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Abstract
Some of the first routing algorithms for geographically

aware wireless networks used the Delaunay triangulation

among the network’s nodes as the underlying connectivity

graph [4]. These solutions were considered impractical,

however, because in general the Delaunay triangulation

may contain arbitrarily long edges, and because calculat-

ing the Delaunay triangulation generally requires a global

view of the network. Many other algorithms were then

suggested for geometric routing, often assuming random

placement of network nodes for analysis or simulation [30,

5, 31, 16]. We show that, when the nodes are uniformly

placed in the unit disk, the Delaunay triangulation does

not contain long edges, it is easy to compute locally and it

is in many ways optimal for geometric routing and flood-

ing.

In particular, we prove that, with high probability, the
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maximal length of an edge in Del(P ), the Delaunay tri-

angulation of a set P of n nodes uniformly placed in the

unit disk, is O( 3

√

log n
n

), and that the expected sum of

squares of all the edges in Del(P ) is O(1). These geo-

metric results imply that for wireless networks, randomly

distributed in a unit disk (1) computing the Delaunay

triangulation locally is asymptotically easy; (2) simple

“face routing” through the Delaunay triangulation opti-

mizes, up to poly-logarithmic factors, the energy load on

the nodes, and (3) flooding the network, an operation

quite common in sensor nets, is with high probability op-

timal up to a constant factor. The last property is partic-

ularly important for geocasting [20] because the Delaunay

triangulation is known to be a spanner [12].

1. Introduction

We consider energetically efficient geometric routing and

flooding in position-aware wireless networks and, in par-

ticular, in sensor networks. Such networks are typically

created among a large number of stationary nodes, ran-

domly placed in some bounded geographic region, that

communicate by radio transmission. Usually it is assumed

that there is no centralized fixed infrastructure that di-

rectly communicates with each node. Instead, nodes that

are within each other’s radio range may communicate di-

rectly, while those that are far apart use intermediate

nodes to relay messages.

Wireless sensor nets were suggested for applications

ranging from disaster recovery and surveillance [13] to

the exploration of Mars [10]. In many cases, thousands



of nodes are expected to interconnect while deployed in

a hostile inaccessible environment. Thus, while such net-

works share some of the aspects of classical radio net-

works (geographical positioning, for example), they have

also created some unique challenges. Sensors are usu-

ally required to be small, light and cheap, which means

that power management is particularly important [1, 13].

While there may be many parameters which affect the

power consumption in each node, it is common to assume

that message transmission is the dominating factor. An-

other property unique to sensor networks is that in many

cases sensors cannot have a dedicated identity. Instead,

the locally sensed properties of each node are used as its

identifier, making network floods (the propagation of a

message by sending it over all the links in the network)

far more common 1 [18, 19, 15].

Several architectures have been proposed for construct-

ing efficient sensor networks [19, 34, 21]. A notable dif-

ference between these architectures and existing wireless

architectures is that they strive to keep the network as

homogeneous as possible. That is, global or local master

nodes are not allowed. Instead, workload is distributed

as evenly as possible among all the nodes. Even architec-

tures which do cluster nodes [19] change the cluster-heads

from time to time to amortize the load.

Homogeneity is a crucial property for network robust-

ness. A robust sensor network is expected to work even if

a constant fraction of the sensor-nodes fail. Thus, while

we consider conventional measures of efficiency, such as

the time until the first node fails [30, 8, 7] we also pro-

pose a new measure, the half life of a network, defined

to be the number of communication rounds (routing or

flooding) it takes until more than half of the nodes con-

sume all their available energy and fail. As is the case

in many homogeneous systems, the half life is equal, up

to poly-logarithmic factors, to the time it takes for any

constant fraction of nodes to fail. This is opposed to the

time it takes for the first node to fail, or for the last node

to fail, which may be significantly different. We use this

measure to evaluate the cost of flooding and routing over

the edges of the Delaunay triangulation, showing them

to be asymptotically optimal in randomly placed sensor

nets.

Several earlier studies of geometric routing have pro-

posed the use of the Delaunay triangulation as an efficient

routing graph among the network’s nodes [4, 27]. These

results, however, were considered impractical, because in

general the Delaunay triangulation may contain arbitrar-

ily long edges and because constructing the triangulation,

even locally near a point, might require a global view of

1In practice, floods are usually limited to some portion
of the network domain, typically restricted to a specific
subregion. However, since these constraints are not re-
lated to the number of deployed nodes, floods may span
a constant fraction of the network.

the entire point set. An extensive amount of research was

then done to overcome thses shortcomings, while keeping

the routing efficient [6, 7, 30, 37, 19, 7, 16, 28, 31, 23, 22,

39, 5, 25]. Various algorithms were suggested, including

for the case where the nodes are uniformly distributed

in some fixed region. We show that, under such an as-

sumption, the original suggestions of [4] do indeed lead to

efficient algorithms, at least when the nodes are randomly

placed in a fixed disk. Furthermore, while we leave the

analysis of random node placement in the unit square,

or in other simple regions, as open, it follows from our

analysis that, for a uniform distribution, the boundary

effects of the Delaunay triangulation, which make edges

near the boundary longer than “inner edges”, involve, for

most simple regions, an asymptotically diminishing num-

ber of nodes that lie very close to the boundary. This

might suggest that it is more advantangeous to place the

nodes according to a distribution that has larger density

near the boundary (see [16] for example).

Given an instance, P , of n random points uniformly

chosen from the unit disk, denote by Del(P ) the Delaunay

triangulation of P , and by tu the distance of node u from

the boundary of the unit disk (that is, tu = 1−‖u‖). We

show that

Theorem 1. Depending on the distances of the end-

points u, v from the boundary, the maximum length of a

Delaunay edge uv is, with high probability,


























O

(

3

√

log n
n

)

tu + tv ≤
(

log n
n

)2/3

O
(

1
tu+tv

· log n
n

)

(

log n
n

)2/3 ≤ tu + tv ≤
(

log n
n

)1/2

O

(

√

log n
n

)

(

log n
n

)1/2 ≤ tu + tv.

An interesting outcome of this theorem is that, with

high probability, the number of nodes in the convex hull

of P must be Θ( 3

√

n
log n

).

We also show that

Theorem 2. The expected value of the sum of the squared

lengths of the edges of Del(P ) is Θ(1).

Some implications of these results are straightforward.

For example, since there are no long edges, one can expect

the computation of the triangulation to be local. We say

that the triangulation Del(P ) is r-local if every edge in

Del(P ) is contained in some disk of radius smaller than

r that does not contain any other point in P . We show

that

Theorem 3. Del(P ) is an O

(

3

√

log n
n

)

-local triangu-

lation, with very high probability.

However, showing that routing and flooding over the

Delaunay edges are energetically efficient requires some

assumptions on the communication patterns. We con-

sider two homogeneous communication patterns: a ran-

dom point-to-point communication process which models

communication among nodes as a random process where



in each step two random nodes are chosen to communi-

cate, and an iterated flooding process which models re-

peated floods as a process where at each time step one

message is propagated to the entire network by being sent

over each link in the system. We then show that

Theorem 4. The half life of the iterated flooding pro-

cess over Del(P ) is Θ(n).

Noting that the upper bound in this case follows from

the well known bounds for the Euclidean minimum span-

ning tree [17, 26], which is contained in the Delaunay

triangulation. We also show that

Theorem 5. The time until the first node fails and

the half life of a system executing a random point-to-

point communication process, when routing over Delaunay

edges, is, with high probability, Ω(( n
log n

)1.5).

Here we assume a routing algorithm that sends a mes-

sage from node u to node v along a path that lies on the

union of the boundaries of all Delaunay faces crossed by

the segment uv; see, e.g., [24]. We refer to such a routing

strategy as face routing.

We also derive upper bounds for the network’s half life,

when it executes a random point-to-point communication

process, where the bounds are independent of the routing

method and the underlying routing graph. Using machin-

ery from precolation theory, we show that

Theorem 6. The half life of any system executing a

random point-to-point communication process, using any

routing strategy on any routing graph, is O(n1.5 log n),

with high probability.

Thus, we prove that, up to a polylogarithmic factor,

face routing over the Delaunay edges is asymptotically

optimal for point-to-point communication.

Related work: The properties of the random Poisson–

Delaunay tessellations have been extensively studied (for

a background on this subject we refer the reader to [33]).

For example, in [3] the expected maximum degree of the

random Poisson–Delaunay tessellations is shown to be

O( log n
log log n

), while in [35] the expected maximum edge

length is studied, showing in particular that the expected

maximum edge length in the unit disk is Ω(
√

log n
n

). We

extend this analysis by providing upper bounds on the

edge lengths in the unit disk, which depend on the dis-

tances of their endpoints from the boundary. We also

show how these results are applied to the problem of ge-

ometric routing in wireless networks.

Geometrical routing was originally described in [4, 27].

Exploring several possibilities, it was shown in [4] that,

when the Delaunay triangulation of the given nodes is

used as the connectivity graph, a simple greedy algorithm

can be effectively used. Later works, however, suggested

using other connectivity graphs, because the Delaunay

triangulation is hard to compute distributively and be-

cause it may contain very long edges. The Gabriel graph

was suggested in [25], and the intersection of the unit

disk graph with the Gabriel graph was suggested in [5].

The routing algorithms used in both papers are variants

of the face routing algorithm presented in [27], where,

as described above, messages from node u to node v are

routed over edges of faces intersected by the segment uv.

The same routing mechanisms were used in [16] over a

restricted Delaunay graph, which does not contain long

edges, achieving better spanning properties. Increasingly

more sophisticated mechanisms were then devised to im-

prove the cost of sending a message in the distance, link

or energy cost models [29, 30, 28]. For example, in [28]

a combination of greedy routing and face routing is used

over the Gabriel graph edges of the Clustered Backbone

graph, which is a bounded degree unit graph that con-

nects a dominating set of the original graph. Our results

imply that, for randomly placed nodes (in the unit disk),

such sophisticated mechanisms are not required. Further-

more, all these studies evaluate their algorithms in terms

of the load per message and not in terms of the load per

node, a property that defines the lifetime of the network

and that can be very different [36]. We analyze the half-

life of a network that uses face routing over the Delaunay

triangulation, showing it to be asymptotically optimal.

The problem of minimum energy routing in general

wireless networks has been considered as early as in [2,

11, 14]. The approach in these early works was to mini-

mize the total energy necessary to reach the destination,

or, more precisely, to minimize the energy consumed per

unit flow or per packet. Probably the first attempt to

define and analyze the lifetime of the network as the time

until the first node runs out of energy, was in [37]. Fur-

ther studies [6, 7, 39, 31, 23, 22, 36] used this measure to

create and analyze new energy conserving techniques for

wireless routing. We suggest, however, that a better mea-

sure for the network lifetime is the time until more than

half of the network’s nodes run out of energy. This mea-

sure represents (up to polylogarithmic factors) the time

until any constant fraction of the nodes fail, which can be

very different from the time until the first node fails.

Finally, we remark that while efficient flooding and geo-

casting were considered before [5, 38], we are not aware of

any work that analyzes their effect on the network’s life

expectancy.

2. Model
Let P = {p1, . . . , pn} be a set of n points, each cho-

sen independently from the uniform distribution over the

unit disk D in the plane, and define the cost over pi of a

message transmission from pi to pj to be O(‖pi − pj‖2).

As we are interested in the effects of repeated communi-

cation steps on the entire network, we define the half life

of the network to be the first time when more than half

of the points consume more than one unit of energy each.

Let G = (P, E) be a graph defined on P . A routing

strategy is a function which maps each pair of points in

P to a simple path that connects them. More formally,



Definition 2.1. An (n-)routing strategy is a measur-

able function R : D
n×{1, . . . , n}2 → ⋃∞

l=1{1, . . . , n}l such

that for any n points v1, . . . , vn in D and any i and j, the

value {k1, k2, k3, . . . , kl} := R(v1, . . . , vn, i, j) encodes a

simple path {vk1 , . . . , vkl} from vi to vj.

Denote by Del(P ) the Delaunay triangulation [9] of P

and by sij the line segment that connects points pi, pj . We

regard the edges of Del(P ) as forming a (planar) graph

on P , which we also denote by Del(P ).

Definition 2.2. A Delaunay face routing strategy, F ,

over the graph G = Del(P ), is a routing strategy R such

that for every two points i, j, every edge in the path F(v1, . . . , vn, i, j)

belongs to a face of Del(P ) that intersects sij.

pi

pj

Figure 1: The Delaunay face routing strategy as-

signs to any two points pi, pj a connecting path of

Delaunay edges that bound faces crossed by the

line segment pipj.

We note that, as defined here, there may be many in-

stances of face routing strategies over the Delaunay graph,

all of which are captured by our analysis. A specific in-

stance of such a strategy, which follows [24], is presented

in Figure 1 where all the edges of F(i, j), with the excep-

tion of the first and the last edges, are crossed by sij .

3. Properties of the Random Delaunay Tri-
angulation

In this section we establish two properties of the De-

launay triangulation of a set of random points in the unit

disk, involving the maximum length of Delaunay edges

and the expected sum of squares of edge lengths.

We use the following properties of the Delaunay trian-

gulation, which can be found in [9] (pages 187–188)

Theorem 3.1. The Delaunay graph of planar point set

is a plane graph.

Theorem 3.2. Let P be a set of points in the plane.

1. Three points pi, pj , pk ∈ P are vertices of the same

face of the Delaunay graph of P if and only if the

circle through pi, pj , pk contains no point of P in its

interior.

2. Two points pi and pj are connected by an edge in

the Delaunay graph, if and only if there is a closed

disk C that contains pi and pj on its boundary and

does not contain any other point of P .

K(u, v)

v

u

D(u, v)

DD

Figure 2: The region K(u, v), and an empty De-

launay disk D passing through u and v.

Let B∗(u, v) be the event that, for given values p1 = u,

p2 = v, the points p3, . . . , pn are chosen so that uv is a

Delaunay edge. Thus,

Pr[B∗(u, v)] =

∫

B∗(u,v)

dp3dp4 · · · dpn.

We can upper bound this integral as follows; see Fig-

ure 2. Let D(u, v) denote the diametral disk of u, v. Con-

sider the intersection K(u, v) = D ∩ D(u, v), and split it

into two regions by the segment uv (which clearly is fully

contained in K(u, v)). Denote these regions as K1(u, v),

K2(u, v). Let A(u, v) be the area of the smaller of the

two regions normalized so that the area of the entire disk

is 1. If D(u, v) ⊆ D then we have A(u, v) = ‖u − v‖2/8;

otherwise A(u, v) is smaller.

If uv is a Delaunay edge then there exists a disk D

passing through u and v and containing no other point of

P in its interior. Clearly, D fully contains either K1(u, v)

or K2(u, v), and both of these sets are contained in D.

Hence, a necessary condition that uv be a Delaunay edge

is that either K1(u, v) or K2(u, v) does not contain any

point of P . Hence, the probability of B∗(u, v) (i.e., the

value of the inner integral) is at most 2(1 − A(u, v))n−2.

Lemma 3.3. For 0 ≤ ‖v‖, ‖u‖, we have

A(u, v) ≥

a min

{

‖u − v‖2, ‖u − v‖
(

1 − ‖u‖ + 1 − ‖v‖ + ‖u − v‖2

)}

,

for some absolute constant a > 0.

Proof: Put d = ‖u−v‖, tu = 1−‖u‖ and tv = 1−‖v‖. Let

c(u, v) be the center of D(u, v) (i.e., the midpoint of uv),

let w ∈ ∂D be the endpoint of the radius through c(u, v)



and e be the distance of c(u, v) from w; see Figure 3. Now

if e is ≥ d/2 then K(u, v) = D(u, v) and A(u, v) = d2/8.

A similar lower bound of Ω(d2), with a smaller constant of

proportionality, holds when e ≥ d/4. Otherwise, A(u, v)

is at least the area of ∆uvw. The height of triangle ∆uvw

subtended from w is at least proportional to e. This fol-

lows from the fact that, since e < d/4, the angle between

Ow and uv must be strictly larger than 60◦, as is easily

checked. Using the cosine rule in triangles ∆Ouc(u, v)

and ∆Ovc(u, v) we have

(1 − tu)2 =
d2

4
+ (1 − e)2 − d2

2
(1 − e) cos(θ)

(1 − tv)2 =
d2

4
+ (1 − e)2 +

d2

2
(1 − e) cos(θ)

and thus

e = 1 − 1

2

√

(1 − tu)2 + (1 − tv)2 − d2

2
≥ b(tu + tv + d2),

for an appropriate absolute constant b > 0 (b = 1/9

will do, as is easily checked). It follows that in this case

A(u, v) = Ω(d(tu + tv + d2)), as asserted. 2

tv

O

D(u, v)

tu

u

v

we

c(u, v)

d/2

D

Figure 3: The lower bound on A(u, v) when e < d/4.

We continue to use the shorthand notations tu = 1 −
‖u‖, tv = 1 − ‖v‖, d = ‖u − v‖. Put

M(u, v) =

min {‖u − v‖2, ‖u − v‖(1 − ‖u‖ + 1 − ‖v‖ + ‖u − v‖2} =

min {d2, d(tu + tv) + d3} (1)

Lemma 3.3 and the preceding discussion thus imply:

Corollary 3.4.

Pr[B∗(u, v)] ≤ 2(1 − aM(u, v))n−2,

where a > 0 is an absolute constant.

3.1 Length of Longest Edge

Theorem 3.5. With very high probability, the length

of the longest Delaunay edge in D is O

(

3

√

log n
n

)

.

Proof: Since tu+tv ≥ 0, we have M(u, v) ≥ min{d2, d3} ≥
d3/2 (since d ≤ 2). Hence, for a fixed pair of points p1, p2,

Pr

[

‖p1p2‖ ≥ c
3

√

log n

n
and p1p2 is a Delaunay edge

]

=

∫

(u,v)∈D2

‖u−v‖≥c
3
√

log n
n

Pr [B∗(u, v)] dudv ≤

∫

(u,v)∈D2

‖u−v‖≥c
3
√

log n
n

2 (1 − aM(u, v))n−2 dudv ≤

2

(

1 − ac
log n

2n

)n−2

< 2e−
ac(n−2) log n

2n = 2
1

n
ac(n−2)

2n

≤ 1

nac/4
,

as n → ∞. The probability that at least one pair of points

induces a long Deluanay edge is thus at most
(

n

2

)

· 1

nac/4
≤ 1

nac/4−2
.

The assertion now follows if we choose c to be a sufficiently

large constant. 2

Theorem 3.6. With very high probability, the length of

the longest Delaunay edge uv such that tu + tv ≥
√

log n
n

is O

(

√

log n
n

)

.

Proof: Assume that d ≥ c
√

log n
n

, for some c > 1, and

that tu + tv ≥
√

log n
n

. Then

M(u, v) = min(d2, d(tu + t + v) + d3) ≥ c
log n

n
.

Hence, for a fixed pair p1, p2,

Pr

[

‖p1p2‖ ≥ c

√

log n

n
and max{‖p1‖, ‖p2‖} ≤ 1−

√

log n

n

and p1p2 is a Delaunay edge

]

≤

2Pr

[

‖p1p2‖ ≥ c

√

log n

n
and ‖p2‖ ≤ ‖p1‖ ≤ 1 −

√

log n

n

and p1p2 is a Delaunay edge

]

=

2

∫

(u,v)∈D2

‖u−v‖≥c

√

log n
n

, ‖v‖≤‖u‖≤1−

√

log n
n

Pr [B∗(u, v)] dudv ≤

4

∫

(u,v)∈D2

‖u−v‖≥c

√

log n
n

, ‖v‖≤‖u‖≤1−

√

log n
n

(1 − aM(u, v))n−2 dudv ≤

4

(

1 − ac
log n

n

)n−2

≤ 1

nac/4
,



as n → ∞, as above. The probability that at least one

pair of points falls in the above range and induces a long

Deluanay edge is thus at most
(

n

2

)

· 1

nac/4
≤ 1

nac/4−2
.

The assertion now follows if we choose c to be a sufficiently

large constant. 2

Using the same machinery, one can obtain the following

extension of both Theorems 3.5 and 3.6.

Theorem 3.7. Depending on the distances of the end-

points u, v from the boundary, the maximum length of a

Delaunay edge uv is, with high probability,


























O

(

3

√

log n
n

)

tu + tv ≤
(

log n
n

)2/3

O
(

1
tu+tv

· log n
n

)

(

log n
n

)2/3 ≤ tu + tv ≤
(

log n
n

)1/2

O

(

√

log n
n

)

(

log n
n

)1/2 ≤ tu + tv.

3.2 Expected Sum of Power of Edges’ Lengths
Theorem 3.8. The expected value of the sum of the

squared lengths of the edges in Del(P ) is Θ(1).

Proof: Since the Euclidean minimum spanning tree is

a subgraph of the Delaunay triangulation, it follows e.g.

from [17, 26] that the expected value is Ω(1). To prove

that it is also O(1), fix a pair of distinct points u, v ∈ P ,

say u = pi and v = pj . The contribution of the pair u, v

to the desired expectation is

E(u, v) =

∫

Bij

‖u − v‖2dp1dp2 · · · dpn,

where Bij is the event that pipj is a Delaunay edge in

Del(P ).

We can rewrite this integral as follows. First assume,

without loss of generality, that u = p1 and v = p2. Then

E(u, v) =

∫

‖u − v‖2

(

∫

B∗(u,v)

dp3dp4 · · · dpn

)

dudv,

Using Corollary 3.4, we have

E(u, v) ≤ 2

∫

D2

‖u − v‖2(1 − aM(u, v))n−2dudv,

where the integration is normalized so that Area(D) = 1.

Since M(u, v) is symmetric in u and v, we can rewrite this

as

E(u, v) ≤

4

∫

‖u‖≤1

(

∫

‖v‖≤‖u‖
‖u − v‖2(1 − aM(u, v))n−2dv

)

du.

(2)

Lemma 3.9. Define, for any fixed x ≤ 1,

S(x) = {(u, v) ∈ D
2 | ‖v‖ ≤ ‖u‖, M(u, v) ≤ x}.

Then
∫

S(x)

‖u − v‖2dudv = O(x2).

Proof: Consider the partition S(x) = S1(x) ∪ S2(x) ∪
S3(x), where

S1(x) = S(x) ∩ {d < tu}
S2(x) = S(x) ∩ {d2 < tu ≤ d}
S3(x) = S(x) ∩ {tu ≤ d2}.

We estimate separately each of the subintegrals
∫

Sj(x)
‖u − v‖2dudv, for j = 1, 2, 3.

Integration over S1(x): Here we have d(tu + tv)+ d3 ≥
d2 + d3 > d2, so M(u, v) = d2. Since M(u, v) ≤ x, we

have ‖u − v‖ ≤ x1/2 over S1(x), and so

∫

S1(x)

‖u − v‖2dudv ≤ x

∫

S1(x)

dudv ≤

x

∫

‖u‖≤1

(

∫

‖v−u‖≤x1/2

dv

)

du = O(x2).

(The inner integral is at most the normalized area of a

disk of radius x1/2, which is x.)

Integration over S3(x): Here d(tu + tv) + d3 ≥ d3, so,

arguing as above, M(u, v) ≥ d3/2, which implies that

d = ‖u − v‖ ≤ (2x)1/3, and 1 − ‖u‖ = tu ≤ d2 ≤ (2x)2/3.

Hence

∫

S3(x)

‖u − v‖2dudv ≤

(2x)2/3

∫

S3(x)

dudv ≤

(2x)2/3

∫

1−(2x)2/3≤‖u‖≤1

(

∫

‖v−u‖≤(2x)1/3

dv

)

du =

O(x4/3) ·
∫

1−(2x)2/3≤‖u‖≤1

du =

O(x4/3) · O(x2/3) = O(x2),

since the final integral is the normalized area of the an-

nulus 1 − (2x)2/3 ≤ ‖u‖ ≤ 1, which is O(x2/3).

Integration over S2(x): Here d(tu + tv) + d3 ≥ dtu and

d2 ≥ dtu, so M(u, v) ≥ dtu, and thus d ≤ x/tu. On

the other hand, d ≤ t
1/2
u . Moreover, x ≥ dtu ≥ t2u, so

tu ≤ x1/2. That is, we have

‖v−u‖ = d ≤ min

{

x

tu
, t1/2

u

}

=

{

x
tu

x2/3 ≤ tu ≤ x1/2,

t
1/2
u tu ≤ x2/3.



We thus have

∫

S2(x)

‖u − v‖2dudv ≤

∫

0≤1−‖u‖≤x2/3

(

∫

‖v−u‖≤(1−‖u‖)1/2

‖v − u‖2dv

)

du

+

∫

x2/3≤1−‖u‖≤x1/2

(

∫

‖v−u‖≤ x
1−‖u‖

‖v − u‖2dv

)

du ≤

∫

0≤1−‖u‖≤x2/3

(1−‖u‖)2du+

∫

x2/3≤1−‖u‖≤x1/2

x4

(1 − ‖u‖)4 du ≤

x4/3

∫

0≤1−‖u‖≤x2/3

du+x4

∫

x2/3≤1−‖u‖≤x1/2

du

(1 − ‖u‖)4 .

As in the case of integration over S3(x), the first integral is

O(x2). The second integral, in polar coordinates, becomes

x4

∫ 1−x2/3

1−x1/2

rdr

(1 − r)4
= x4

∫ x1/2

x2/3

(1 − z)dz

z4
=

x4

[

1

2z2
− 1

3z3

]z=x1/2

z=x2/3

=

x4

[

1

2x
− 1

2x4/3
− 1

3x3/2
+

1

3x2

]

= O(x2).

This completes the proof of the lemma. 2

Returning to the estimation of (2), we have

E(u, v) ≤

4

∫

‖u‖≤1, ‖v‖≤‖u‖
‖u − v‖2(1 − aM(u, v))n−2dudv =

4

(

n
∑

k=1

∫

S(k/n)\S((k−1)/n)

+

∫

‖v‖≤‖u‖, (u,v)/∈S(1)

)

‖u − v‖2(1 − aM(u, v))n−2dudv ≤

4
n
∑

k=1

(

1 − a(k − 1)

n

)n−2

∫

S(k/n)

‖u − v‖2dudv + 4

∫

D×D

(1 − a)n−2dudv =

O

(

n
∑

k=1

e−ak

(

k

n

)2

+ (1 − a)n

)

= O

(

1

n2

)

.

That is, we have thus shown that

E(u, v) = O

(

1

n2

)

,

for every pair u, v ∈ P . Hence, the expected sum of the

squared lengths of the Delaunay edges is
∑

u,v E(u, v) =

O(1). This completes the proof of Theorem 3.8. 2

4. Applications of the Geometric Bounds
The preceding geometric bounds have immediate im-

plications for the analysis of the performance of random

wireless networks.

We use the following terminology in the next theorem.

For every edge e in the Delaunay triangulation there is

a disk D(e) that contains the edge e and no other point

in P . If the area of D(e) ∩ D is less than πr2 we say

that the edge e is an r-local edge. If all the edges in

the Delaunay triangulation are r-local we say that the

Delaunay triangulation is an r-local triangulation.

Theorem 4.1. With very high probability the Delau-

nay triangulation over P is an O

(

3

√

log n
n

)

-local trian-

gulation.

Proof: An immediate consequence of Theorem 3.5. 2

Thus, with high probability, any pair of points whose

distance is larger than O

(

3

√

log n
n

)

, do not form a Delau-

nay edge, and for any pair of points u, v within that dis-

tance, only a small neighborhood of uv need be tested to

determine whether uv is a Delaunay edge. This suggests

an efficient local and distributed mechanism for construct-

ing the Delaunay triangulation, as the network is set in

operation.

Theorem 4.2. The half life of the iterated flooding pro-

cess over Del(P ) is Θ(n).

Proof: It follows from Theorem 3.8 that there exists some

constant c, such that with high probability, the total en-

ergy used for n floods, is cn. Since this cost is divided

among the n nodes, there must be n
2

nodes which ex-

pend at most 2c energy units each during the n floods.

Therefore, it follows that the number of floods that can

be executed until more than half of the nodes fail is Θ(n).

2

Theorem 4.2 implies that using the Delaunay edges to

flood information should be feasible in random graphs.

4.1 Load of the Random PtP Process
Analyzing the load of the random point-to-point com-

munication process, however, requires a more elaborate

analysis.

For a given set P = {pi} of n random points in D, let

(s1, d1), . . . , (sk, dk) be k source-destination pairs, where

sj 6= dj , for j = 1, . . . , k, are randomly chosen points of

P . For any node pi, routing strategy R, and any pair

(sj , dj), there are at most two edges in the path R(sj , dj)

that are incident to pi. Let ej
i (R) be the longest edge of

R(sj , dj) that is incident to pi (if pi is not on R(sj , dj)

then ej
i (R) = 0).

Let {Xj
i (R)}, 1 ≤ i ≤ n, 1 ≤ j ≤ k be a set of random

variables defined as Xj
i (R) = ‖ej

i (R)‖2. Variable Xj
i rep-

resents the distribution of energy consumption on node

pi by the communication between sj and dj with routing

strategy R.

Lemma 4.3. Let C be a disk of radius l fully contained

in the unit disk D. Let p1, p2 be two randomly chosen

points in D. Then the probability that the segment p1p2

intersects C is at most 10l.
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Figure 4: For B′
l to occur, p2 has to lie in the

shaded region, which is always contained in the

triangle ∆p1AC.

Proof: Denote by s the segment connecting p1, p2 and by

Bl the event that s intersects C. Denote by r the distance

of p1 from the center, OC, of C; see Figure 4.

Assume that r > 2l. Let B′
l denote the event that Bl

occurs and ‖p1OC‖ > 2l. Having chosen p1 (at distance

larger than 2l from OC), B′
l occurs if p2 is chosen in the

“shadow” C(p1) of C cast within D by p1. More precisely,

C(p1) is the portion of the wedge W formed by the two

rays that emerge from p1 and are tangent to C, consisting

of all points that lie in D and are hidden from p1 by ∂C.

Let ∆p1AC denote the isosceles triangle whose apex is

p1, whose sides lie on the tangent rays from p1 to C, and

whose height p1B is 2. It is easily verified that C(p1) is

fully contained in ∆p1AC. It follows that

Pr[B′
l] =

∫

‖p1OC‖≥2l

Area(C(p1))dp1 ≤
∫

‖p1OC‖≥2l

Area(∆p1AC)dp1.

We rewrite the integral using polar coordinates about OC.

Recalling that we use normalized areas, the integral is at

most

Pr[B′
l] ≤ 2

∫ 2

2l

Area(∆p1AC)rdr. (3)

We estimate the area of ∆p1AC as follows. Denote by h

its half-base. Since the height from p1 is 2, we have

h√
h2 + 4

=
l

r
,

or

h2 + 4

h2
=

r2

l2
,

or h = 2l√
r2−l2

, and since l < r/2, we have h ≤ 4l√
3r

. Thus

the (normalized) area of ∆p1AC is 2h
π

≤ 8l

π
√

3r
. Substi-

tuting this in (3), we obtain

Pr[B′
l] ≤

16l

π
√

3

∫ 2

2l

dr <
32l

π
√

3
< 6l,

and since the probability that r ≤ 2l is 4l2 < 4l we are

done. 2
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4
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e
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Figure 5: The rectangle ABB′A′ is the boundary

box Bl defined for the circular cap Sl.

Let Sl be a circular cap, bounded by a straight segment

e of length l and arc γ of ∂D, and for simplicity, assume

that l ≤ 1 and that Sl is the smaller of the circular caps

defined by e. Denote by a and b the two endpoints of e, by

c(a, b) the midpoint of e and by h the distance from c(a, b)

to γ. As can be easily checked, 1
8
l2 ≤ h ≤ l2. Let A, B be

two points on e such that ‖A− c(a, b)‖ = ‖B − c(a, b)‖ =
1
2
l4/3, where A, B are in opposite directions from c(a, b).

The boundary box of Sl, denoted Bl, is defined to be the

rectangle ABB′A′ formed by subtending two parallel and

equal line segments from A and B towards γ that are

perpendicular to e and equal in length to h; see Figure 5.

Bl

a′

a

A′

p1

A

D

O

u

2l
4
3

e′

b

b′

Figure 6: For B′
l to occur, point p2 must lie in

the shaded region, which is fully contained in the

circular cap defined by a′b′.

Lemma 4.4. Let Bl be the boundary box of the circular

cap Sl and let p1, p2 be two randomly chosen points in D.

Then the probability that the segment p1p2 intersects Bl

is at most 131l10/3.

Proof: Denote by s the segment connecting p1, p2 and

by Bl the event that s intersects Bl.

Assume first that both points are in Sl. Since Area(Sl) ≤
lh ≤ l3 the probability that both points are in Sl is less

than l6 < l10/3. Next, assume that at least one point, say

p1, is inside Sl but that the distance from p1 to the center

of Bl is at most l4/3. I.e, point p1 is within the rectangle

that is twice the size of Bl and contains Bl (marked by

dotted lines in Figure 6. As can be easily verified, the

probability for this event is ≤ 2l2l4/3 = 2l10/3.



Finally, assume that one point, say p1, is in Sl yet at

distance bigger than l4/3 from the center of Bl while the

other point is outside Sl and denote by B′
l the intersection

of this event and event Bl, i.e., that s intersects Bl. Event

B′
l occurs if p2 is chosen in the “shadow”, Bl(p1), of Bl

cast by p1 within D \ Sl. In other words, Bl(p1) is the

portion of D \ Sl that is cut out by a ray that emerge

from p1 and is tangent to Bl, consisting of all the points

in D \ Sl that are hidden from p1 by ∂Bl; see Figure 6.

Since Bl divides Sl into two equal parts we have

Pr[B′
l] = 2Pr[B′

l|A is the tangent point].

Assume that p1 is chosen so that the tangent point is

A. Let Sp1 be the circular cap of D whose bounding

straight edge, e′, passes through p1 and A, and denote

by a′ and b′ its endpoints on ∂D. Notice that Bl(p1) (the

shaded area in Figure 6) is contained in Sp1 . Consider

now the triangle ∆a′b′b and denote α := ∠ba′b′. First,

notice that ‖a′b‖ ≤ ‖ab‖ = l. Now, since the distance of

a′ from AA′ is at least 1
2
l4/3, α ≤ arctan( 1

2
l2/3) ≤ l2/3.

But that means that the arc bb′ must be subtended by a

central angle of size 2α and thus, for a disk D of size 1,

‖bb′‖ < 2√
π
α ≤ 2l2/3. Using the triangular inequality in

triangle ∆a′b′b it follows that ‖e′‖ ≤ ‖a′b‖+‖bb′‖ ≤ 4l2/3.

Pr[B′
l] ≤ 2

∫

p1∈Sl

∫

p2∈S(p1)

dp2dp1 ≤

2‖e′‖3

∫

p1∈Sl

dp1 ≤ 128l5 ≤ 128l10/3.

2

For a point p near the boundary of D, a boundary box

can be used as an estimation of the union of Delaunay

triangles incident to a p.

Definition 4.5. A circular cap Sl is said to be sym-

metric around point u if (1) u is contained in Sl and

(2) the radius that passes through point u crosses e at its

midpoint, c.

Lemma 4.6. Let u be a point in D such that tu = 1 −
‖u‖ <

√

log n
n

. Then for some constant c > 1 and n suf-

ficiently large there exists a circular cap Sl, l = c 4

√

log n
n

such that Sl is symmetric around u and with high probabil-

ity all the Delaunay triangles incident to u are contained

in the boundary box of Sl.

Proof: Since for any such Sl, h ≥ l2

8
= c2

8

√

log n
n

, it

is possible to choose such a circular cap that contains u,

where Ou crosses e at its midpoint, so the first part is

correct; see Figure 5. To prove the second part of the

lemma divide D into three nonequal parts, L, M, R by

two lines that extend the two short sides of Bl, AA′ and

BB′, and further divide M into two equal parts, M1 and

M2, by a line that passes through O and is parallel to

AB and where M1 contains u; see Figure 7. First, we

note that the length of any Delaunay edge uv such that

v ∈ M2 would be constant and hence by Theorem 3.7

the probability of such an event is 0. Otherwise, assume

that there is some Delaunay edge uv such that v is either

in L or in R. since Bl is symmetric around u it must

be that ‖u − v‖ > 1
2
c 3

√

log n
n

and, from Theorem 3.7 the

probability for this event is again negligible. Thus, we

only have to consider the case where v is in M1.

Noting that for all points in M1, tA = tB is minimal we

can conclude from the Pythagorean Theorem on triangle

∆OAc (Figure 5) that

tA ≥ t2A
2
− c4

128

log n

n
+

c

2

√

log n

n
− c8/3

2

(

log n

n

)2/3

>
c

3

√

log n

n

for large enough n. Thus, for any point v ∈ M1, tu + tv ≥
(

log n
n

)1/2
. Since for all v ∈ M1, ‖u − v‖ ≥ c2

√

log n
n

, it

follows from Theorem 3.7 that we can choose c to be such

that probability for such edges is negligible. 2

M1

M2

Bl

O

D

u

L R

Figure 7: The short sides of the symmetric bound-

ary box Bl around u define a partition of the unit

disk into three, unequal parts. The middle part is

then partitioned into two equal parts.

Lemma 4.7. The load on the most loaded node in P ,

when executing k random point to point communication

steps using face routing over Del(P ), is O
(

k
(

log n
n

)1.5
)

with high probability.

Proof: Let Mk
n(R) be the maximal energy consumption

incurred at any node by all the communication steps:

Mk
n(R) = max

1≤i≤n

(

k
∑

j=1

Xj
i (R)

)

.

Denote by u ∈ P , a node that experiences this load. De-

note by Fu the union of all the Delaunay triangles that

are incident to u. By the definition of face routing, if

the routing path that connects a pair of nodes pi, pj goes

through u then sij = pipj must intersect Fu.

Assume first that tu = 1 − ‖u‖ ≥
√

log n
n

. By Theo-

rem 3.7, with very high probability, all Delaunay edges

incident to u are of length at most O

(

√

log n
n

)

, and

hence with high probability Fu is fully contained in a

disk C of radius O

(

√

log n
n

)

centered at u. It follows

from Lemma 4.3 that the expected number of routing

paths that intersect C is O

(

k
√

log n
n

)

. Hence, using



Markov’s inequality, it also follows that the maximal num-

ber of routing paths intersecting Fu is with high proba-

bility O

(

k
√

log n
n

)

and thus in this case,

Mk
n = O

(

k

(

log n

n

)1.5
)

Otherwise, by Lemma 4.6, Fu is contained in the bound-

ary box of the symmetric circular cap around u, Sl, l =

c 4

√

log n
n

. But from Lemma 4.4 and Theorem 3.7 and by

using the same argument as before it also follows that in

this case

Mk
n = c′2

(

log n

n

)2/3

(57c)10/3

(

log n

n

) 1
4

10
3

k =

O

(

k

(

log n

n

)1.5
)

and the claim holds. 2

Corollary 4.8. The number of steps taken by a sys-

tem executing a random point to point communication

process using Delaunay face routing until the first node

fails is with high probability Ω(( n
log n

)1.5).

Proof: Since the energy consumption of the most loaded

node after k steps is with high probability O(k( log n
n

)1.5),

it is possible to find a constant, c, such that after k =

c( n
log n

)1.5 steps the energy consumption of the most loaded

node would asymptotically be 1.2

The half life of a system is obviously longer than the

time it takes for the first node to fail and hence

Theorem 4.9. The half life of a system executing a

random point to point communication process using De-

launay face routing is with high probability Ω(( n
log n

)1.5).

5. Asymptotic Upper bounds
To show that face routing on the Delaunay triangula-

tion is asymptotically optimal up to poly-logarithmic fac-

tors, we estimate the expected load on a node of k trans-

missions when using any routing strategy. Obviously, the

maximal load is larger than the expected load.

Theorem 5.1. For any routing strategy R on n ran-

dom points in the unit disk D,

E[

k
∑

j=1

Xj
i (R)] = Ω

(

k

n1.5 log n

)

The proof requires some standard tools from continuum

percolation. We refer the reader to [32] for a general in-

troduction to the topic. The first is the λ-Poisson process

Pλ, which is a random process that gives random points

in R
2 (generally in R

d but we are now interested in d = 2)

with density λ. See [32, page 11] for a precise definition.

Lemma 5.2. The number of points Pλ has in the unit

disk is a random variable with the distribution

Pr[#(Pλ ∩ D) = n] = e−λπ (λπ)n

n!
.

This follows immediately from the definition of a Poisson

process. See [32, eq. 1.3].

Lemma 5.3. A Poisson process conditioned to have n

points inside the unit disk has the same distribution as n

independent uniform random points.

This follows from proposition 1.2 in [32]. Notice that it

is true for any λ! We will use this lemma with λ = n/π

and in this case the event we are conditioning on has the

probability nn/(n!en) ≈ n−0.5.

A λ, ρ-Continuum percolation is the process of coloring

by white a disk of radius ρ around every point of the λ-

Poisson process. We get a random set, “the white region”,

which we denote by W (R2). Generally, if A ⊂ R
2 is some

set, we define W (A) as the collection of all connected

components of W (R2) which intersect A. In [32] the radii

may also be random, independent variables, but we will

not need this generalization.

Lemma 5.4. There exists an α > 0 with the following

property: if ρ ≤ αλ−0.5 and if A is a disk of radius λ−0.5

then

Pr[diam(W (A)) > mλ−0.5] ≤ Ce−cm

where C and c are some constants.

This follows theorem 2.4 and 3.2 in [32]. Actually, theo-

rem 2.4 is formulated for A being one point, but the proof

holds for a small disk with no change. It seems that the-

orem 3.4 in [32] is also used, implicitly, in the proof of

theorem 2.4 ibid.

We remark that the supremum of the α’s satisfying this

requirement is called the critical α. However, we will not

need here any of the delicate results concerning this quan-

tity.

Lemma 5.5. Let v1, . . . , vn be n independent, uniform

points in the unit disk D, and for each vi let Vi be the set

of points connectable to vi by paths with edges of length

≤ 2α
√

π/n where α is from lemma 5.4. Then for some

K,

Pr

[

∃i, diam Vi > K
log n√

n

]

≤ C

n
.

Proof: Define λ := n/π and ρ := αλ−0.5 and examine

λ,ρ-Continuum percolation. Lemma 5.4 gives that if K is

sufficiently large then

Pr

[

W (A) > K
log n√

n

]

≤ Ce−cK log n ≤ Cn−2.5

for any disk A with radius λ−0.5. Obviously, we could

have put any exponent instead of the 2.5 by only changing

the value of K. Cover D by disks A1, . . . , Am of radius

λ−0.5 (hence m ≤ Cn) and get that

Pr

[

∃v ∈ D, W ({v}) > K
log n√

n

]

≤
m
∑

i=1

Pr

[

W (Ai) > K
log n√

n

]

≤ Cn−1.5.



Let N be the number of points the λ-Poisson process

defining our Continuum percolation has in the unit disk.

As already remarked (lemma 5.2), Pr[N = n] ≈ n−0.5

and then

Pr

[

∃v ∈ D, W ({v}) > K
log n√

n

∣

∣

∣

∣

N = n

]

≤

Pr
[

∃v ∈ D, W ({v}) > K log n√
n

]

Pr[N = n]
≤ Cn−1.

However, λ, ρ-Continuum percolation conditioned to have

exactly n points inside the unit disk is identical to n in-

dependent uniform random points (lemma 5.3) and Vi is

obviously a subset of the white region created by coloring

disks of radius ρ around every vi. Therefore

Pr

[

∃i, diam Vi > K
log n√

n

]

≤

Pr

[

∃v ∈ D, W ({v}) > K
log n√

n

∣

∣

∣

∣

N = n

]

≤ Cn−1,

and the lemma is proved.2

Proof of Theorem 5.1. Using lemma 5.5 we may as-

sume that diam Vi ≤ K log n√
n

for all i. Let vα and vβ satisfy

||vα−vβ || > 1
2
. There have to be at least

√
n

2K log n
different

Vis on the path R(vα, vβ) hence there have to be at least√
n

2K log n
−1 edges with length > 2α

√

π/n. Since with high

probability there are Ω(k) such source-destination pairs,

the expected energy used for k transmissions is Ω( k√
n log n

)

and so the expected load on a single node is

E[
k
∑

j=1

Xj
i (R)] = Ω(

k

n1.5 log n
)

2

Conjecture 1. The log n factor in theorem 5.1 is not

necessary, that is that the theorem holds with E = Ω( k
n1.5 ).

There is some constant c such that after k = cn1.5 log n

steps there is at least one node pi, such that
∑k

j=1 Xj
i (R) =

1 and therefore the next theorem follows.

Theorem 5.6. The half life of any system executing a

random point to point communication using any routing

strategy is k = O(n1.5 log n) with high probability.

6. Conclusions and Future Research
In this paper, we analyzed the asymptotic behavior of

the Delaunay triangulation of n random points uniformly

distributed in the unit disk, and showed that the length

of the Delaunay edges is bounded by O
(

(

log n
n

)1/3
)

with

high probability, and that the expected sum of squares of

the edge lengths is Θ(1). We used these theoretic results

to show that the Delaunay triangulation is a viable solu-

tion as a connectivity graph for wireless communication

between nodes uniformly placed in the unit disk. As we

showed, the triangulation is easy to compute locally, it is

simple to use as a routing graph and it is energetically

efficient both for routing and flooding.

One obvious direction of future research is to investi-

gate other distribution of the sensors, and in particular

uniform distributions within other kinds of convex pla-

nar regions. We believe that our results hold (with ap-

propriate modifications) for any bounded convex region

whose boundary has everywhere strictly positive curva-

ture. On the other hand, we believe that for the square,

the energy cost of flooding operations on a random De-

launay triangulation diverges logarithmically (this is also

supported by simulations). Another interesting question

is to explore probability measures other than uniform.

We believe our results could be extended to any measure

co-regular (that is, absolutely continuous in both direc-

tions) with the Lebesgue measure on a convex set whose

boundary has strictly positive curvature. It would be nice

to know what happens when the points are normally dis-

tributed, since we expect this distribution to model actual

scenarios when sensors are scattered by airdrop from a sin-

gle point. It is easy to see that there will always be highly

isolated sensors, so the first question is actually what are

the correct requirements from the communication model.

Further research could be done to answer questions such

as the maximal degree or the minimal and maximal an-

gle in the bounded random Delaunay triangulation which

have been solved for the Poisson case and seem still to be

open for the uniform distribution in bounded regions.

Although the focus of this work has been the Delaunay

triangulation, other connectivity graphs were suggested

for wireless networks. For example the intersection of the

unit graph with the Gabriel graph was suggested in [5]

while the restricted Delaunay graph was suggested in [16]

where in both cases the resulting routing graph is guar-

anteed not to have long edges. It would be interesting to

repeat our analysis for these graphs particularly since for

nodes randomly placed in the unit square the Delaunay

triangulation (in particular the convex hull) contains an

edge of constant length with high probability.

Finally, we remark that to simplify the analysis of the

communication processes we assumed that the Delaunay

triangulation is computed only at the beginning of the

process. It makes sense that, as nodes fail, the triangula-

tion should be recomputed, perhaps changing the traffic

patterns. Analyzing the network half-life when the rout-

ing graph is dynamic is an interesting challenge. Also,

our bounds for geometric routing are tight only up to

polylogarithmic factors. Making these bounds tight up to

constant factors is a challenge.
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