Polygonal Approximation of a Jordan Curve

Micha Sharir and...

May 19, 2002

1 Preliminaries

Let γ be a closed Jordan curve in the plane. Let $P=\left\{p_{1}, \ldots, p_{n}\right\}$ be a set of n points on γ, which appear in this counterclockwise order along the curve. For each $i=1, \ldots, n$, let γ_{i} denote the portion of γ between p_{i} and p_{i+1} (where we put $p_{n+1}=p_{1}$). let C_{i} denote the convex hull of γ_{i}, and let R_{i} be a circumscribed rectangle of C_{i} (or of γ_{i}), one of whose sides is parallel to the straight segment $p_{i} p_{i+1}$. Put $U=\bigcup_{i=1}^{n} C_{i}$, and $W=\bigcup_{i=1}^{n} R_{i}$. Clearly, $U \subseteq W$.

The union of the rectangles may have quadratic complexity. We first observe that the union $W=\bigcup_{i=1}^{n} R_{i}$ may have quadratic complexity. A construction that illustrates the lower bound is shown in Figure 1.

Figure 1: The union W of the rectangles R_{i} may have quadratic complexity. Not all rectangles are shown (e.g., the one constructed for p_{2}, p_{3} is missing), but their presence would not have affected the quadratic complexity of W.

Hence, our goal is to find an intermediate polygonal region U^{*} that contains U, is contained in W, and has only linear complexity. In what follows we show how to construct such a region.

Lemma 1.1 U has linear complexity. That is, the number of intersection points of the boundaries of the sets C_{i} that lie on ∂U is at most $6 n-12$, for $n \geq 3$.

Proof: We claim that $\left\{C_{i}\right\}$ is a collection of pseudo-disks, i.e., simply connected planar regions, each pair of whose boundaries intersect at most twice. This is a well known property
(see, e.g., [1]). We include its simple proof for the sake of completeness. Let C_{i}, C_{j} be a fixed pair of these sets, and suppose to the contrary that ∂C_{i} and ∂C_{j} intersect each other in at least four points. Since these sets are convex, $C_{i} \cup C_{j} \backslash\left(C_{i} \cap C_{j}\right)$ consists of at least four nonempty connected components, at least two of which, denoted $C_{i}^{\prime}, C_{i}^{\prime \prime}$, are contained in $C_{i} \backslash C_{j}$, and at least two others, denoted $C_{j}^{\prime}, C_{j}^{\prime \prime}$, are contained in $C_{j} \backslash C_{i}$; see Figure 2.

Figure 2: Two hulls C_{i}, C_{j} cannot intersect at four points.

Note that each of the components $C_{i}^{\prime}, C_{i}^{\prime \prime}$ (resp., $C_{j}^{\prime}, C_{j}^{\prime \prime}$) must intersect γ_{i} (resp., γ_{j}), for otherwise, if, say, $\gamma_{i} \cap C_{i}^{\prime}=\emptyset$, then we can replace C_{i} by $C_{i} \backslash C_{i}^{\prime}$, which is a convex set that contains γ_{i}, contradicting the fact that C_{i} is the convex hull of γ_{i}. Choose four points $u \in C_{i}^{\prime} \cap \gamma_{i}, v \in C_{i}^{\prime \prime} \cap \gamma_{i}, w \in C_{j}^{\prime} \cap \gamma_{j}$, and $z \in C_{j}^{\prime \prime} \cap \gamma_{j}$, and observe that the portion of γ_{i} between u and v must cross the portion of γ_{j} between w and z; see Figure 2. This contradiction implies that $\left\{C_{i}\right\}$ is a family of pseudo-disks. The claim is now an immediate consequence of the linear bound on the complexity of the union of pseudo-disks, given in [3].

For each pair of consecutive intersection points u, v along (some connected component of) ∂U, connect u and v by a straight segment. This chord and the portion of ∂U between u and v bound a convex subregion of U. Let \mathcal{K} denote the set of resulting subregions. The regions in \mathcal{K} are pairwise openly-disjoint, as is easily verified. See Figure 3(a) for an illustration. We now use the following result, due to Edelsbrunner et al. [2]:

Lemma 1.2 Let \mathcal{K} be a collection of mairwise openly disjoint convex regions in the plane. One can cover each region in \mathcal{K} by a convex polygon, so that the resulting polygons are also pairwise openly disjoint, and the total number of their edges is at most $3 m-6$.

Let K be a region in \mathcal{K}, and let P be the convex polygon that covers K. We shrink P by translating each of its edges so that it becomes tangent to K. The resulting polygon P^{\prime} is clearly contained in P and contains K. Finally, let C_{i} be the (unique) convex hull that contains K, and let R_{i} be the rectangle containing C_{i}. We replace P^{\prime} by $P^{\prime} \cap R_{i}$. This increases the number of edges of P^{\prime} by at most four. See Figure 3(b).

In summary, we have obtained a collection \mathcal{P} of at most $6 n-12$ pairwise openly disjoint convex polygons with a total of at most $3(6 n-12)-6=18 n-42$ edges. Let U^{*} denote the

Figure 3: (a) The subregions in \mathcal{K} and their containing polygons. (b) Shrinking a covering polygon.
union of U with the union of \mathcal{P}. Then $U \subseteq U^{*} \subseteq W$. Moreover, ∂U^{*} consists exclusively of edges of the polygons in \mathcal{P}, so U^{*} is a polygonal region with $18 n-42$ edges. We have thus shown:

Theorem 1.3 Let γ, P, and W be as above. There exists a polygonal region U^{*} with at most $18|P|-42$ edges that contains γ and is contained in W.

References

[1] B. Chazelle and L.J. Guibas, Fractional cascading: II. Applications, Algorithmica 1 (1986), 163-191.
[2] H. Edelsbrunner, A. D. Robison and X. Shen, Covering convex sets with non-overlapping polygons, Discrete Math. 81 (1990), 153-164.
[3] K. Kedem, R. Livne, J. Pach and M. Sharir, On the union of Jordan regions and collisionfree translational motion amidst polygonal obstacles, Discrete Comput. Geom. 1 (1986), 59-71.

