∗ used to denote xy-projections. We obtain a set R̃∗
c of red points, dual to the

projections of the red lines in Rc. Each blue-green vertex v is mapped to the line connecting
the corresponding dual blue and green points. Let K denote this set of dual lines. A vertex
v lies in the double wedge W (ρ1, ρ2) if and only if the line ṽ separates ρ̃∗1 and ρ̃∗2. That is,

d(ρ1, ρ2) is the number of these blue-green dual lines that are crossed4 by the segment ρ̃∗1ρ̃
∗
2.

Put rc = |Rc|, and choose a parameter ξ = a
√

rc, for an appropriate absolute constant
a. Construct a (1/ξ)-cutting of K, which consists of O(ξ2) = O(rc) cells (see [13, 18] for
details concerning cuttings). Each cell is crossed by at most |K|/ξ lines of K. Choose the
constant a so that the number of cells is smaller than rc. Then there exists a cell that
contains at least two points ρ̃∗1, ρ̃

∗
2 of R̃∗

c , and, clearly, only lines of K that cross that cell

can cross the segment ρ̃∗1ρ̃
∗
2. Hence

d(ρ1, ρ2) ≤
|K|
ξ

= O

(
bg√
rc

)
.

4Thus d(·, ·) is the ‘crossing distance’ in A(K), as studied, e.g., in [7]. In particular, it satisfies the triangle
inequality, as promised earlier.
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We conclude that
t2

36
= O

(
bg√
rc

)
,

thus

rc = O

(
b2g2

t4

)
.

In other words, we have shown that the number of clusters is at most O(b2g2/t4), and since
each cluster contains at most 3b/t lines, we obtain that

|R+| = O

(
b3g2

t5

)
.

Any line in R+ can participate in at most b cycles of C, since each such cycle must ‘use’ a
different blue line. Hence the overall number of cycles in C, taking into account also the
lines in R \R+, is

O

(
rt +

b4g2

t5

)
.

Choose t = b2/3g1/3/r1/6. This parameter is in the range [1, b] when

g2

b2
≤ r ≤ b4g2.

If r > b4g2, we choose t = 1 and obtain the bound |C| = O(r + b4g2) = O(r). If r < g2/b2,
we choose t = b and obtain the trivial bound |C| = O(rb) (as just noted, any line of R can
participate in at most b cycles of C), which is also O(r1/2g). Hence, we obtain

|C| = O
(
r5/6b2/3g1/3 + r1/2g + r

)
,

where we remind the reader that we have assumed that b ≤ g. This completes the proof of
Lemma 4.1.

5 A General Bound on the Number of Empty Cycles

5.1 Reducing to Trichromatic Cycles

Let L be a set of n lines in R
3 in general position, and let C denote the set of all empty trian-

gular counterclockwise cycles in L. Color each line of L red, blue, or green, independently,
at random, with equal probabilities. Consider a cycle c ∈ C of the form `1 ≺ `2 ≺ `3 ≺ `1.
With probability 1/9, each line is assigned a different color (we then refer to c as trichro-
matic), so that in the cyclic order along c we pass from a blue line to a red line to a green
line and back to the blue line. The expected number of trichromatic cycles in C of this
type is 1

9 |C|. Hence, ignoring constant factors, it suffices to consider the case where L is
the disjoint union B ∪R∪G of three subfamilies of roughly equal size (the expected size of
each family is n/3), and C is a collection of counterclockwise trichromatic triangular cycles
in B×R×G whose xy-projections are faces of A(L∗), so that, for each cycle in C, the blue
line passes below the red line, which passes below the green line, which passes below the
blue line. As above, we refer to these cycles as empty.
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Before continuing, we note that a trivial upper bound on |C|, which has already been
effectively used above, is

|C| ≤ 2min {|B| · |R|, |B| · |G|, |R| · |G|}. (2)

This is shown by charging each c ∈ C to, say, the blue-red vertex of c∗, and by noting
that no blue-red vertex of A(L∗) is charged more than twice. Repeating the argument for
blue-green and red-green vertices yields (2).

Assign an orientation to each line of L, so that each of the two possible orientations is
chosen at random with probability 1/2. Each cycle c ∈ C, formed by three lines `1, `2, `3,
has probability 1/8 to be such that c∗ lies to the left of each of the projections `∗1, `

∗
2, `

∗
3.

Hence we may assume that all the cycles in C have this property, which implies that the
three orientations of the lines forming a cycle in C cannot all lie in a common semi-circle
of the circle S

1 of orientations.

Our goal is to decompose the problem of bounding the number of empty cycles into
subproblems, each involving appropriate subsets of B,R and G, so that these subsets satisfy
the conditions (C1) and (C2) of Lemma 4.1. Each cycle of C will appear as an empty cycle
in one of these subproblems, and the bound on |C| will follow by summing up the bounds
obtained by applying Lemma 4.1 to each subproblem separately.

5.2 Enforcing conditions (C1) and (C2)

The decomposition of the problem into subproblems that satisfy conditions (C1) and (C2)
of Lemma 4.1 is accomplished using fairly standard, albeit technically involved, space de-
composition methods. We represent lines in 3-space as either points or hyperplanes in real
projective 5-space, using Plücker coordinates [6, 20].

For technical reasons, we first decompose the problem into O(1) subproblems, where in
each subproblem the horizontal orientations of all the lines of B (i.e., the orientations of the
projected lines in B∗ within the xy-plane) lie in a fixed quadrant of S

1, and similarly for R
and G. (These three quadrants need not be distinct.) Fix one of these subproblems, and
continue to denote the subsets of B,R, and G that belong to the subproblem by the same
symbols. Recall that we need to ensure that the horizontal orientations of all lines in R lie
counterclockwise to those of all lines in B, which in turn lie counterclockwise to those of all
lines in G, which in turn lie counterclockwise to those of all lines in R; Boris says: Any ←−
better ideas? Maybe delete the first version altogether? more precisely, the orientations have
to come in counterclockwise order B,−G,R,−B,G,−R (refer to Figure 6) where we have
used R,B,G to denote the interval of orientations of the lines in R∗, B∗, G∗, respectively,
and −R,−B,−G the corresponding antipodal interval. Boris says: I did not phrase the ←−
separation as a pairwise one, so some of the following sentences make no sense, technically.

Leave them alone anyways? This implies that certain combinations of quadrants can be
ignored, since this condition cannot arise at all for them. (For example, if B is associated
with the first quadrant, R cannot be associated with the fourth quadrant, nor G with the
second quadrant. Similarly, we can ignore cases where all three quadrants lie in the same
halfplane.) Moreover, if the quadrants associated with, say, B and R are adjacent, the
desired separation of the horizontal orientations holds for every pair of lines in B ×R, and
thus need not be enforced at all. For specificity, we will consider the case where both B and
R are associated with the first quadrant, and G with the third quadrant. Here condition
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(C2) must be enforced for each pair of these subsets. The other cases are handled in a
similar (and sometimes simpler) manner.

The decomposition in 5-space proceeds as follows. Let b, r, g denote the respective sizes
of B,R,G. Represent each line ` in 3-space, having the equations y = a1x+a2, z = a3x+a4,
by its Plücker point q(`). Reordering the coordinates, reversing some signs, and passing
to the real, rather than projective, space, we can put q(`) = (a1, a2, a3, a4, a1a4 − a2a3);
see [6, 20]. In this parametrization we exclude lines parallel to the yz-plane, but we may
assume that none of the lines in L are parallel to that plane. All the Plücker points lie
on the Plücker surface Π, which in the coordinate system we have chosen is the quadric
x5 = x1x4 − x2x3.

The original decomposition of the horizontal orientations into fixed quadrants allows
us to represent unambiguously the horizontal orientation of a line by its coefficient a1.
Specifically, in the subcase under consideration, for lines ` ∈ B, `′ ∈ R, `′′ ∈ G, whose
respective a1-coefficients are a, a′, a′′, the clockwise/counterclockwise relations in condition
(C2) can be expressed as a′ > a′′ > a.

We map each line `′ ∈ R ∪ G to a surface σ(`′) in R
4, which is the union of two

hyperplanes σ1 and σ2, where σ1 is the locus of all (points representing) lines ` that meet
`′, and σ2 is the locus of all points representing lines whose xy-projection is parallel to that
of `′ (i.e., they have the same a1-coefficient as `′). Each of these conditions does indeed
correspond to a hyperplane in 4-space. Note that q(`) lies below (resp., above) σ1(`

′),
relative to the fourth coordinate direction, if and only if ` passes below (resp., above) `′

in 3-space. Similarly, if `′ belongs to R then q(`) lies to the left (resp., right) of σ2(`
′),

relative to the first coordinate direction, if and only if the horizontal orientation of ` lies
clockwise (resp., counterclockwise) to `′. If `′ belongs to G then the latter property holds
with clockwise and counterclockwise interchanged.

Let ΣR∪G denote the collection of the 2r + 2g hyperplanes that constitute the surfaces
σ(`′), for `′ ∈ R ∪ G. Fix a parameter ξ, to be determined later, and construct a (1/ξ)-
cutting of A(ΣR∪G) in R

5, which is a decomposition of 5-space into simplices, each crossed
by at most (2r +2g)/ξ hyperplanes, and extract from it all the cells that are crossed by the
Plücker surface Π. Standard machinery [1] implies that there exists such a cutting for which
the number of cells crossed by Π is O(ξ4 log ξ). Because of the general position assumption,
the cutting can be constructed so that no point representing a line in B lies on the boundary
of any full-dimensional simplex. Moreover, the cutting can be constructed in such a manner
that each simplex is crossed by at most 2r/ξ hyperplanes corresponding to lines in R, and
by at most 2g/ξ hyperplanes corresponding to lines in G. Also, by partitioning cells further
as needed, we may assume that each cell contains at most b/(ξ4 log ξ) points corresponding
to the lines in B. This further partitioning does not change the asymptotic bound on the
number of cells of the cutting.

For each cell τ of the cutting, let Bτ denote the set of lines ` ∈ B whose corresponding
points q(`) lie in τ ; let Rτ (resp., Gτ ) denote the set of lines `′ ∈ R (resp., `′ ∈ G) such that
(at least one of the two hyperplanes of) σ(`′) crosses τ . Finally, let R0

τ denote the set of
lines `′ ∈ R such that τ lies fully below σ1(`

′) and fully to the left of σ2(`
′). Similarly, let

G0
τ denote the set of lines `′ ∈ G such that τ lies fully above σ1(`

′) and fully to the right of
σ2(`

′).

Fix a cell τ of the cutting. By the reduction described in the preceding subsections,
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and by construction, each cycle in C that involves a line ` ∈ Bτ must involve a red line in
Rτ ∪R0

τ and a green line in Gτ ∪G0
τ .

Consider first cycles in (Bτ ×Rτ ×Gτ ) ∪ (Bτ ×Rτ ×G0
τ )∪ (Bτ ×R0

τ ×Gτ ). Using (2),
the number of such cycles is at most

O

(
b

ξ4 log ξ
·
(

r

ξ
+

g

ξ

))
= O

(
n2

ξ5 log ξ

)
.

Multiplying by the total number of cells τ , the overall number of cycles of this type is at
most O(n2/ξ).

The main task is analyzing cycles in Bτ ×R0
τ ×G0

τ . Consider the two sets R0
τ and G0

τ .
As is easily verified, the sets Bτ , R

0
τ , G0

τ satisfy conditions (C1) and (C2) of Lemma 4.1,
with the exception that the interactions between the lines in R0

τ and in G0
τ are not as yet

determined. In more detail, (i) each line in Bτ passes below each line in R0
τ and above each

line in G0
τ , and (ii) the horizontal orientation of each line in Bτ lies clockwise to that of each

line in R0
τ , and counterclockwise to that of each line in G0

τ . The above/below relationship
between the lines of R0

τ and those of G0
τ , as well as the clockwise/counterclockwise relation

between their horizontal orientations are still not determined.

We next apply another cutting-based partitioning scheme to R0
τ and G0

τ , whose purpose
is to enforce the missing relationships between the red and green lines. Specifically, map
the lines in R0

τ into Plücker points in R
5, and the lines in G0

τ into pairs of hyperplanes,
as above. Choose a parameter λ, to be determined later, construct a (1/λ)-cutting of the
arrangement of the green surfaces σ(`), for ` ∈ G0

τ , and extract its O(λ4 log λ) cells that
are crossed by Π. As above, we may assume that each cell contains at most |R0

τ |/(λ4 log λ)
red points of R0

τ , and is crossed by at most |G0
τ |/λ green surfaces. For each cell ϕ of the

cutting, let R0
τ (ϕ) be the set of lines ` ∈ R0

τ such that q(`) ∈ ϕ, let G0
τ (ϕ) be the set of lines

`′ ∈ G0
τ such that σ(`′) crosses ϕ, and let G−

τ (ϕ) denote the set of lines `′ ∈ G0
τ such that

ϕ lies fully below σ1(`
′) and to the right of σ2(`

′).

Again, by the preceding reductions and by construction, for any cycle c ∈ C ∩ (Bτ ×
R0

τ × G0
τ ) there exists a cell ϕ such that c is either in C ∩ (Bτ × R0

τ (ϕ) × G0
τ (ϕ)) or in

C ∩ (Bτ ×R0
τ (ϕ)×G−

τ (ϕ)). Using (2), the number of cycles in C ∩
(
Bτ ×R0

τ (ϕ) ×G0
τ (ϕ)

)

is at most

|R0
τ (ϕ)| · |G0

τ (ϕ)| ≤ r

λ4 log λ
· g
λ

= O

(
n2

λ5 log λ

)
.

Summing this bound over all cells ϕ, and over all cells τ in the original cutting, the number
of cycles of this type is at most O(ξ4n2 log ξ/λ).

Finally, we turn to the analysis of the number of cycles in C ∩
(
Bτ ×R0

τ (ϕ)×G−
τ (ϕ)

)
.

Observe that Bτ ∪ R0
τ (ϕ) ∪ G−

τ (ϕ) satisfies the assumptions of Lemma 4.1. We thus have
that the total number of cycles in C ∩ (Bτ ×R0

τ (ϕ) ×G−
τ (ϕ)) is proportional to

|R0
τ (ϕ)|5/6|Bτ |1/3|G−

τ (ϕ)|1/3 min{|Bτ |, |G−
τ (ϕ)|}1/3+

|R0
τ (ϕ)|1/2 max{|Bτ |, |G−

τ (ϕ)|} + |R0
τ (ϕ)|,
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where

|Bτ | ≤
b

ξ4
≤ n

ξ4
,

|R0
τ (ϕ)| ≤ r

λ4
≤ n

λ4
, and

|G−
τ (ϕ)| ≤ g ≤ n.

Substituting these estimates into the bound above, we obtain

|C ∩
(
Bτ ×R0

τ (ϕ) ×G−
τ (ϕ)

)
| = O

(
n11/6

ξ8/3λ10/3
+

n3/2

λ2
+

n

λ4

)
.

Multiplying this expression by the number of cells τ, ϕ, and adding the estimates for the
remaining types of cycles, we conclude that the overall number of cycles in C is

O

(
n2

ξ
+

n2ξ4 log n

λ
+ ξ4/3λ2/3n11/6 log2 n + ξ4λ2n3/2 log2 n + ξ4n log2 n

)
.

Choose λ = ξ5 log n to obtain

|C| = O

(
n2

ξ
+ ξ14/3n11/6 log8/3 n + ξ14n3/2 log4 n + ξ4n log2 n

)
.

Now choose ξ = n1/34/ log8/17 n to get |C| = O(n2−1/34 log8/17 n). We have thus arrived
at the main result of this section, which provides the missing ingredient for the proof of
Theorem 3.1.

Theorem 5.1. Given a set L of n nonvertical lines in R
3 in general position, the number

of empty triangular counterclockwise cycles defined by L is O(n2−1/34 log8/17 n).
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