Computing the Detour and Spanning Ratio of Paths, Trees and
Cycles in 2D and 3D

Pankaj K. Agarwadl Rolf Klein® Christian Knaueff Stefan Langerman
Pat Morin* Micha Shariff Michael Soss

April 18, 2005

Abstract

The detour and spanning ratio of a graghembedded ifE? measure how weli ap-
proximates Euclidean space and the complete Euclideam gragpectively. In this paper we
describeO(nlogn) time algorithms for computing the detour and spanning rafia planar
polygonal path. By generalizing these algorithms, we @btAin log® n)-time algorithms for
computing the detour or spanning ratio of planar trees amtesy Finally, we develop sub-
quadratic algorithms for computing the detour and spanratig for paths, cycles, and trees
embedded irfE?, and show that computing the detourB# is at least as hard as Hopcroft's
problem.

*This research was partly funded by CRM, FCAR, MITACS, and REEP.A. was supported by NSF under grants
CCR-00-86013 EIA-99-72879, EIA-01-31905, and CCR-024®1by ARO grants W911NF-04-1-0278 and DAAD19-
03-1-0352, and by a grant from the U.S.-Israeli BinationzieSce Foundation. R.K. was supported by DFG grant Kl
655/14-1. M.S. was supported by NSF Grants CCR-97-32101C@H-00-98246, by a grant from the U.S.-Israeli
Binational Science Foundation (jointly with P.A.), by a grdrom the Israeli Academy of Sciences for a Center of
Excellence in Geometric Computing at Tel Aviv Universityydaby the Hermann Minkowski-MINERVA Center for
Geometry at Tel Aviv University.

fSome of these results have appeared in a preliminary forg 2Q].

{Department of Computer Science, Duke University, Durha@,2¥708-0129, U.S.Apankaj @s. duke. edu.

SInstitut fur Informatik 1, Universitat Bonn, Romersfta 164, D-53117 Bonn, Germany,
rol f. kl ei n@ini - bonn. de.

Tinstitut fur Informatik, Freie Universitat Berlin, TaktraBe 9, D-14195 Berlin, Germany,
knauer @ nf . fu-berlin. de.

IChercheur qualifie du FNRS, Département d'Informatidueiversité Libre de Bruxelles, ULB CP212, boulevard
du Triomphe, 1050 Bruxelles] @gm cs. ntgill . ca

**School of Computer Science, Carleton University, 1125 @eldy Drive, Ottawa, Ontario K1S 5B6, Canada,
nori n@s. carl eton. ca.

t*School of Computer Science, Tel Aviv University, Tel Aviv®EB, Israel; and Courant Institute of Mathematical
Sciences, New York University, New York, NY 10012, USA.chas@ au. ac.i | .

HForeign Exchange Strategy Division, Goldman Sachs, New,¥wss@s. ncgi | | . ca

1 Introduction

Suppose we are given an embedded connected graph(V, E) in E?. Specifically,l’ consists of
points inE? and E consists of closed straight line segments whose endpaigis & . For any two
points,p andg in U, e, letda(p, ¢) be the shortest path betwegrandq along the edges df.
Thedetour betweerp andq in G is defined as

da(p,q
6G(paq) = %

where||pq|| denotes the Euclidean distance betweesndq. Thedetour of G is defined as the
maximum detour over all pairs of points ﬁﬂeeE e, i.e.,

§(G) = sup dg(p, q).
PFq

The challenge is in computing the detour quickly. Severaksaof this generic problem have
been studied in the last few years. One variant results festricting the pointg, ¢ in the above
definition to a smaller set. For example, gpanning ratio or stretch factor of G is defined as the
maximum detour over all pairs efrtices of G, i.e.,

o(G) = sup da(p,q).
PF#q
p,q€EV

Such restrictions influence the nature of the problem cenaldy. In this paper we are studying
both, detour and spanning ratio.

The case of7 being a planar polygonal chain is of particular interest élal. [6] proved that
if the detour of two planar curves is at mostthen their Fréchet distance is at mast 1 times
their Hausdorff distance. The Fréchet and Hausdorff desia are two commonly used similarity
measures for geometric shapes [5]. Although the Hausdmsttiice works well for planar regions,
the Fréchet distance is more suitable to measure the siyite two curves [5]. However, the
Fréchet distance is much harder to compute [6]. A relatignbetween the two measures suggests
that one could use the Hausdorff distance when the detoting dvo given curves are bounded and
small. This is the only known condition (apart from convgkitinder which a linear relationship
between the two measures is known.

Analyzing on-line navigation strategies also often inesh\estimating the detour of curves [8,
17]. Sometimes the geometric properties of curves allow irsfeér upper bounds on their detour [4,
18, 24], but these results do not lead to efficient computatiche detour of the curve.

Related work. Recently, researchers have become interested in compgbhendetour and span-
ning ratio of embedded graphs. The spanning ratio of a géagmbedded i£? can be obtained
by computing the shortest paths between all pairs of verti€é&. Similarly, the detour o7 can be
determined by computing the detour between every pair oégelg= (uy,v1) andes = (ug, v2).

Although this seems to involve infinitely many pairs of peirthis problem is of constant size: For
each pair of point$p, q) in e; x ey, thetype of the shortest connecting pafh (p, ¢) is determined
by the two endpoints af; ande, contained in this path. In the 2-dimensional rectangulaampater
space of all positions gf andg one; ande,, classification by type induces at most four regions that
are bounded by a constant number of line segments. For egidnféhe maximization problem
can be solved in timé&(1), after having computed the shortest paths between all piwestices of
G. This approach, however, requir@$n?) andQ(m?) time for computing the spanning ratio and
detour, respectively, where denotes the number of vertices amdis the number of edges. Sur-
prisingly, these are the best known results for these pnobl@r arbitrary crossing-free graphs in
[E2. Even if the input grapldr is a simple path ifi?, no subquadratic-time algorithm has previously
been known for computing its detour or spanning ratio.

Narasimhan and Smid [23] study the problem of approximatiegspanning ratio of an arbitrary
geometric graph ift?. They give a0 (n log n)-time algorithm that computes #@bh—e¢)-approximate
value of the spanning ratio of a path, cycle, or tree embedd®d. More generally, they show that
the problem of approximating the spanning ratio can be rediuc answering)(n) approximate
shortest-path queries aftéx(n log n) preprocessing.

Ebbers-Baumann et al. [10] have studied the problem of ctimgthe detour of a planar polyg-
onal chainGG with n vertices. They have established several geometric piepethe most signif-
icant of which (restated in Lemma 2.1) is that the detourois always attained by two mutu-
ally visible pointsp, ¢, one of which is a vertex off. Using these properties, they developsan
approximation algorithm that runs @((n /<) log n) time. However, the existence of a subquadratic
exact algorithm has remained elusive.

New results. In this paper we present randomized algorithms wim log n) expected running
time that compute the exact spanning ratio or detour of aguolgl path withn vertices embedded
in E2. These are the first subquadratic-time algorithms for figdfe exact spanning ratio or detour,
and they solve open problems posed in at least two paper&31.0Qur algorithm for the spanning
ratio is worst-case optimal, as shown in [23], and we susiettthe algorithm for the detour is
also optimal, although we are not aware of a publishédlog n) lower bound. By extending these
algorithms, we preseri (n log® n) expected time randomized algorithms for computing theuteto
and spanning ratio of planar cycles and trees. We can alsonobéterministic versions of our
algorithms. They are more complicated and a bit slower—ti@yin O(n log®n) time, for some
constant.

We also consider the problem of computing the detour andrspgmratio of 3-dimensional
polygonal chains, and show that the first problem can be doilwerandomized expected time
O(n'%/9t¢), for anye > 0 (where the constant of proportionality dependsspnand the sec-
ond problem can be solved in randomized expected €¥fie!/3+<), for anye > 0. Using the same
extensions as in the planar case, this leads to subquatini@lgorithms for 3-dimensional trees
and cycles. We also show that it is unlikely that@m?*/?)-time algorithm exists for computing
the detour of 3-dimensional chains, since this problem lisagt as hard as Hopcroft's problem, for

which a lower bound oﬂ(n4/3), in a special model of computation, is given in [12].

Preliminary versions of this work appeared in [2, 20]; thdiensional algorithm described in
[20] is significantly different from the one presented here.

2 Polygonal Chainsin the Plane

Let the graphP = (V, E) be a simple polygonal chain in the plane withvertices. That is,
V ={po,...,pn_1} is asetof points inE?, andE = {[p;,_1,p:] | i = 1,...,n—1}. Throughout
the paper, we writd” when referring to the s¢t), ;; e. We extend the definition of the detour from
points to any two subset$ and B of P, by putting

op(A,B) = sup dp(a,b),
aEA,bEB
a#b
which we call theP-detour betweenA and B. We also writedp(A) = dp(A, A). Thus,i(P) =
dp(P) = op(P, P) ando(P) = op(V, V). SinceP will be fixed throughout this section, we will
omit the subscripf’ from J.

2.1 Overall approach

Since computing the detour is more involved than computiregspanning ratio, we present below
the algorithm for solving the detour problem. Certain madifions and simplifications, noted on
the fly, turn the algorithm into one that computes the spanratio.

We first describe an algorithm for the decision problem fa tretour: “Given a parameter
k > 1, determine whethef(P) < x.” Our algorithm makes crucial use of the following propesti
established in [10]. The proof of property (iii) is straifgrivard. It implies that the maximum
detour is attained by a pair of co-visible points. Propeiiy gnsures that one of them can be
assumed to be a vertex. Together, (ii) and (iii) imply propé.

Lemma 2.1 (Ebbers-Baumann et al. [10]) (i) Let V' be the set of vertices in the polygonal chain
P,andlet x > 1. Thereisapair (p,q) € P x P sothat §(p,q) > « if and only if there is a pair
(p',q") € P x V sothat §(p',q') > x and p’ isvisible from¢’.

(ii) Assume that the detour attains a local maximum at two points, ¢, ¢’ that are interior points
of edges e, ¢’ of P, correspondingly. Then the line segment ¢q’ forms the same angle with e and
e/, and the detour of ¢, ¢’ does not change as both points move, at the same speed, along their
corresponding edges.

(iii) Let ¢,q" be two points on P, and assume that the line segment connecting them contains a
third point, », of P. Then max{d(q,r),d(r,¢")} > d(q,q"). Moreover, if the equality holds, then
(q,m) = d(r,q') = d(q,q').

We observe that a claim analogous to property (i) does nat foolthe spanning ratio: while it is
always attained by two vertices, by definition, these vesgticeed not be co-visible. As animmediate
corollary of Lemma 2.1, we always haveP) = §(P, V). It thus suffices to describe an algorithm
for the decision problemGiven a parameter > 1, determine whethef(P, V') < x. We will then
use a randomized technique by Chan [9] to compute the acalis vfd(P) = §(P, V).

2.2 Decision algorithm

We orientP from pg to p,,_1. For a given parameter> 1, we describe an algorithm that determines
whether for all pairgp, q) € V x P, so thatp lies beforeg, the inequalityd(p, q) < « holds. By
reversing the orientation d? and repeating the same algorithm once more, we can alsovdeéer
whether for all pairgp, w) € V' x P so thatp lies afterq the propertyd(q,p) < « is fulfilled.

For a pointp € P, we define theveight of p to be

w(p) = dp(po,p)/~-

Let C denote the cone = /z2 +y2? in E*. We map each poinp = (p,,p,) € V to the
coneC, = C + (py, py,w(p)). That is, we translate the apex 6f (i.e., the origin) to the point

P = (pz,py,w(p)). If we regardC), as the graph of a bivariate function, which we also denote by
C,, then for any poiny € E?, Cy(q) = |lgp|| + w(p) holds. Let€C = {C, | p € V}. We map a
pointg = (g¢s,q,) € P to the pointg = (g4, qy,w(q)) in E*. For any subchaim of P, we define
={q|qemn}

=

Figure 1. TransformingP into a3-dimensional chain.

Lemma 2.2 For any point ¢ € P and a vertex p € V that lies before ¢ on P, §(p,q) < « if and
only if g lies below the cone C),.

Pr oof:

dp(p, q) <k
(1772 I—
dp(po,q) — dp(po,p)
lapl|

dP(pOa q)

d(p,q) <K

dp(po,p)
< lgp|l + —

w(q) < llgpll +w(p)
w(q) < Cyla).

Thatis,d(p, q) < « if and only if ¢ lies below the con€’),. O

ey v

Since the coneé, are erected on the chaif, the pointg, for anyq € P, always lies below
all the cones erected on vertices appearing aftar P. Therefore, if we denote by, the set of all
verticesp € V that precedg along P, Lemma 2.2 implies that({q}, V) < « if and only if § lies
on or below each of the cones@i.e., if and only ifg lies on or below the lower envelope 6f

The minimization diagram of, the projection of the lower envelope @fonto thexy-plane, is
the additive-weight Voronoi diagraryior,, (V') of V, under the weight functiow. For a pointp €
V, let Vor, (p) denote the Voronoi cell g in Vor,, (V). Vor, (V') can be computed iV(n logn)
time [13].

We first test whetheVor,,(p) is nonempty for every vertex € V. If not, we obtain a pair of
vertices that attain a detour larger thannamely a vertey that has an empty Voronoi cell, and a
vertexq whose con&’, passes below.

Note that if Vor, (p) is empty for some vertex € V, then we also know that the spanning
ratio of P is larger thans. Conversely, if the spanning ratio is larger thanthen some Voronoi
cell Vor,, (p) must be empty. Thus, the decision procedure for the spamaititerminates after
completing this step.

We can therefore assume, for the case of detour, ¥hat(p) is nonempty for every vertex

p € V. To check whethe lies below the lower envelope @, we proceed as follows. We
partition P into a family £ of maximal connected subchains so that each subchain liénva
single Voronoi cell ofVor,, (V). SinceVor,(p) is nonempty for every vertex € V, p is the only
vertex of P that lies inVor, (p). Therefore every subchain if is either a segment or consists
of two connected segments withas their common endpoint. For each such segmentF, if

e lies in Vor,(p), we can determine i¥(1) time whetheré lies fully below C,. If this is true
for all segments, thet® lies below@. The total time spent i®(n) plus the number of segments.
Unfortunately, the number of segments may be quadraticeémibrst case, so we cannot afford to
test them all.

We circumvent the problem of having to test all segments ligguthe observation (i) from
Lemma 2.1 that it is sufficient to test glle P that are visible fromp. More precisely, le#A denote
the planar subdivision obtained by overlayikigr,, (V') with P. Each edge afl is a portion of an

5

edge of P or of Vor, (V). For a vertexp € V, let f, denote the set of (at moswo) faces ofA
containingp, and letZ, denote the set of edges.dfthat are portions of and that bound the faces
in fp. The discussion so far implies the following lemma.

Lemma2.3 P liesbelow all the cones of € if and only if | J{¢ | e € E,} lies below all the cones of
C.

The algorithm thus proceeds as follows: We compute the \@rdiagramVor,, (V') in O(n logn)
time [7]. By using the red-blue-merge algorithm of Guiletal. [15] (see also [11, 25]), we compute
the sets of faceg), for all p € V, which in turn gives us the sets, for all p € V. By the
Combination Lemma of Guibagt al. [15], > .y |Ep| = O(n), and the sef{E,, | p € V'} can be
computed inD(n logn) time. Finally, for each edge € E,, we determine whethérlies belowC),

in O(1) time. The overall running time of the algorithma¥n log n).

As mentioned in the beginning, we next reverse the oriemtaif P and repeat the algorithm to
determine whether for each vertgxc V' lying after a pointy € P the inequalityd(p, ¢) < « holds.
(Note that this reversal is not required in the decision @doce for the spanning ratio.) Putting
everything together, we obtain the following.

Lemma 2.4 Let P be as polygonal chain with n vertices embedded in E?, and let x > 1 be a
parameter. e can decide in O(n log n) time whether §(P) < k or o(P) < k.

LetW C V be a subset of vertices &, and letQ) be a subchain aP; setm = |W|+|Q|. Assuming
that the weights of all vertices i have been computed, the decision algorithm described above
can be used to detect i@i(m logm) time whethers(W, Q) < k. However, unlikej(V, P), the
detour of the entire chaif?, 6(W,) need not be realized by a co-visible pair of pointd¥inx @,

so it is not clear how to detect if(m log m) time whether§(W, Q) < k. Instead we can make a
weaker claim. Let* (W, Q) = SUD(p,q)cW xQ d(p, q), where the supremum is taken over all pairs
of points such that the interior of the segmeptdoes not intersect the interior of an edge(hf
Obviously,é* (W, Q) < §(W, Q). Clearly, the above decision algorithm can deteaDimn log m)
time whethers*(W, Q) < . Lemma 2.1 (iii) implies that iB(W, Q) = §(P), thend*(W,Q) =
(W, @), and in this special case we can deteabifmn log m) time whether (W, Q) < . Hence,
we obtain the following.

Corollary 2.5 Let P be a polygonal chain with n vertices in E2. After O(n) preprocessing, for a
given subset W of vertices of P, a subchain @) of P, and a given parameter x > 1, we can decide,

in O(mlog m) time, whether 0*(W, Q) < k or o(W, Q) < k, wherem = |W| + |Q|. Moreover, if
d(W, Q) = §(P), then we can also detect in O(m logm) time whether §(IW, Q) < k.

2.3 Computing 6(P) and o(P)

So far we have shown how to solve the decision problems agedcwith finding the detour and
spanning ratio of a path. Now we apply a randomized techn@fu€han [9], which does not

6

affect the asymptotic running time of our decision algarith to compute the actual detol”) or
spanning ratiar(P). Suppose we have precomputed the weights of all verticés ihet W be a
subset of vertices aP, and letQ) be a subchain aP; setm = |W|+ |Q|. We describe an algorithm
that computes a pait,n) € W x @ so thats* (W, Q) < d(&,n) < §(W,Q).

If |W] or |Q] is less than a prespecified constant, then we compité) using a naive
approach and report a pdff,) that attains it. Otherwise, we partitidfi into two subset$?;, Wy
of roughly the same size, and partitighinto two subchaing),, Q> of roughly the same size. We
have four subproblem@¥;, Q;), 1 <i,j <2, at our hand. Note that

S(W,Q) = max {0(Wy,Q1),0(Wa,Q1),0(W1,Q2),6(Wa,Q2)}, 1)
F(W,Q) < max {0"(Wy,Q1),0"(Wa,Q1),0"(W1,Q2),0" (W2,Q2)}, 2)

where (2) is an easy consequence of the visibility conggamthe definition ob*.

Following Chan’s approach [9], we process the four submislin a random order and main-
tain a pair of pointg¢,n) € W x Q. Initially, we set(¢,n) to be an arbitrary pair of points in
W x Q. While processing a subproblerii,);), for 1 <, j < 2, we first check inD(m logm)
time whethen* (W;, Q;) > §(&,n), using Corollary 2.5. If the answer is yes, we solve the soitypr
lem (W;, Q;) recursively and update the pa#, n); otherwise, we ignore this subproblem. By (1),
(2), and induction hypothesis, the algorithm returns a f@in) such thaty* (W, Q) < d(¢,n) <
d(W, Q). Moreover, if6(W, Q) = 6(P), thend* (W, Q) = §(W, Q), so the algorithm returns the
value of §(W, Q). Chan’s analysis [9] (cf. proof of Lemma 2.1) shows that thpeeted running
time of the algorithm on an input of size is O(m logm). Hence, by invoking this algorithm on
the pair(V, P), 6(V, P) = §(P) can be computed i®(n log n) expected time.

The case of the spanning ratio is handled in a similar andlsinmpanner, replacing (1) and (2)
by
o(W,Q) = max {o(W1,Q1),0(W2,Q1),0(W1,Q2),0(W2,Q2)} 3)
and applying Chan’s technique using this relationship. ddemwe obtain the following main result
of this section.

Theorem 2.6 Thedetour or spanning ratio of a polygonal chain P with n vertices embedded in [E?
can be computed in O(n log n) randomized expected time.

Remark. One can obtain an alternatideterministic solution that uses parametric search [22], and
runs in timeO(n log®n), for some constant. However, the resulting algorithm is considerably
more involved on top of being slightly less efficient. We #fere omit its description.

We extend the definition af*(-, -) to two disjoint subchaing, and R of P as follows. LetVy,
(resp.Vg) be the set of vertices i (resp.R). Defineé*(L, R) = max{0*(Vz, R),6(Vg,L)}.
Using the same argument as in the proof of Lemma 2.1, we cae déingit if§(L, R) = 6(P), then
d(L, R) = 0*(L, R). The following corollary, which will be useful in the nexta®n, is an obvious
generalization of the above algorithm.

Corollary 2.7 Let L and R be two digoint subsets of a polygonal chain P in E?, with a total of n
vertices, preprocessed to report weightsin O(1) time. Then o (L, R) can be computed in O(n logn)
randomized expected time. We can also compute within the same time a pair (p,q) € L x R such
that 6*(L, R) < d(p,q) < §(L, R). Moreover, if §(L, R) = §(P), then §(p,q) = 0(L, R).

As to lower bounds, it was shown by Narasimhan and Smid [28] ¢dbmputing the spanning
ratio of a planar polygonal chain requir@$n log n) time if self-overlapping chains are allowed as
input. Grune [14] has shown that the same lower bound hbéltie input is restricted to polygonal
chains that are monotonic, hence simple. It is unknown véretieQ(n log n) lower bound also
holds for computing the detour of a polygonal curve.

3 Planar Cyclesand Trees

In this section we show that the tools developed for plan#tigpean be used for solving the detour
and spanning ratio problems on more complicated graphsinAga consider only the problem of
computing the detour, because the resulting algorithmseaaity be adapted (and simplified) so as
to compute the spanning ratio.

3.1 Polygonal cyclesin the plane

Let us now consider the case in whi¢h= (V, E) is a closed (simple) polygonal curve. This case
is more difficult because there are two paths aléhfetween any two points dP. As a result,
the detour ofP might occur at a pair of points neither of which is a vertexbfFor example, the
detour in a unit square occurs at the midpoints of two oppaxiges; in this case the lengths of the
two paths between the points must be equal.

Figure 2. Dotted lines indicate (the only two) pairs of points thahattthe maximum detour.

For two pointsp,q € P, let Plp,q| denote the subsets df from p to ¢ in counterclock-
wise direction. We use here the notatiépa(p, ¢) to denote the length aP[p, ¢|; thus, in general,

dp(p,q) # dp(q,p) anddp(p,q) + dp(q,p) is the length| P| of the entire curveP. For a point
p € P, letw(p) denote the point o such thatip(p, 7(p)) = dp(7(p),p) = |P|/2; obviously,
n(m(p)) = p. Let P, denote the polygonal chaii[p, 7(p)].

Lemma3.1 Letpbeapointon P, andlet A, B betwo portions of P, thendp(A, B) = dp, (A, B).

This follows from the fact that the shortest path aldAdpetween any two points,b € A x B is
contained in the polygonal chaif,.

Now the P-detour between two poinjs g € P is defined as

min {dp(p,q), dp(q,p)}
Ipqll

6P(pa q) =

)

and the detour of the whole @t is defined as

0(P) = max dp(p,q).
;Héq

Lemma 3.2 The detour §(P) of P isattained by a pair of points p, ¢ € P, such that either one of
themisa vertex of P, or ¢ = 7(p).

Proof: Supposei(P) = dp(p,q), where neithep nor ¢ is a vertex, and; # w(p). Suppose
|P|/2—dp(p,q) = a > 0. We extend, on either end®[p, q] by subpaths’[p’, p] and P[q, ¢'] of P,
each of lengthz/2, and thereby obtain a polygonal sub-ch&h= P[p’,¢'] C P of length|P|/2.
Since a shortest path i between any two points d?’ is contained inP’, we have

5(P) = dp(p,q) < 8(P') < (P).

Thus, the maximum detour d? is attained ap andq. By Lemma 2.1 (ii), the detour does not
change as we simultaneously mgwvéowardp’ andq towardq’ at equal speed, along their edges
in P’'. This motion continues until one of the two points reachesréex of P’—which must be a
vertex of P, too—or both endpointg’, ¢’ = n(p’) of P’ are reached. O

By using a rotating-caliper approach, we can compute,cp ép(p, 7(p)) in O(n) time, so
we focus on the case in which one of the points attaining theudes a vertex ofP. We present
a different divide-and-conquer algorithm, which will ugeetalgorithm described in Section 2.2
repeatedly. We can preproceBsn O(n) time, so that, for any two points, ¢ € P, dp(p,q) can
be computed i (1) time.

Let 1,9, b1, by be four points ofP appearing in this counterclockwise order alafgso that
the following condition is satisfied.

by = 7T(t1) andby, = 7T(t2). (4)

Figure 3. An instance of the recursive problemp (t1,t2) = dp(b1,b2) = [, dp(t2,b1) = dp(b2,t1) = h, |P| =
2(l =+ h), dp(tl,t) = dp(bl,b) = w.

We observe that condition (4) implieg>(t1,t2) = dp(b1,bs) anddp(ta, b)) = dp(bo,t1). Let
m, m' be the number of edges R[b;, b2] and P[t1, t2], respectively. Define

p(t1,t2,b1,b2) = 0p(P[t1,t2], P[b1, b))

We describe a recursive algorithm that computes a pair oftpQp, q) € P[by, bo] x P[t1, t2]
such thaﬁ(p, q) = p(tl, to, by, 1)2) if p(tl, to, by, bg) = (5(P) If p(tl, to, by, bg) < (5(P), it returns
an arbitrary pair of points it [by, ba] x P[t1, t2].

If min{m,m’} = 1, then we can computg(t,t2,b1,bs) in O(m + m') time. Otherwise,
suppose, without loss of generality, that > m, and let: be the middle vertex oP[t;, 5] (i.e., the
vertex for which each oP[ty,t], P[t, t3] hasm'/2 edges), and lei = = (t). It is easily seen that
b € P[b1, be] (by condition (4)). Clearly,

p(t17t27 bla b2) = ma‘x{p(tlata b7 b2)7p(t7t27 b17 b)ap(tlata bla b)ap(t7t27 ba b2)}

Since P[t,t] and P[b,bo] lie in P[b,t] = P[rn(t),t], using Corollary 2.7, we can compute in
O((m’ + m)log(m’ + m)) randomized expected time a p&jr,q) € P[t;,t] x P[b,bs] so that
d(p,q) = p(ti,t,b,be) if p(t1,t,b,b2) = §(P). We can compute a similar pair iR[t, t2] x
P[by, b] within the same time bound. Each of the tdxuples(¢y, ¢, b1, b) and(¢, to, b, be) satisfies
condition (4), and we solve the problem recursively for theemong the pairs computed by the
four subproblems, we return the one with the largest detdhe correctness of the algorithm is
straightforward.

Let m, be the number of edges [b;, b]. ThenPIb, be] contains at most: — m; + 1 edges.
Let T'(m', m) denote the maximum expected time of computirig , t2, by, b2), with the relevant
parametersn’ andm. Then we obtain the following recurrence:

/ /
T(m',m)<T (m?,m1> +T <m7,m —mq + 1) +O((m' +m)log(m' +m)), form' >m,

with a symmetric inequality fom > m/, andT'(m’,1) = O(m'),T(1,m) = O(m). The solution
to the above recurrence is easily seen to be

T(m',m) = O((m' +m)log?(m' +m)).

10

Returning to the problem of computidgP), we choose a vertex € P. Let P, = Plv, 7(v)]
andP, = P[r(v),v]. Then

i(P) = max{ max 0p(z,y), max 6p(x,y),6p(P1,P2)}

z,yeP z,y€P>
= max{d(P),i(P),p(v,n(v),n(v),v)}.

The last equality follows from the fact that thetuple (v, 7(v), 7(v), v) satisfies (4). We can com-
puted(Py), () in O(nlogn) randomized expected time, using Theorem 2.6. Next we invoke
the above algorithm on thé-tuple (v, w(v), w(v),v). We return the maximum of these values.
If p(v,m(v),m(v),v) = §(P), then the above recursive algorithm computés, 7(v), 7(v), v).
Hence, the total expected time spent in computifig) is O(nlog? n).

The same method also applies to the computation of the spgnatio of P, and we thus obtain:

Theorem 3.3 The detour or spanning ratio of a polygonal cycle P with n edges in E? can be
computed in O(n log? n) randomized expected time.

3.2 Planar trees

Let T = (V,E) be a tree embedded . With a slight abuse of notation, we will uge to
denote the embedding of the tree as well. We describe a rdamddnalgorithm for computing
d(T). Without loss of generality, assurfiéis rooted at a vertex, so that if we remove, and the
edges incident upony, each component in the resulting forest has at mg@atvertices;v, can be
computed in linear time; refer to Figure 4. We partition tiédren of vy into two setsA and B.
Let T4 (resp.,Ts), denote the tree induced by and all vertices having ancestorsAn(resp.,B).
The partitionA, B is chosen so that

1 3

0 < Tall, 1 75] < Sn.

Since no descendent of is the root of a subtree with size more thaf2, such a partition can be
found with a linear-time greedy algorithm.

We recursively computé(T'y) andd(Tg). Letk* = max{d§(Ta),0(Tg)}. If §(Ta,Tn) > K*,

then we need to comput&T'4, 7). The following lemma, whose proof is identical to that of
Lemma 2.1 given in [10], will be useful.

Lemma3.4 Let T4 and Tz be two subtrees of T', and let V4 (resp. V) be the set of vertices in
T4 (resp. Tg). There exists a pair of points (p,q) € (V4 x Tp) U (Vg x T4) such that (p, q) =
d(Ta,Tg). Moreover, if 6(T4, Tr) = 6(T) then p isvisible from g with respect to Ty U T's.

By Lemma 3.4, it suffices to comput¢V4, Tz) andd(V,T4), whereV, andVp are the sets
of vertices inT'y andTg, respectively. As in Section 2, we first describe a decisigorghm that

11

g AVAVAVAR

SAVAYAY

3
<in

Figure 4. PartitioningT into subtreed’s andT’s.

determines whethef(T'4,T5) < « for some parametet > «*. We define the weight/(p) of a
pointp € T to be
dT(pa UO)

w(p) = L

Let C be the coner = /z2 + y2. To determine whethef(V4,Tg) < k, we map each point

u = (ug,uy) € Va to the conely, = C' + (ug, uy, —w(u)), and map each point= (v,,v,) € T

to the pointt = (v, v,,w(v)). LetTy = {o | v € Tp} be the resulting tree embedded in
[E3. Following the same argument as in Lemma 2.2, we can argtiefohany (u,v) € V4 x T,
d(u,v) < kifand only ifo lies below the con€',,. If 6(T4, T) > k > k*, thend(Tx,Tr) = 6(T)
and, by Lemma 3.4, there is a co-visible pair of point¥’inx T whose detour is greater thanSo

we can restrict our attention to co-visible pairdin x T'z. Using this observation and Lemma 3.4,
we can determine whethéfV4, Ts) < x, in O(nlogn) time, by the same approach as in Section 2.
Similarly, we can determine wheth&{Vz,T4) < xin O(nlogn) time.

Finally, returning to the problem of computin7’), we first use the decision algorithm to
determine whethef(T'4, Ts) > *. If the answer is no, we returi and a pair of points, both from
T4 or both fromTg, realizing this detour. Otherwisé(T') = 6(T4,Tp). Since each of'4,Tp
can be decomposed into two subtrees, each of size atifdshe size ofl’4 or Tz, respectively,
we can plug this decision algorithm into Chan’s techniquigh Whe same twist as in Section 2, to
obtain an algorithm that computéél/4, Ts) in O(n logn) randomized expected time.

Putting everything together, the expected running timenefdabove algorithm is given by the
recurrence
Tn)=Tn—-k+1)+T(k)+ O(nlogn),

with n/4 < k < 3n/4. The recurrence solves ©(n log® n). (As in the case of chains, we need
one preliminary global pass that computes the distancesg dldrom v, to each of the vertices.)

12

The algorithm for computing the spanning ratio proceedssimalar but simpler manner, as in
the case of chains, and has the same randomized expectedgtinme bound. We thus conclude
the following.

Theorem 3.5 The detour or spanning ratio of a planar tree with n vertices can be computed in
O(nlog? n) randomized expected time.

4 Polygonal Chains, Cycles, and Treesin F?

Let P be a polygonal chain with vertices embedded ii*. We describe subquadratic algorithms
for computing the detour and spanning ratio/of and a reduction showing that the problem of
computing the detour is at least as hard as Hopcroft's pnoble

4.1 Computing the spanning ratio

We begin with the simpler problem of computing the spanniipro(P) of P. We solve this
problem by adapting the technique for computing spannitiggan the plane, as described in
Section 2. Specifically, consider the decision problem,rekes want to determine whethe(P) <

. We take the sel’” of vertices of P, and map each € V to the pointp = (p,w(p)) € R*, where
w(p) = dp(po,p)/K andpy is the starting point of. We take the cone

C: x4 =\/2? + 2%+ 23,

and define, for each € V, the cone’), to bep + C. As in the planar case;(P) < « if and only if
each poing, for p € V, lieson the lower envelope of = {C, | ¢ € V'}.

Letp = (a1, a9,a3) be a pointinV, and letw(p) = a4. A pointé = (&1, &2,£&3,&4) lies below
the cone

Cp: s —as = /(x1 — a1)+ (22 — a2)? + (z3 — a3)?
if and only if the point
Q(&) = (£1,60,83,64, 61 — & — 65 — &3)
in B> lies in the halfspace

hy : x5 < —2a121 — 20979 — 2a3%3 + 2a474 + (a? 4+ a3 + a3 — a?).
Therefore a poinf € E* lies in the lower envelope d if and only if o(¢) lies in the convex polyhe-
dron ﬂpEV h,. Hence, the problem of determining wheth€”) < x reduces to locating points
in a 5-dimensional convex polyhedron defined by the interseation halfspaces. This problem
can be solved i) (n*/3+¢) time using a data structure for halfspace-emptiness aqufi]e Using
Chan’s technique, as in the planar case, we can compute itself within the same asymptotic
time bound. Finally, as for the planar case, the algorithmlmextended to compute the spanning
ratio of a polygonal cycle or tree embeddeddh That is, we have shown:

13

Theorem 4.1 The spanning ratio of a polygonal chain, cycle, or tree with n vertices embedded in
3 can be computed in randomized expected time O(n*/3+¢), for any e > 0.

4.2 Computing the detour

We next consider the problem of computing the detd?) of P. Here the algorithm becomes
considerably more involved and less efficient, albeit stibquadratic. As in some of the preceding
algorithms, we use a divide-and-conquer approach to caapi®). Thatis, we partitior into two
connected portiong?;, P, each consisting of/2 edges, recursively compuiéP;) andd(F;), and
then compute explicitly the detour betwefn and P, as follows. Leto be the common endpoint
of P, andP,. For any pointz in P, letw(z) = dp(o,) be the arc length aP (that is, either ofP;

or of) betweerv andz. For anyz € P,y € P, we have

wlz) +wly)

o(®:9) = =]

For a pair of edges € P, ande’ € P, define, as above,

d(e,€') =dp(e,€') = max dp(z,z');
r€e,x'ce!

as in Section 2, we drop the subscripin the functiond. Then

5(P) = max {5(131), 5(Py), max 5(6,6')}.

ecPy, e €Ps

Let A, B denote the set of edges Bf and P, respectively. It suffices to compute the third term,

d(A,B) = Lnax d(a,b).
Unlike the planar case, the detour@is not necessarily attained at a vertextbffor example, there
P might contain two long edges that orthogonally pass nean elter at a very small distance,
and the detour could then be obtained between the two pdiatsréalize the distance between
the segments.) This makes the 3-dimensional algorithmiderably more complicated, and less
efficient, than its 2-dimensional counterpart. Considet flie decision problem, in which we wish
to determine whethe¥(A, B) < k, for some givens > 1.

For an edge € AU B, lete™ denote the ray that emanates from the endpeiht,of e closer
to o along P and that contains; see Figure 5. Similarly, let~ denote the ray emanating from the
point z— of e farther fromo and containing:. We extend the definition ab(-) for points on the
rayse™, e~ even though these points might not lie f For a pointz € e™ (resp.,z € e7), we
definew(z) = w(z™) + ||z7z|| (resp.,.w(z) = w(z~) — ||zz||). Note that these definitions af
are consistent with the earlier definition, in the sensedhatf them assume the same value for the
points one. We can now definé(-, -) for points lying on the rays supporting the edgeg¥fand
P,. Namely, for a given pait, b, wherea, b are either edges d? or the rays supporting the edges,

d(a,b) = maxgeqyep(w(x) +w(y))/llzyl-

14

Figure 5. Decomposition of? and rays:™", e

Lemmad4.2 Leta € Aandb € B beapair of edges. The following four conditions are equivalent:

() 6(a,b) >

(
(i) 6(a™,b) > kandd(a,b) > k;

(iii) d(a,b") >k and §(a,b~) >

(iv) 6(a™,b%) > k,8(a™,b7) > K, 8(a”,b") > k,and 6(a”,b7) > k.

Proof: Leta* (resp.,b*) be the line supporting the edggresp.,b) oriented in the direction of the
ray a™ (resp.,b™). Parametrize the lines* andb* by the signed distances along these lines from
appropriate respective initial poirgs= a,n € b, and denote these distancesttands, respectively.
Regarda™ x b* as the parametrits-plane. Letu, v denote the positively oriented unit vectors along
a* andb*, respectively. For: = £ + tu € o* andy = n + sv € b*, the conditioni(z,y) > « can

be written as:

w(é)+w(n) +t+s

1€ =) + tu— sv

(5(.%‘,3;) =

or
(€ —n) +tu —sv]| —w(é) —w(n) —t -5 <0. ()

The left-hand side of (5) is eonvex function on thest-parametric plane, being the difference of
a convex function and a linear function. The lemma is thenaamy eonsequence of this convexity
property. Indeed (i) implies (ii)—(iv) because= a™ Na~ andb = b* N b~. For the converse
implications, consider the implication (i (i). Suppose thaf(z*,y") > kforz™ € a™,y" € b
andé(z~,y~) > kforz™ € a™,y~ € b. By constructionz ™z~ Na # (. Moreover, by convexity
of (5), §(z',y') > kforall 2’ € 27z ,9y' € yTy, thereby implying that(a,b) > . Similar
arguments imply that (iii) or (iv) implies (i). O

Using Lemma 4.2(iv) and the standard random-sampling tqabr{16], we construct a four-level
data structure to decide whethgid, B) > «. The first level constructs a complete bipartite decom-
position for the se{(a,b) € A x B | §(a™,b") > k}. The second level processes each bipartite

15

clique 4; x B; in the decomposition, and represents the{¢etb) € A; x B; | 6(a~,b") > x} as
the union of complete bipartite subgraphs. The third ldvehtrefines further this decomposition, to
collect pairs that also satisfifa™, b~) > «, and the fourth level finally tests wheth®u—, b) > &
for any of the surviving pairs.

We compute the first-level decomposition {df,b) € A x B | 6(a™,b") > &}, as follows.
(Similar procedures are then applied at each of the thress tdhels of the data structure.) For each
edgea € A, we map the ray:™ to a point((at) = ((1,...,¢s) in RS, where(¢y, (2, (3) are the
coordinates of the endpoint" of o™, ({4, (5) is an appropriate parametrization of the orientation
of a*, and(s = w(z™"). A similar parametrization will be used for the rays. Next, we map each
edgeb € B to a surfacey(b™) that represents the locus of all ray$ for which §(a™,b") = &.
Sinced increases as the paramefgrincreases, and eaéhtuple (1, ..., (s) defines a unique ray
in B2, it follows that~y(b™) is the graph of a totally define@variate function and(a™,b%) > &
(resp.,6(a™,b") <) if and only if ((a™) lies above (resp., below)(b*). We can thus regard the
problem at hand as that of collecting, in compact form, ait& (a™),~(b")) for which ¢(a™)
lies abovey(b). Abusing the notation slightly, set| = n and|B| = m.

We fix a sufficiently large constamt draw a random samplB of cr log r edges ofB, where
c is a sufficiently large constant independentrpfind compute the vertical decompositidr of
the arrangement of the surfaceg~(b™) | b € R}. It is easily verified that these surfaces are all
semi-algebraic of constant description complexity. Hemae can apply the result of Koltun [19],
to conclude that! hasO(r®+¢) cells, for anye > 0. For each celr € All, let A, = {e € A |
((e™) € 7}, let B, C B be the set of edgédsfor which the surface/(b™) crosses, and letB} C B
be the set of edgdsfor which the surface/(b) lies completely below. The setsA,, B, can be
computed inD(m + n) time under an appropriate model of computation, in which sgime that
the roots of a constant degree polynomial can be computédintime; see [25].

Setn, = |A;| andm, = |B;|. Obviously,Y _n, = n and|B}| < m. By the theory of
random sampling [16, 25] (where we use the fact that the f@edsion of the underlying range
space is finite)m, < m/r for all 7, with probability at least — n, wheren = n(r) is a constant
that can be made arbitrarily small by choosing the value siifficiently large. Ifm, > m/r for
a cell, we choose another random sample and restart the atEpveSince the probability of this
event is a sufficiently small constant, it does not affectatygmptotic expected running time of the
algorithm and we can ignore this step. Moreover, by sptittime cells into subcells, if needed, we
may also assume that < n/r® for eachr; the number of cells remair@(r+¢). By construction,
§(a™,b%) > k for any paire € A, andb € B:. We use the second-level data structure, sketched
below, to determine whethex(A, BX) > k. If m, or n, is less than a prespecified constant,
then we use a naive procedure to determine whethér, B,) > x. Otherwise, we recursively
determine (using the first-level data structure) whethet,, B,) > «. For an edge € A, and for
an edgé € B such thaty(b™) lies abover, 6(a™t,b") < &, so there is no need to compate with
such edges.

To exploit the symmetry in the conditioi{a™,b") > k betweend and B, we next switch the
roles of A, and B, by mapping the rayé*, for b € B, to points inR%, and the rays:*, for
a € A;, to surfacesy(a™), as above. We take a random samplerofog r of these surfaces, and

16

construct the vertical decomposition of their arrangemasatabove. Repeating this for each cell
7, we end up withO(r'%+) subproblems, each involving at mestr® segments ot and at most
m/r? segments of3, which we proceed to solve recursively, using the firstllelaga structure. In
addition, we have subproblems involving pairs of sets offten A, B, or B/, A%,, which we
pass to the second level of the structure.

The second-level structure is constructed in an analog@mer, with the only difference that
we use the rays™~ instead of the raya™. Thus, starting with a pair of subsets, B, we obtain a
decomposition inta)(r'5+¢) subproblems, each involving at mast, |/r® segments o, and at
most| B, |/r? segments of3,, which we process recursively using the second-level trecand a
collection of other subproblems that we pass to the thirdllevhe third level is again constructed
in complete analogy, using the rays for the segments il and the ray$~ for the segments
in B. The fourth-level structure is constructed for the raysb , and is a little simpler than the
preceding levels, in the sense that whenever we detect thaelies fully below a surfacey(a™)
orvy(b~)), we stop and report that A, B) > «. Otherwise, we continue the processing recursively,
as in the preceding levels.

Fori =1,...,4 and for integersn,n > 0, let T(i>(n,m) denote the maximum running time
of thesth level data structure on a setodges of?, and a set ofn edges of%. Then
c nom
T® (n,m) = O(16+%) . T® (T—g, ﬁ> +O(m +n),

and
n m

TO(n,m) = O('°+) - [T (55, 55) + T (n,m)| + O(m +),

for i < 3. The solutions to the above recurrences are easily seeriitélfe, m) = O((mn)3/7+%),
for anye > 0 and for each.

Hence, we obtain the following.

Lemma 4.3 Given a polygonal chain in E2, two disoint subchains A and B of P with a total of
m vertices, and a parameter > 1, we can determine, in O(n'6/9t¢) randomized expected time,
whether §(A, B) > k.

As in the planar case, we can use the randomized techniquénari (9] to compute the actual
d(A, B) within the same asymptotic expected running time bound.algerithm extends to polyg-
onal cycles and trees i .

In conclusion, we obtain the following.

Theorem 4.4 The detour of a polygonal chain, cycle, or tree with n edgesin E? can be computed
in randomized expected time O(n'6/9+¢), for any £ > 0.

Remark. We remark that it is also possible to use the parametric kaaahnique [22], as
in [3], to obtain a deterministic alternative solution. FHhiowever (a) results in a considerably
more involved algorithm, and (b) requires us to derandorttizadecision algorithm, i.e., its vertical
decomposition step. This too is doable, but is considerataye complicated.

17

4.3 Lower bound

Finally, we show that computing the detour of a 3-dimendipath is as hard as Hopcroft's problem:
Given a setl, = {/y,...,4,} of n lines inR? and a setP = {py,...,p,} of n points inIR?,
determine whether any line df contains any point of. There is an abundance of evidence that
suggests that Hopcroft's problem hassa(’n4/3) lower bound [12]. The best known upper bound
in any reasonable model of computatiorCign®/320008")y [21],

To reduce an instance of Hopcroft's problem to that of corimguthe detour of a 3-dimensional
path, we will first build a 3-dimensional paitlh that is self-intersecting, i.e., has infinite detour, if
and only if the answer to Hopcroft's problem is affirmativeheh we show how the proof can be
modified to cover the case where we knayriori that the polygonal chains we are given as input
do not self-intersect. The construction uses techniquesepted in Erickson [12].

Without loss of generality, we may assume that none of therglines isy-vertical. We be-
gin by sorting the lines irl. in increasing order of their slopes and the pointgirin increasing
lexicographic order. Let/q,...,¥,) be the resulting sequence of lines, and(fst ..., p,) be the
resulting sequence of points. We compute a bounding reletdthgo that each line of. intersects
the twoy-vertical edges ofz, and all the points of?, as well as all the intersection points of lines
in L, lie inside R. These steps requit@(n logn) time.

By construction, the ordering df along the left edge oR in —y-direction is/q,...,4,, and
its ordering along the right edge &fis /,, ..., ¢;. For eachl < i < n, we lift the segmenfz N ¢;
orthogonally to the plane = i, to obtain a line segmeit. Next, we transform each input point
pj € P to aline segment; that is parallel to the-axis, whose endpoints afg;, 0) and(p;,n+1);
see Figure 6.

() (ii)

Figure 6. Reducing Hopcrofts’s problem to computing the detour ofdirBensional path. (i) An instance of Hopcroft's
problem. (ii) Construction of the polygonal chdih

This gives us a set of line segments so that the answer to bitpgoroblem for the original
lines and points is “yes” if and only if some segméntntersects some segment It remains
to construct a polygonal chain that contains all these satgneithout introducing any additional
crossings. To do this, we first form a chain containing alihseqts/;. It starts at the left endpoint
of ;. The right endpoint ot; is connected to the right endpoint bf This connection consists
of two segments; the first one is parallel to #haxis and leads from the plane= 1 to the plane

18

z = 2, and the second one, containectia- 2, is parallel to they-axis. Next/, is traversed, and its
left endpoint is connected to the left endpointofn an analogous way. We continue until the last
endpoint ofl,, is reached. Clearly, the resulting chain is simple.

Next, we connect the segments . . . e, into a simple polygonal chain by connecting the upper
endpoints ofe; to e; 1 if 7 is odd and the lower endpointsifis even. This chain is clearly not
self-intersecting since itsy-projection is monotone in the lexicographic order. Fipalle connect
the left endpoint of; in z = 1 to the free endpoint of; in z = 0 by two additional segments. The
resulting concatenation of the two chains has the desirgplpty. See Figure 6.

One might state the problem of computing the detour 8fdimensional chain in such a way
that the input chains are known apriori not to have selfrggetions. The above lower bound proof
can be adapted to this situation in the following way. Fivg, move each of the original lines
a distance ot to the right, where: is a formal infinitesimal, i. e.¢ is positive, but smaller than
any real number. Then we construct the polygonal chain irséime way as before. It will always
be non-intersecting, but its detour is bigger thdn, for some appropriate constant> 0, if and
only if there was a point-line incidence in the original arste of Hopcroft's problem. Reductions
using infinitesimals were formally shown to be correct, ie tilgebraic decision tree model, by
Erickson [12].

In conclusion, we have shown:

Theorem 4.5 An algorithm with running time f(n) for computing the detour of 3-dimensional
polygonal chainswith n verticesimpliesan O(n logn + f(n)) time algorithm for Hopcroft's prob-
lem.

Remark. It is interesting to note that we have almost matched thigfdvound with the algorithm
in Theorem 4.1 for computing the spanning ratiofof We do not know whether the preceding
construction can be extended to yield a lower bound argufeecbmputing spanning ratios.

5 Conclusions

We have giverO(n log n)-time randomized algorithms for computing the detour arahspng ratio

of planar polygonal chains. These algorithms lead t@é&mlog? n)-time algorithms for computing
the detour and spanning ratio of planar trees and cycledirée tdimensions, we have given sub-
quadratic algorithms for computing the detour and spanratig of polygonal chains, cycles, and
trees. Previously, no subquadratic-time (exact) algaorithvere known for any of these problems.

There are many open problems in this new area. The most abisowVhich other classes
of graphs admit subquadratic-time algorithms for computimeir detour or spanning ratio? Also,
it remains open to prove ai(n logn) lower bound for computing the detour of a simple planar
polygonal chain ofx vertices; at present, such a bound is only known for comgttie spanning
ratio. Finally, it seems likely that the algorithm for contimg the detour ifE® can be improved.

19

Acknowledgement. We would like to thank Ginter Rote for interesting discassirelated to
the problems studied in the paper.

References

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

P. K. Agarwal and J. Erickson. Geometric range searclaing its relatives. In B. Chazelle, J. E.
Goodman, and R. Pollack, editoAgjvancesin Discrete and Computational Geometry, volume 223 of
Contemporary Mathematics, pages 1-56. American Mathematical Society, Providenge,999.

P. K. Agarwal, R. Klein, C. Knauer, and M. Sharir. Compmgtithe detour of polygonal curves. Tech-
nical Report B 02-03, Freie Universitat Berlin, Fachbehdilathematik und Informatik, 2002.

P. K. Agarwal, M. Sharir, and S. Toledo. Applications @frpmetric searching in geometric optimiza-
tion. J. Algorithms, 17:292-318, 1994.

O. Aichholzer, F. Aurenhammer, C. Icking, R. Klein, E.ngetepe, and G. Rote. Generalized self-
approaching curve®discrete Appl. Math., 109:3—-24, 2001.

H. Alt and L. J. Guibas. Discrete geometric shapes: Miaighinterpolation, and approximation. In
J.-R. Sack and J. Urrutia, editordandbook of Computational Geometry, pages 121-153. Elsevier
Science Publishers B.V. North-Holland, Amsterdam, 2000.

H. Alt, C. Knauer, and C. Wenk. Comparison of distance sueas for planar curvesAlgorithmica
38:45-58, 2004.

F. Aurenhammer and R. Klein. Voronoi diagrams. In J.-BclSand J. Urrutia, editorgjandbook of
Computational Geometry, pages 201-290. Elsevier Science Publishers B.V. Nortlekid, Amster-
dam, 2000.

P. Bose and P. Morin. Competitive online routing in gedmneggraphs.Theoret. Comput. Sci. 324:273—
288, 2004.

[9] T. M. Chan. Geometric applications of a randomized optation techniqueDiscrete Comput. Geom.,

(10]

(11]

(12]
(13]
(14]

(15]

22(4):547-567, 1999.

A. Ebbers-Baumann, R. Klein, E. Langetepe, and A. L&ga fast algorithm for approximating the
detour of a polygonal chairComput. Geom. Theory Appl., 27:123-134, 2004.

H. Edelsbrunner, L. J. Guibas, and M. Sharir. The coxipteand construction of many faces in
arrangements of lines and of segmemisscrete Comput. Geom., 5:161-196, 1990.

J. Erickson. New lower bounds for Hopcroft's probleDiscrete Comput. Geom. 16:389—-418, 1996.
S. J. Fortune. A sweepline algorithm for Voronoi diagsa Algorithmica, 2:153-174, 1987.
A. Grine. Umwege in Polygonen. Master’s thesis, tosfir Informatik |, Universitat Bonn, 2002.

L. J. Guibas, M. Sharir, and S. Sifrony. On the generaliomplanning problem with two degrees of
freedom.Discrete Comput. Geom., 4:491-521, 1989.

20

(16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

(24]
(25]

D. Haussler and E. Welzl. Epsilon-nets and simplex eaggeries.Discrete Comput. Geom., 2:127—
151, 1987.

C. Icking and R. Klein. Searching for the kernel of a pgiyn: A competitive strategy. IRroc. 11th
Annu. ACM Sympos. Comput. Geom., pages 258—-266, 1995.

C. Icking, R. Klein, and E. Langetepe. Self-approaghaurves. Math. Proc. Camb. Phil. Soc.,
125:441-453, 1999.

V. Koltun. Almost tight upper bounds for vertical decpositions in four dimensions.. ACM 51:699—
730, 2004.

S. Langerman, P. Morin, and M. Soss. Computing the marindetour and spanning ratio of planar
chains, trees and cycles. Rroc. 19th Internat. Sympos. Theoretical Aspects of Computer Science
(STACS2002), volume 2285 ot NCS, pages 250—-261. Springer-Verlag, 2002.

J. MatouSek. Range searching with efficient hierarahguttings Discrete Comput. Geom., 10(2):157—
182, 1993.

N. Megiddo. Applying parallel computation algorithritsthe design of serial algorithmsl. ACM,
30(4):852—-865, 1983.

G. Narasimhan and M. Smid. Approximating the stretalidaof Euclidean graphslAM J. Comput.,
30(3):978-989, 2000.

G. Rote. Curves with increasing chordgath. Proc. Camb. Phil. Soc., 115:1-12, 1994.

M. Sharir and P. K. AgarwalDavenport-Schinzel Sequencesand Their Geometric Applications. Cam-
bridge University Press, New York, 1995.

21

